首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Acoustic technology shows the capability of protein pellet homogenization from different tissue samples of soybean and rice in a manner comparable to the ordinary mortar/pestle method and far better than the vortex/ultrasonic method with respect to the resolution of the protein pattern through two-dimensional polyacrylamide gel electrophoresis (2D-PAGE). With acoustic technology, noncontact tissue disruption and protein pellet homogenization can be carried out in a computer-controlled manner, which ultimately increases the efficiency of the process for a large number of samples. A lysis buffer termed the T-buffer containing TBP, thiourea, and CHAPS yields an excellent result for the 2D-PAGE separation of soybean plasma membrane proteins followed by the 2D-PAGE separation of crude protein of soybean and rice tissues. For this technology, the T-buffer is preferred because protein quantification is possible by eliminating the interfering compound 2-mercaptoethanol and because of the high reproducibility of 2D-PAGE separation.  相似文献   

2.
Extraction of soybean seed proteins for two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) and mass spectrometry analysis is challenging and inconsistent. In this study, we compared four different protein extraction/solubilization methods-urea, thiourea/urea, phenol, and a modified trichloroacetic acid (TCA)/acetone-to determine their efficacy in separating soybean seed proteins by 2D-PAGE. In all four methods, seed storage proteins were well separated by 2D-PAGE with minor variations in the intensity of the spots. The thiourea/urea and TCA methods showed higher protein resolution and spot intensity of all proteins compared with the other two methods. In addition, several less abundant and high molecular weight proteins were clearly resolved and strongly detected using the thiourea/urea and TCA methods. Protein spots obtained from the TCA method were subjected to mass spectrometry analysis to test their quality and compatibility. Fifteen protein spots were selected, digested with trypsin, and analyzed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and liquid chromatography mass spectrometry (LC-MS). The proteins identified were beta-conglycinin, glycinin, Kunitz trypsin inhibitor, alcohol dehydrogenase, Gly m Bd 28K allergen, and sucrose binding proteins. These results suggest that the thiourea/urea and TCA methods are efficient and reliable methods for 2D separation of soybean seed proteins and subsequent identification by mass spectrometry.  相似文献   

3.
To establish a proteomic reference map for soybean leaves, we separated and identified leaf proteins using two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) and mass spectrometry (MS). Tryptic digests of 260 spots were subjected to peptide mass fingerprinting (PMF) by matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) MS. Fifty-three of these protein spots were identified by searching NCBInr and SwissProt databases using the Mascot search engine. Sixty-seven spots that were not identified by MALDI-TOF-MS analysis were analyzed with liquid chromatography tandem mass spectrometry (LC-MS/MS), and 66 of these spots were identified by searching against the NCBInr, SwissProt and expressed sequence tag (EST) databases. We have identified a total of 71 unique proteins. The majority of the identified leaf proteins are involved in energy metabolism. The results indicate that 2D-PAGE, combined with MALDI-TOF-MS and LC-MS/MS, is a sensitive and powerful technique for separation and identification of soybean leaf proteins. A summary of the identified proteins and their putative functions is discussed.  相似文献   

4.
Two soybean components namely, storage proteins and isoflavone content in a wild and three cultivated soybean genotypes were characterized and compared. The storage proteins, β-conglycinin and glycinin were separated by two-dimensional polyacrylamide gel electrophoresis (2D-PAGE), and two major storage proteins and their subunits were characterized using mass spectrometry. The three isoflavones, aglycon and the nine conjugated forms were separated by HPLC (high performance liquid chromatography) and identified by comparison of retention time, ultraviolet and mass spectral analyses. Comparison between the number of 2D-PAGE protein spots of the storage protein subunits and HPLC area of twelve isoflavones was also evaluated. The analysis of proteins and isoflavones from the wild genotype and the three cultivated genotypes suggested possible interactions between proteins and isoflavones. The same wild genotype, which showed significant statistical differences in β-conglycinin and glycinin protein profiles also revealed considerable reduction in total isoflavones (> 55%) content.  相似文献   

5.
Precise quantitation of protein biomarkers in clinical tissue specimens is a prerequisite for accurate and effective diagnosis, prognosis, and personalized medicine. Although progress is being made, protein analysis from formalin-fixed and paraffin-embedded tissues is still challenging. In previous reports, we showed that the novel formalin-free tissue preservation technology, the PAXgene Tissue System, allows the extraction of intact and immunoreactive proteins from PAXgene-fixed and paraffin-embedded (PFPE) tissues. In the current study, we focused on the analysis of phosphoproteins and the applicability of two-dimensional gel electrophoresis (2D-PAGE) and enzyme-linked immunosorbent assay (ELISA) to the analysis of a variety of malignant and non-malignant human tissues. Using western blot analysis, we found that phosphoproteins are quantitatively preserved in PFPE tissues, and signal intensities are comparable to that in paired, frozen tissues. Furthermore, proteins extracted from PFPE samples are suitable for 2D-PAGE and can be quantified by ELISA specific for denatured proteins. In summary, the PAXgene Tissue System reliably preserves phosphoproteins in human tissue samples, even after prolonged fixation or stabilization times, and is compatible with methods for protein analysis such as 2D-PAGE and ELISA. We conclude that the PAXgene Tissue System has the potential to serve as a versatile tissue fixative for modern pathology.  相似文献   

6.
Large amounts of the major storage proteins, β-conglycinin and glycinin, in soybean (Glycine max) seeds hinder the isolation and characterization of less abundant seed proteins. We investigated whether isopropanol extraction could facilitate resolution of the low abundant proteins, different from the main storage protein fractions, in one-dimensional polyacrylamide gel electrophoresis (1D-PAGE) and two-dimensional polyacrylamide gel electrophoresis (2D-PAGE). 1D-PAGE of proteins extracted by different concentrations (10%, 20%, 30%, 40%, 50%, 60%, 70% and 80%) of isopropanol showed that greater than 30% isopropanol was suitable for preferential enrichment of low abundant proteins. Analysis of 2D-PAGE showed that proteins which were less abundant or absent by the conventional extraction procedure were clearly seen in the 40% isopropanol extracts. Increasing isopropanol concentration above 40% resulted in a decrease in the number of less abundant protein spots. We have identified a total of 107 protein spots using matrix-assisted laser desorption/ionization time of flight mass spectrophotometry (MALDI-TOF-MS) and liquid chromatography-mass spectrometry (LC-MS/MS). Our results suggest that extraction of soybean seed powder with 40% isopropanol enriches lower abundance proteins and is a suitable method for 2D-PAGE separation and identification. This methodology could potentially allow the extraction and characterization of low abundant proteins of other legume seeds containing highly abundant storage proteins.  相似文献   

7.
Aims:  To optimize a protocol for the extraction and an in-depth analysis of the soluble protein fraction of two nonaxenic toxin-producing cyanobacteria Cylindrospermopsis raciborskii (hepatotoxin-producing), and Raphidiopsis sp. (neurotoxin-producing), using two-dimensional polyacrylamide gel electrophoresis (2D-PAGE).
Methods and Results:  The soluble protein fractions from strains of C. raciborskii and Raphidiosis sp. with different toxicity phenotypes were analysed by 2D-PAGE. Specific protocols were optimized specifically for each strain. Between 500 and 700 sharp protein spots were distinguished in a single 4–7 pH range 2D-PAGE for each cyanobacterium. Comparison of the protein maps of C. raciborskii CS-505 (a cylindrospermopsin-producing strain) and Raphidiopsis sp. D9 (saxitoxin-producing strain) against the nontoxic C. raciborskii strain CS-509 revealed many unique proteins in each protein map. We confirmed that the resolved proteins were cyanobacterial by identifying three randomly chosen protein spots from a Raphidiopsis sp. strain D9 2D-PAGE, using high-performance liquid chromatography (HPLC) tandem mass spectrometry (MS).
Conclusions:  The 2D-PAGE conditions presented here provide a robust protocol for proteomic studies in two CYN- and STX-producing model organisms, C. raciborskii and Raphidiopsis sp.
Significance and Impact of the Study:  We present the first protocols for proteomic analyses of Cylindrospermopsis raciborskii and Raphidiopsis sp.  相似文献   

8.
Protein expression during the early development of Xenopus has been followed by 2D-polyacrylamide gel electrophoresis (PAGE). The analysis of two-dimensional maps of eggs and embryos at different stages of development has allowed the separation of more than 2000 spots. Identification of numerous polypeptides was obtained in four different ways: (1) immuno-blotting; (2) amino terminal sequence after blotting on to PVDF membranes; (3) comigration; and (4) assignment in comparison with proteins separated by 2D techniques on reference maps such as human liver, red blood cells, plasma and cerebrospinal fluid reported in the Swiss 2D-PAGE Data Base. The maps presented in this report are a step toward the study of the protein expression in Xenopus eggs and embryos and may be a powerful working tool since Xenopus embryos are popular models for the study of development.  相似文献   

9.
Analysis of complex protein samples by two-dimensional electrophoresis (2-DE) is often more difficult in the presence of a few predominant proteins. In plasma, proteins such as albumin mask proteins of lower abundance, as well as significantly limiting the amount of protein that can be loaded onto the immobilized pH gradient strip. In this paper the Gradiflow, a preparative electrophoresis system, has been used to deplete human plasma of the highly abundant protein albumin under native and denatured conditions. A three step protocol incorporating a charge separation to collect proteins with an isoelectric point greater than albumin and two size separations to isolate proteins larger and smaller than albumin, was used. When the albumin depleted fractions were analysed on pH 3-10 2-DE gels, proteins that were masked by albumin were revealed and proteins not seen in the unfractionated plasma sample were visualised. Matrix-assisted laser desorption/ionisation-time of flight mass spectrometry analysis confirmed the identification of the protein that lies beneath albumin to be C4B-binding protein alpha chain. The liquid fractions from the Gradiflow separations were also analysed by liquid chromatography-tandem mass spectrometry to confirm the proteins were separated according to their size and charge mobility in an electric field.  相似文献   

10.
As a complementary approach to two-dimensional polyacrylamide gel electrophoresis (2D-PAGE), multi-dimensional chromatography separation methods have been widely applied in all kinds of biological sample investigations. Multi-dimensional liquid chromatography (MDLC) coupled with bio-mass spectrometry (MS) is playing important roles in proteome research due to its high speed, high resolution and high sensitivity. Proteome analysis strategies mainly include bottom-up and top-down approaches which carry out biological sample separation based on peptide and protein levels, respectively. Electrophoretic methods combined with liquid chromatography like IEF-HPLC and HPLC-SDS-PAGE have been successful applied for protein separations. As for MDLC strategy, ion-exchange chromatography (IEX) together with reversed phase liquid chromatography (RPLC) is still a most widely used chromatography in proteome analysis, other chromatographic methods are also frequently used in protein pre-fractionations, while affinity chromatography is usually adopted for specific functional protein analysis. Recent MDLC technologies and applications to variety of proteome analysis have been achieved great development. A digest peptide-based approach as so-called "bottom-up" and intact protein-based approach "top-down" analysis of proteome samples were briefly reviewed in this paper. The diversity of combinations of different chromatography modes to set up MDLC systems was demonstrated and discussed. Novel developments of MDLC techniques such as high-abundance protein depletion and chromatography array were also included in this review.  相似文献   

11.
Two-dimensional gel electrophoresis (2DE) is a powerful tool to uncover proteome modifications potentially related to different physiological or pathological conditions. Basically, this technique is based on the separation of proteins according to their isoelectric point in a first step, and secondly according to their molecular weights by SDS polyacrylamide gel electrophoresis (SDS-PAGE). In this report an optimized sample preparation protocol for little amount of human post-mortem and mouse brain tissue is described. This method enables to perform both two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) and mini 2DE immunoblotting. The combination of these approaches allows one to not only find new proteins and/or protein modifications in their expression thanks to its compatibility with mass spectrometry detection, but also a new insight into markers validation. Thus, mini-2DE coupled to western blotting permits to identify and validate post-translational modifications, proteins catabolism and provides a qualitative comparison among different conditions and/or treatments. Herein, we provide a method to study components of protein aggregates found in AD and Lewy body dementia such as the amyloid-beta peptide and the alpha-synuclein. Our method can thus be adapted for the analysis of the proteome and insoluble proteins extract from human brain tissue and mice models too. In parallel, it may provide useful information for the study of molecular and cellular pathways involved in neurodegenerative diseases as well as potential novel biomarkers and therapeutic targets.  相似文献   

12.
The cerebrospinal fluid (CSF) is a specific ultrafiltrate of plasma, which surrounds the brain and spinal cord. The study of its proteins and their alteration may yield useful information on several neurological diseases. By using various electrophoretic separation techniques, several CSF proteins have been identified derived from plasma or from brain. Different one-dimensional methods, such as agarose gel electrophoresis and isoelectric focusing, are of similar value in identifying the non-specific oligoclonal bands, which are mainly helpful in the diagnosis of multiple sclerosis and other inflammatory diseases. Isoelectric focusing has a greater resolution than other one-dimensional methods, and it yields additional data about disease-associated proteins occurring in Alzheimer's disease, Huntington's chorea and amyotrophic lateral sclerosis. Silver-stained two-dimensional gels provide more information about the complex protein composition of CSF, particularly about proteins produced in the brain, such as apolipoprotein E and neuron-specific enolase. For the detection of oligoclonal antibodies, the investigation of protein changes revealed by Parkinson's disease, schizophrenia and Creutzfeldt—Jakob disease, and the analysis of CSF immune complexes, two-dimensional electrophoresis has a greater sensitivity.  相似文献   

13.
Analysis of whole genomes to monitor specific changes in gene activation or changes in gene copy number due to perturbation has recently become possible using DNA chip technologies. It is now becoming apparent, however, that knowing the genetic sequence encoding a protein is not sufficient to predict the size or biological nature of a protein. This can be particularly important in cancer research where posttranslational modifications of a protein can specifically lead to the disease. To address this area, several proteomic tools have been developed. Currently the most widely used proteomics tool is two-dimensional polyacrylamide gel electrophoresis (2D-PAGE), which can display protein expression patterns to a high degree of resolution. However, 2D-PAGE can be time consuming; the analysis is complicated and, compared with DNA techniques, is not very sensitive. Although some of these problems can be alleviated by using high-quality homogeneous samples, such as those generated using microdissection techniques, the quantity of sample is often limited and may take several days to generate sufficient material for a single 2D-PAGE analysis. As an alternative to 2D-PAGE, a preliminary study using a new technique was used to generate protein expression patterns from either whole tissue extracts or microdissected material. Surface-enhanced laser desorption and ionization allows the retention of proteins on a solid-phase chromatographic surface or ProteinChip Array with direct detection of retained proteins by time-of-flight mass spectrometry. Using this system, we analyzed tumor and normal tissue from head and neck cancer and microdissected melanoma to determine differentially expressed proteins. In particular, comparisons of the protein expression patterns from microdissected normal and tumor tissues indicated several differences, highlighting the importance of extremely defined tissue lysates for protein profiling.  相似文献   

14.
Normal and neoplastic murine and human lymphocytes were surface-labeled by lacto-peroxidase-catalyzed radioiodination, and the cell lysates were subjected to two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) analyses, combining isoelectric focusing in the first dimension and sodium dodecyl sulfate-PAGE (SDS-PAGE) in the second dimension. 2D-PAGE autoradiogram patterns were reproducible and reflected differences in cell types. A string of spots with a Mr of 100K was tentatively identified as a new T-cell marker (Tp100) which was present in all murine and human T cells examined including human T lymphomas. Murine and human B cells displayed markers characteristic to B cells of each species with some similarities between them. Human lymphomas and murine cell lines showed markers which were absent or only weakly visible in normal cells. Thus, 2D-PAGE analysis of lymphocyte surface proteins proved to be a method useful for searching for various markers.  相似文献   

15.
Abstract Saccharomyces cerevisiae exponentially growing in basic or 0.7 M NaCl medium were isotopically labelled with 35S-methionine, followed by protein separation and quantification by two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) combined with computerised image analysis. The electrophoretic separation resolved about 650 proteins of which 13 displayed significant and at least 2-fold changes in rate of synthesis during saline growth. By sequencing of 2D-PAGE resolved proteins, one of the 8 induced spot, p42.9/5.5, was shown to correspond to the full length (containing the N-terminal extension) product of the GPD 1 gene encoding the cytoplasmic glycerol 3-phosphate dehydrogenase. The expression of the TDH 3 gene, glyceraldehyde 3-phosphate dehydrogenase, and the ENO 2 gene, enolase, decreased during growth in NaCl medium, declines hypothesised to have an impact on the flux to glycerol.  相似文献   

16.
Sample preparation methods were compared for two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) of cellular proteins from the proteolytic bacterium Porphyromonas gingivalis. Standard solubilization buffer yielded poorly resolved protein spots, but pre-treatment of cells with trichloroacetic acid or inclusion of the protease inhibitor TLCK during solubilization improved definition and separation. The latter approach allowed reliable detection of a 55 kDa immunodominant surface antigen by Western immunoblotting. Further improvements in resolution occurred when SDS was included in the sample preparation. Thus, controlling proteolysis and optimizing protein solubilization were essential for reproducible separations and maximal protein recovery during 2D-PAGE of P. gingivalis.  相似文献   

17.
Oxidative stress plays a critical role in the pathogenesis of a number of diseases. The carbonyl end products of protein oxidation are among the most commonly measured markers of oxidation in biological samples. Protein carbonyl functional groups may be derivatized with 2,4-dinitrophenylhydrazine (DNPH) to render a stable 2,4-dinitrophenylhydrazone-protein (DNP-protein) and the carbonyl contents of individual proteins then determined by two-dimensional electrophoresis followed by immunoblotting using specific anti-DNP antibodies. Unfortunately, derivatization of proteins with DNPH could affect their mass spectrometry (MS) identification. This problem can be overcome using nontreated samples for protein identification. Nevertheless, derivatization could also affect their mobility, which might be solved by performing the derivatization step after the initial electrophoresis. Here, we compare two-dimensional redox proteome maps of mouse cerebellum acquired by performing the DNPH derivatization step before or after electrophoresis and detect differences in protein patterns. When the same approach is used for protein detection and identification, both methods were found to be useful to identify carbonylated proteins. However, whereas pre-DNPH derivatized proteins were successfully analyzed, high background staining complicated the analysis when the DNPH reaction was performed after transblotting. Comparative data on protein identification using both methods are provided.  相似文献   

18.
一种有效的蛋白质提取方法是蛋白质双向电泳成功分离的关键。油桐种仁可以用来制取工业用桐油,但其中富含大量的能干扰蛋白质提取的物质,并能影响双向电泳图谱的分辨率。本文中对油桐种仁蛋白质采用丙酮提取(方法A)、苯酚抽提(方法B)以及丙酮—苯酚结合提取(方法C),并通过蛋白质双向电泳技术对这3种方法的提取效果进行比较研究。结果显示:采用方法C所提取的蛋白质样品,其蛋白浓度高达到8.1 μg·μL-1;并且该方法对油桐种仁中的高分子量、低分子量蛋白均有较强的提取能力;此外,其蛋白样品经过双向电泳所得到的蛋白质点和图谱分辨率也较其余两种方法好。  相似文献   

19.
Multi-dimensional liquid phase based separations in proteomics   总被引:7,自引:0,他引:7  
This review covers recent developments towards the implementation of multi-dimensional (MuD) liquid phase based systems for proteome investigations. Although two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) has been used as a standard approach in proteomics, its drawbacks including the limited dynamic range and molecular mass range, together with lack of on-line integration with biological mass spectrometery (Bio-MS) have limited its widespread use and applications in proteomics. In the meantime, various liquid-phase based multi-dimensional separation techniques have been explored. Especially, with the emergence of the combination of nanoflow capillary high-performance liquid chromatography (cHPLC) and Bio-MS, attention is again refocused on utilizing multi-dimensional liquid-phase based separation of proteins. Some remarkable applications of on-line analysis of intact proteins and on-column digested proteins, and the emergence of approaches such as multiple HPLC-electrospray ionization tandem MS and capillary array electrophoresis-matrix assisted laser desorption ionization MS, have stimulated thinking towards developing a automated multi-dimensional system (MuDSy) that integrates liquid phase based separation, digestion and identification of proteins in complex biological mixtures.  相似文献   

20.
A two-dimensional (2-D) liquid phase separation method, liquid isoelectric focusing followed by nonporous reversed-phase high performance liquid chromatography (HPLC), was used to separate proteins from human ovarian epithelial whole cell lysates. HPLC eluent was interfaced on-line to an electrospray ionization (ESI) time of flight (TOF) mass spectrometer to obtain accurate intact protein molecular weights (Mr). 2-D protein expression maps were generated displaying protein isoelectric point (pI) versus intact protein Mr. Resulting 2-D images effectively displayed quantitative differential protein expression in ovarian cancer cells versus non-neoplastic ovarian epithelial cells. Protein peak fractions were collected from the HPLC eluent, enzymatically digested, and analyzed by matrix-assisted laser desorption/ionization (MALDI) TOF-mass spectrometry (MS) peptide mass fingerprinting and by MALDI-quadrupole TOF tandem mass spectrometry peptide sequencing. Interlysate comparisons of differential protein expression between two ovarian adenocarcinoma cell lines, ES2 and MDAH-2774, and ovarian surface epithelial cells was performed. Five pI fractions from each sample were selected for comparative study and over 300 unique proteins were positively identified from the 2-D liquid expression maps using MS, which covered around 60% of proteins detected by on-line ESI-TOF-MS. This represents one of the most comprehensive proteomic analyses of ovarian cancer samples to date. Protein bands with significant up- or down-regulation in one cell line versus another as viewed in the 2-D expression maps were identified. This strategy may prove useful in identifying novel ovarian cancer marker proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号