首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Campylobacter sputorum subsp. bubulus contained hydrogenase activity after growth with lactate and nitrate and after growth with hydrogen and nitrate. After growth with hydrogen and nitrate a molar growth yield (g dry cells/mol hydrogen) of 5.6 was measured. Hydrogenase and nitrate reductase were membrane-bound enzymes. In cells with high hydrogenase activity the H+/O, H+/NO inf2 sup- and H+/NO inf3 sup- values with hydrogen as the electron donor were 3.74, 2.61 and 4.36 respectively. In cells with low hydrogenase activity these values were 2.33,-0.86 and 1.31 respectively. These values and the stoichiometry of respiration-driven proton translocation (H+/2e=2) led to the conclusion that hydrogenase is located at the periplasmic side of the cytoplasmic membrane. In cells with low lactate dehydrogenase activity or low hydrogenase activity the reduction of nitrate to nitrite could be separated from the reduction of nitrite to ammonia. Positive H+/NO inf3 sup- values (between 0.9 and 1.7) with lactate or hydrogen as the electron donor were measured in these cells whereas H+/NO inf2 sup- values were negative. From this result it was concluded that nitrate reductase is located at the cytoplasmic face of the cytoplasmic membrane. The results explain the previous observation that molar growth yields with nitrate were somewhat higher than those with nitrite.  相似文献   

2.
Campylobacter sputorum subspeciesbubulus contains a membrane-bound nitrite reductase which catalyses the six-electron reduction of nitrite to ammonia. Formate andL-lactate are used as hydrogen donors. Cells ofC. sputorum grown with nitrate or nitrite contain cytochromes of theb-andc-type and a carbon monoxide-binding cytochromec. In addition, a special membrane-bound carbon monoxide-binding pigment is found. Nitrite reduction with formate orL-lactate as a hydrogen donor is strongly inhibited by 2-n-heptyl-4-hydroxyquinoline-N-oxide (HQNO). Nitrite reduction by bacterial suspensions with lactate as a hydrogen donor is strongly inhibited by carbonylcyanide-m-chlorophenyl-hydrazone (CCCP) whereas nitrite reduction with formate as a hydrogen donor is not inhibited at all. H+/O values and H+/NO 2 - values were measured with ascorbate + N,N,N,N-tetramethyl-p-phenylenediamine (TMPD), formate (in the absence and presence of carbonic anhydrase) andL-lactate as a hydrogen donor. The results are summarized in a scheme for electron transport from formate or lactate to oxygen or nitrite which shows a periplasmic orientation of formate dehydrogenase and nitrite reductase and a cytoplasmic orientation of lactate dehydrogenase and oxygen reduction, and which shows proton translocation with a H+/2e value of 2.0. The H+/O and H+/NO 2 - values predicted by this scheme are in good agreement with the experimental values.Abbreviations CCCP carbonylcyanide-m-chlorophenylhydrazone - HQNO 2-n-heptyl-4-hydroxyquinoline-N-oxide - MTPP+ methyltriphenylphosphonium cation - TMPD N,N,N,N-tetramethyl-p-phenylenediamine; H+/O (H+/NO 2 - ), number of protons liberated in the outer bulk phase at the reduction of one atom O (one ion NO 2 - ); H+/2e (q+/2e), number of protons (charges) translocated across the cytoplasmic membrane during flow of two electrons to an acceptor  相似文献   

3.
Cells of Paracoccus denitrificans grown autotrophically with H2 as energy source contained a branched respiratory chain. The presence of two terminal oxidases was indicated by two cyanide sensitive sites (K i =10-5 M and K i =10-3 M). While oxidation of NADH and succinate apparently proceeded via both electron pathways as shown by the inhibition of respiration with cyanide and Antimycin A, oxidation of H2 involved only the terminal oxidase which was less sensitive to KCN. Oxidation of H2 was not inhibited by rotenone, and sensitive to only relatively high concentrations of Antimycin A (50 nmol/mg).Under our growth conditions, autotrophic cells contained only very small amounts of cytochrome a +a 3 . A cytochrome b was able to bind CO (with a peak at 418 nm and a trough at 434 nm in the reduced plus CO minus reduced difference spectrum). This cytochrome b had the spectral characteristics of cytochrome o and could be the alternate oxidase. The respiratory chain contained two b cytochromes (b 556 and b 562 at 77°K); under steady state conditions only b 556 was significantly reduced by NADH and succinate while both b 556 and b 562 were reduced by H2.Measurement of respiration-driven proton translocation by spheroplasts showed that the oxidation of H2 by O2 was associated with a vectorial ejection of H+ (in the outward direction) with aH+/O value of 6 to 7.A similar result was obtained with succinate. Oxidation of endogenous substrates gave H+/O values corresponding to a H+/site ratio of 3 with 3 sites functioning in absence of inhibitors, two sites in the presence of rotenone and one site in the presence of antimycin. The H+/O values indicated that two energy transducing sites were involved in the oxidation of H2 by O2.Measurement of ATP synthesis in membrane vesicles confirmed that phosphorylation was coupled to H2 oxidation. However, such determinations which necessitated the use of inverted vesicles, gave P/O values too low to allow any conclusions to be made on the number of coupling sites.  相似文献   

4.
Photosynthetic water oxidation proceeds by a four-step sequence of one-electron oxidations which is formally described by the transitions S0 S1, S1 S2, S2 S3, S3 (S4) S0. State S1 is most stable in the dark. Oxygen is released during S3 (S4) S0. Hydroxylamine and hydrazine interact with S1. They cause a two-digit shift in the oxidation sequence as observed from the dark equilibrium, i.e. from S1 S2 : S2 S3 : S3 (S4) S0 : S0 S1 :... in the absence of the agents, to S1 * S0 : S0 S1 : S1 S2 : S2 S3 :... in the presence of hydroxylamine or hydrazine.We measured the concentration dependence of this two-digit shift via the pattern of proton release which is associated with water oxidation. At saturating concentrations hydroxylamine and hydrazine shift the proton-release pattern from OH+(S1 S2) : 1H+(S2 S3) : 2H(S3 S0) : 1H+(S0 S1) :... to 2H+(S1 * S0) : 1H+(S0 S1) : OH+(S1 S2) : 1H+(S2 S3) : 2H+(S3 S0) :... The 2H+ were released upon the first excitation with a half-rise time of 3.1 ms, both with hydroxylamine and withydrazine. The concentration dependence of the shift was rather steep with an apparent Hill coefficient at half saturation of 2.43 with hydroxylamien (Förster and Junge (1985) FEBS Lett. 186, 53–57) and 1.48 with hydrazine. The concentration dependence could be explained by cooperative binding of n3 molecules of hydroxylamine and of n2 molecules of hydrazine, respectively. Tentatively, we explain the interaction of hydroxylamine and hydrazine with the water-oxidizing complex (WOC) as follows: Two bridging ligands, possible Cl- or OH-, which normally connect two Mn nuclei, can be substituted by either 4 molecules of hydroxylamine or 2 molecules of hydrazine when the WOC resides in state S1.Abbreviations DNP-INT dinitrophenylether of iodonitrothymol - FWHM full width at half maximum - NR neutral red (3-amino-7-dimethylamino-2-methylphenazine-HCI) - PS II photosystem II - WOC or (in formulas:) W water-oxidizing complex Dedicated to Prof. L.N.M. Duysens on the occasion of his retirement.  相似文献   

5.
Cyanophage N-1-infectedNostoc muscorum cells were unable to carry out oxygen evolution and photosystem-II-dependent electron transport (H2ODCPIP). This was associated with preferential degradation of phycobiliproteins. Such cells also exhibited decreased rate of ferredoxin:NADP+ oxidoreductase activity. However, Ca2+-dependent ATPase activity was maintained at a higher level (80%). The results suggested that virus development proceeds in the absence of photosystem-II activity, and the energy is provided by cyclic photophosphorylation aside from that possibly obtained via degradation of carbohydrate reserves.  相似文献   

6.
The periplasmic location of enzymes A and B of the thiosulphate-oxidizing multienzyme system of Thiobacillus versutus has been further confirmed by differential radiolabelling of periplasmic and cytoplasmic proteins. The stoichiometries of respiration-driven proton translocation in T. versutus were determined using the oxygen pulse and the initial rate methods. A value for the H+/O quotient (number of protons translocated per oxygen atom reduced) of about 2.8 was found for the oxidation of thiosulphate, and of about 2.5 for sulphite. The H+/O quotient for endogenous respiration was about 5.7. The data are shown to be in good agreement with the scheme proposed previously for thiosulphate oxidation by this organism. Proton generation during the oxidation of thiosulphate or sulphite is indicated to occur in the periplasm rather than by pumping across the cytoplasmic membrane. The results also suggest that a H+/O quotient of six occurs during NADH oxidation (from endogenous metabolism measurements) and that the terminal cytochrome oxidase, aa3, does not function as a proton pump.Abbreviations DCCD dicyclohexyl carbodiimide - FCCP carbonyl cyanide p-trifluoromethoxyphenylhydrazone - HQNO 2-n-heptyl-4-hydroxyquinoline N-oxide - TMPD N,N,N,N-tetramethyl-p-phenylenediamine - IEF isoelectric focusing - HIC hydrophobic interaction chromatography - EAI ethyl acetimidate hydrochloride - IAI isethionyl acetimidate  相似文献   

7.
Whole cells of the extreme thermophile Thermus thermophilus HB8 contained a membrane-bound respiratory chain (comprised of nicotinamide nucleotide transhydrogenase, NADH dehydrogenase, menaquinone, and cytochromes b, c, aa3, o), which exhibited a maximumH+/O quotient of approximately 8 g-ion H+·g-atom O-1 for the oxidation of endogenous substrates. Whole cell respiration at 70° at the expense of endogenous substrates or ascorbate-TMPD generated a transmembrane protonmotive force (p) of up to 197 mV and an intracellular phosphorylation poteintial (Gp), measured under similar conditions, of approximately 43.9 kJ·mol-1.The measured Gp/p ratio thus indicated anH+/ATP quotient of approximately 2.3 g-ion H+·mole ATP-1. Glucose-limited continuous cultures of T. thermophilus at 60°, 70° and 78.5° exhibited extremely low moler growth yields (Y O2 max 27.6 g cells·mol O 2 -1 ; Y glucose max 64.4 g cells ·mol glucose-1) compared with mesophilic bacteria of similar respiratory chain composition and proton translocation efficiency. These low yields are probably at least partly explained by the extremely high permeability of the cytoplasmic membrane to H+, which thus causes the cells to respire rapidly in order to maintain the protonmotive force at a level commensurate with cell growth.Abbreviations TPMP+ triphenylmethylphosphonium cation - FCCP carbonylcyanide p-trifluoromethoxy phenythydrazone - TMPD N,N,N,N-tetramethyl-p-phenylene diamine  相似文献   

8.
The inhibition patterns of rabbit sera (RS1 & RS2) from two different rabbits on the photosynthetic electron transport of isolated spinach thylakoids were studied. Fifty l of RSI were required for 100% inhibition of a H2O MV/O2 reaction, while only 10 l of a 1:10 dilution of RS2 were needed for 100% inhibition. The RS2 serum was greatly hemolyzed. The -globulin fraction from purified rabbit serum (RS1) did not inhibit photosynthetic electron transport, indicating that the antibody fraction of the rabbit serum does not contain the inhibitor. It appears that the inhibitor is from the hemolyzed red blood cells. Rabbit sera added prior to chloroplast illumination caused no inhibition, while addition of rabbit sera during illumination inhibited a H2O MV/O2 reaction within 1–3s. Aminotriazole, a catalase inhibitor, did not affect the efficacy of the rabbit sera indicating that the unknown rabbit serum inhibitor is not catalase. Various Hill reactions were employed to determine the site of inhibition. Rabbit sera inhibited the following reactions: DHQ/DCMU MV/O2, DAD/Asc/DBMIB MV/O2, and DCIP/Asc/DBMIB MV/O2. Rabbit sera did not inhibit a H2O DADox reaction indicating that inhibition is on the reducing side of PSI. However, a H2O Fd/NADP+ reaction was not inhibited by rabbit sera. NADP did not interfere with the ability of RS2 to inhibit a MV-mediated Mehler reaction. In simultaneously measured assays of Fd-mediated O2 and NADP+ reductions, RS2 serum inhibited the reduction of O2 by ferredoxin without inhibiting the reduction of NADP+. These results indicate the potential involvement of parallel (branched) electron transport of the reducing side of PSI in the reduction of oxygen.Abbreviations RS1 and RS2 Rabbit serum 1 and 2 - MV methylviologen - DCMU 3,4-dichlorophenyl-N,N-dimethylurea - KFeCN potassium ferricyanide - DCIP dichlorophenolindolphenol - DAD 2,3,5,6-tetramethyl-p-phenylenediamine - DHQ tetramethyl-p-hydroquinone (durohydroquinone) - MES [2-(N-morpholino)-esthanesulfonic acid] - HEPES [N-2-hydroxyethyl piperazine-N-2-ethanesulfonic acid] - DBMIB dibromothymoquinone - PSI and PSII photosystem I and II - Fd ferredoxin - Chl chlorophyll - Asc ascorbate - SOD superoxide dismutase  相似文献   

9.
Pentobarbital stimulates 36Cl permeation across single Deiters' membranes in a microchamber system, acting on classical, extracellularly facing, GABAA receptors. However, when applied on the membrane cytoplasmic side it activates per se labeled chloride inout permeation. No effect was found on chloride outin permeation. Similarly, at lower concentrations it facilitates the increase of 36Cl inout permeation by application of GABA on the membrane inside, again via asymmetric chloride channels allowing inout but not outin passage. These data confirm that on the Deiters' membrane cytoplasmic side there are structures behaving pharmacologically as GABAA receptors whose function is that of a Cl extrusion pump. This mechanism involves a cycle of activation-phosphorylation/desensitization-reactivation of the receptor complexes  相似文献   

10.
Summary Bicarbonate is transferred across the serosal (S) membrane of the epithelial cells of the turtle bladder in two directions. Cellular HCO 3 generated behind the H+ pump moves across this membrane into the serosal solution. This efflux of HCO 3 is inhibited by SITS (4-isothiocyano-4-acetamido-2,2-disulfonic stilbene). When HCO 3 is added to the serosal solution it is transported across the epithelium in exchange for absorbed Cl. This secretory HCO 3 flow traverses the serosal cell membrane in the opposite direction. In this study the effects of serosal addition of 5×10–4 m SITS on HCO 3 secretion and Cl absorption were examined. The rate of H+ secretion was brought to zero by an opposing pH gradient, and 20mm HCO 3 was added toS. HCO 3 secretion, measured by pH stat titration, was equivalent to the increase inMS Cl flux after HCO 3 addition. Neither theSM flux of HCO 3 nor theMS flux of Cl were affected by SITS. In the absence of electrochemical gradients, net Cl absorption was observed only in the presence of HCO 3 in the media; under such conditions, unidirectional and net fluxes of Cl were not altered by serosal or mucosal SITS. H+ secretion, however, measured simultaneously as the short-circuit current in ouabain-treated bladders decreased markedly after serosal SITS. The inhibition of the efflux of HCO 3 in series with the H+ pump and the failure of SITS to affect HCO 3 secretion and Cl absorption suggest that the epithelium contains at least two types of transport systems for bicarbonate in the serosal membrane.  相似文献   

11.
Paddock  M.L.  Senft  M.E.  Graige  M.S.  Rongey  S.H.  Turanchik  T.  Feher  G.  Okamura  M.Y 《Photosynthesis research》1998,55(2-3):281-291
The structural basis for proton coupled electron transfer to QB in bacterial reaction centers (RCs) was studied by investigating RCs containing second site suppressor mutations (Asn M44 Asp, Arg M233 Cys, Arg H177 His) that complement the effects of the deleterious Asp L213 Asn mutation [DN(L213)]. The suppressor RCs all showed an increased proton coupled electron transfer rate k AB (2)(QA QB + H+ QAQBH) by at least 103 (pH 7.5) and a recombination rate k BD (D+QAQB DQAQB) 15–40 times larger than the value found in DN(L213) RCs. Proton transfer was studied by measuring the dependence of k AB (2) on the free energy for electron transfer (Get). k AB (2) was independent of Get in DN(L213) RCs, but dependent on Get in native and all suppressor RCs. This shows that proton transfer limits the k AB (2) reaction with a rate of 0.1s–1 in DN(L213) RCs but is not rate limiting and at least 108-fold faster in native and 105-fold faster in the suppressor RCs. The increased rate of proton transfer by the suppressor mutations are proposed to be due to: (i) a reduction in the barrier to proton transfer by providing a more negative electrostatic potential near QB ; and/or (ii) structural changes that permit fast proton transfer through the network of protonatable residues and water molecules near QB.  相似文献   

12.
Paracoccus denitrificans was aerobically grown in chemostat culture with succinate or gluconate as carbon source. Due to the presence of two phosphorylation sites in the respiratory chain and the absence of branching, theoretical P/O ratios of 1.71 and 1.82 were calculated for cells growing respectively with succinate and gluconate as carbon source. Using these data, 95% confidence intervals for the P/O ratio were determined, via a mathematical model, at 0.91–1.15 and 1.00–1.37 for sulphate-limited cultures, with respectively succinate and gluconate as carbon source.These results and measurements of P/O ratios in membrane particles and of proton translocation in whole cells have led to the conclusion that site I phosphorylation is affected under sulphate-limited conditions.Under conditions of carbon source-limitation the endogenous H+/O ratio is about 7–8. Average values of 3.40 and 4.78 were respectively found for sulphate-limited succinate- and gluconate grown cells. For starved cells, oxidizing succinate as exogenous substrate, the H+/O ratios were determined at about 3–4, independent of the growth limiting factor. It is concluded that the number of protons ejected per pair of electrons per energy-conserving site (H+/site ratio) is about 3–4, instead of 2 as postulated by the chemiosmotic hypothesis.  相似文献   

13.
Tůmová  E.  Sofrová  D. 《Photosynthetica》2002,40(1):103-108
Intact cells of Synechococcus elongatus were treated with different concentrations (0.1 and 1.0 mM = Cd0.1, Cd1.0) of CdCl2 for 24 h. Cd0.1 treatment stimulated growth of the cell culture and chlorophyll (Chl) a concentration in the culture. Cd1.0 inhibited both the above mentioned parameters. The oxygen evolving activity of intact cells (H2O BQ) as well as of isolated thylakoid membranes, TM (H2O DCPIP; H2O PBQ + FeCy) decreased after 24 h of Cd1.0 cultivation to 7 %. Photosystem 1 (PS1) activity was less sensitive to the effect of Cd2+ than PS2 activity. CdCl2 concentration in cultivation media after 24 h of cultivation proved that the cyanobacterium cells take up these ions to a large extent from the cultivation medium. After 24 h of the Cd1.0 treatment only 12 % of the amount of Cd2+ originally added to the cultivation medium was found. The ratio of external-antenna pigments, phycocyanin, and allophycocyanin to Chl increased approximately twofold with growing Cd2+ concentration in the cultivation medium. This ratio was found in both TM and dodecylmaltoside extracts.  相似文献   

14.
Zusammenfassung Die Lumineszenz wÄ\riger Tl+-Lösungen unter Einwirkung von 8,5-keVeff-Röntgenstrahlen wird untersucht, und zwar 1. in neutraler Lösung, 2. in saurer Lösung, 3. in alkalischer Lösung, 4. bei Zusatz von NaCl.Bei Änderung des pH-Wertes nimmt die Lichtausbeute sowohl auf der sauren Scite (beipH=3,4) als auch auf der alkalischen Scite (beipH=12) ein Maximum an; sie erreicht dort den 2- bis 3fachen Wert der Ausbeute in neutraler Lösung. Andererseits ist bei Zusatz von 1 M NaCl in neutraler Lösung die Ausbeute fünfmal höher als bei Abwesenheit von NaCl; die Maxima im sauren und alkalischen Bereich verschwinden jedoch bei 1 M NaCl vollkommen, und man erhÄlt bei gro\en und bei kleinen pH-Werten lediglich eine Löschung der Lumineszenz.Die Lumineszenz kommt durch Bildung von Tl+* bei der Anlagerung von eaq an Tl++ zustande. Tl++ entsteht jedoch nicht unmittelbar gemÄ\ Tl+ + OH Tl++ + OH, sondern zunÄchst bildet sich Tl+OH, und dieses dissoziiert erst nach einer Verzögerung von > 10–7 sec in Tl++ und OH. Die Sensibilisierung durch H+ wird durch die Reaktion Tl+OH + H+ Tl++ + H2O und die durch OH durch Tl+OH + OH Tl++O + H2O erklÄrt. Die Reaktion der Komplexe Tl+Cl und Tl+Cl2 mit OH erfolgt offenbar ohne zeitliche Verzögerung, d. h. Tl++Cl–– bzw. Tl++Cl2 –– wird dabei innerhalb einer Zeit 10–7 sec gebildet.
Chemiluminescences of aqueous TlI solutions produced by irradiation with 8.5-keV-X-rays
Summary The luminescence of aqueous solutions of Tl+ during irradiation with 8.5-keV-X-rays has been investigated. In particular we have studied the Tl+-luminescence in 1. neutral solutions, 2. acid solutions, 3. alkaline solutions, 4. solutions containing various concentrations of NaCl.Varying thepH the luminescence yield passes a maximum on the acid side as well as on the alkaline side (atpH=3.4 respectivelypH=12). Compared with neutral solutions the luminescence yield is increased by a factor 2 to 3 at these pH-values.By adding 1 M NaCl to neutral Tl+-solutions the luminescence yield is enhanced by a factor five, however in dependence ofpH no further increase has been observed, but only quenching of the luminescence at low and highpH.The luminescence origins from the formation of Tl+* by the reaction of eaq with Tl++ formed by oxidation of Tl+ by OH. However, Tl++ is not formed directly by Tl++OH Tl++ + OH but via dissociation of the intermediate Tl+OH after a delay > 10–7 sec.We explain the increase of the luminescence yield in acid solutions by the reaction Tl+OH + H+ Tl++ + H2O and in alkaline solutions by the reaction Tl+OH + OH Tl++O + H2O. In alkaline solutions the luminescence spectrum shifts to longer wavelengths; we conclude, that this spectrum is attributed to Tl+*O. Evidently the reaction of Tl+Cl and Tl+Cl2 –– with OH leads to formation of Tl++Cl and Tl++Cl2 –– without any efficient delay.
  相似文献   

15.
Summary The Na+ requirement for active, electrogenic Cl absorption byAmphiuma small intestine was studied by tracer techniques and double-barreled Cl-sensitive microelectrodes. Addition of Cl to a Cl-free medium bathingin vitro intestinal segments produced a saturable (K m =5.4mm) increase in shortcircuit current (I sc) which was inhibitable by 1mm SITS. The selectivity sequence for the anion-evoked current was Cl=Br>SCN>NO 3 >F=I. Current evoked by Cl reached a maximum with increasing medium Na concentration (K m =12.4mm). Addition of Na+, as Na gluconate (10mm), to mucosal and serosal Na+-free media stimulated the Cl current and simultaneously increased the absorptive Cl flux (J ms Cl ) and net flux (J net Cl ) without changing the secretory Cl flux (J sm Cl ). Addition of Na+ only to the serosal fluid stimulatedJ ms Cl much more than Na+ addition only to the mucosal fluid in paired tissues. Serosal DIDS (1mm) blocked the stimulation. Serosal 10mm Tris gluconate or choline gluconate failed to stimulateJ ms Cl . Intracellular Cl activity (a Cl i ) in villus epithelial cells was above electrochemical equilibrium indicating active Cl uptake. Ouabain (1mm) eliminated Cl accumulation and reduced the mucosal membrane potential m over 2 to 3 hr. In contrast, SITS had no effect on Cl accumulation and hyperpolarized the mucosal membrane. Replacement of serosal Na+ with choline eliminated Cl accumulation while replacement of mucosal Na+ had no effect. In conclusion by two independent methods active electrogenic Cl absorption depends on serosal rather than mucosal Na+. It is concluded that Cl enters the cell via a primary (rheogenic) transport mechanism. At the serosal membrane the Na+ gradient most likely energizes H+ export and regulates mucosal Cl accumulation perhaps by influencing cell pH or HCO 3 concentration.  相似文献   

16.
Rat liver mitochondria were found to swell under nonenergized conditions when suspended in media containing 30–40 mM TINO3. Respiration on succinate caused a rapid contraction of mitochondria swollen under nonenergized conditions. In the presence of thallous acetate, there was a rapid initial swelling under nonenergized conditions until a plateau was reached; respiration on succinate then caused a further swelling. Trace amounts of204Tl (less than 100 µM) equilibrated fairly rapidly across the mitochondrial membrane. The influx of Tl+ was able to promote the decay not only of a valinomycin-induced K+-diffusion potential but also of respiration-generated fields in the inner membrane in accordance with the electrophoretic nature of Tl+ movement. Efflux of Tl+ showed a half-time of about 10 sec at 20°C and was not affected appreciably by the energy state. Efflux was retarded by Mg2+ and by lowering the temperature. The data indicate that Tl+ when present at high concentrations, 30 mM or more, distributes across the mitochondrial inner membrane both in response to electrical fields and to pH. In energized mitochondria the uptake of Tl+ would occur electrophoretically, while Tl+/H+ exchange would constitute a leak. In the presence of NO 3 , the movements of Tl+ are determined by that of NO 3 , indicating short-range coupling of electrical forces. At low concentrations of Tl+, 5 mM or less, there was no indication of a Tl+/H+ exchange, which appears to be induced by high concentrations of Tl+.  相似文献   

17.
The magnitude of the proton motive force (p) and its constituents, the electrical () and chemical potential (-ZpH), were established for chemostat cultures of a protease-producing, relaxed (rel ) variant and a not protease-producing, stringent (rel +) variant of an industrial strain ofBacillus licheniformis (respectively referred to as the A- and the B-type). For both types, an inverse relation of p with the specific growth rate was found. The calculated intracellular pH (pHin) was not constant but inversely related to . This change in pHin might be related to regulatory functions of metabolism but a regulatory role for pHin itself could not be envisaged. Measurement of the adenylate energy charge (EC) showed a direct relation with for glucose-limited chemostat cultures; in nitrogen-limited chemostat cultures, the EC showed an approximately constant value at low and an increased value at higher . For both limitations, the ATP/ADP ratio was directly related to .The phosphorylation potential (G'p) was invariant with . From the values for G'p and p, a variable H+/ATP-stoichiometry was inferred: H+/ATP=1.83+0.52µ, so that at a given H+/O-ratio of four (4), the apparent P/O-ratio (inferred from regression analysis) showed a decline of 2.16 to 1.87 for =0 to max (we discuss how more than half of this decline will be independent of any change in internal cell-volume). We propose that the constancy of G'p and the decrease in the efficiency of energy-conservation (P/O-value) with increasing are a way in which the cells try to cope with an apparent less than perfect coordination between anabolism and catabolism to keep up the highest possible with a minimum loss of growth-efficiency. Protease production in nitrogen-limited cultures as compared to glucose-limited cultures, and the difference between the A- and B-type, could not be explained by a different energy-status of the cells.Abbreviations CCCP carbonylcyanide-p-trichloromethoxyphenylhydrazone - DW dry weight of biomass - F Faraday's constant, 96.6 J/(mV × mol) - Fo chemostat outflow-rate (ml/h) - FCCP carbonylcyanide-p-trifluoromethoxyphenylhydrazone - G'p phosphorylation potential, the Gibbs energy change for ATP-synthesis from ADP and Pi - G'0p standard Gibbs energy change at specified conditions - H+/ATP number of protons translocated through - ATP synthase in synthesis of one ATP - H+/O protons translocated during transfer of 2 electrons from substrate to oxygen - specific growth rate (1/h) - H+ transmembrane electrochemical proton potential, J/mol - Mb molar weight (147.6 g/mol) of bacteria with general cell formula C6.0H10.8O3.0N1.2 - pHout,in extracellular, intracellular pH - Pi (intracellular) inorganic phosphate - p proton motive force, mV - pH transmembrane pH-difference - transmembrane electrical potential, mV - P/O number of ADP phosphorylated to ATP upon reduction of one O2– to H2O by two electrons transferred through the electron transfer chain - P/O (H+/O) × (H+/ATP)–1 - P/OF, P/ON P/O with the two electrons donated by resp. (NADH + H+) and FADH - q specific rate of consumption or production (mol/g DW × h) - rel +,rel stringent, relaxed genotype - R universal gas constant, 8.36 J/(mol × degree) - T absolute temperature - TPMP+ triphenylmethylphosphonium ion - TPP+ tetraphenyl phosphonium ion - Y growth yield, g DW/mol - Z conversion constant=61.8 mV for 310 K (37 °C) - ZpH transmembrane proton potential or chemical potential, mV  相似文献   

18.
Respiratory chain phosphorylation has been investigated in the methylotrophic bacterium Methylophilus methylotrophus following the addition of oxidisable substrates to aerobic, whole cell suspensions. Initial-rate experiments showed that ATP synthesis occurred at the overall expense of AMP and inorganic phosphate via the sequential action of the ATP phosphohydrolase and adenylate kinase; some of the nascent ATP was rapidly used to synthesis nonadenine nucleoside triphosphates. After being corrected for ATP turnover, Pi/O quotients of 0.46 to 0.54, 0.77 and 1.37 nmol/ng-atom O were obtained for the oxidation of methanol dehydrogenase-linked substrates (methanol, ethanol and acetaldehyde), duroquinol and formate (NAD+-linked) respectively. These values were proportional to the H+/O and/or K+/O quotients exhibited by these substrates, and yielded an average H+/ATP (H+/Pi) quotient of 4.2 ng-ion H+/nmol. Steady-state experiments showed that the extent of cellular energisation varied with the respiration rate but was always in the order methanol > duroquinol > acetaldehyde, thus indicating that under these longer-term conditions methanol was completely oxidised to yield PQQH2 and 2NAD(P)H. These results are discussed in terms of the various reactions which lead to the generation or utilisation of the protonmotive force in this organism.Abbreviations FCCP carbonylcyanide p-trifluoromethyxyphenyl-hydrazone - bulk phase, transmembrane electrochemical potential difference of protons ( ) - pH bulk phase, transmembrane pH difference (pHin–pHout) - bulk phase, transmembrane electrical potential difference (in - out) - [P] concentration of anhydride phosphate bonds in adenine nucleotides (2[ATP]+[ADP]) - FPLC fast protein liquid chromatography - PQQ pyrroloquinoline quinone - Gp phosphorylation potential  相似文献   

19.
Summary The experiments reported here evaluate the capability of isolated intestinal epithelial cells to accomplish net H+ transport in response to imposed ion gradients. In most cases, the membrane potential was kept constant by means of a K+ plus valinomycin voltage clamp in order to prevent electrical coupling of ion fluxes. Net H+ flux across the cellular membrane was examined at pH 6.0 (the physiological lumenal pH) and at pH 7.4 using methylamine distribution or recordings of changes in media pH. Results from both techniques suggest that the cells have an Na+/H+ exchange system in the plasma membrane that is capable of rapid and sustained changes in intracellular pH in response to an imposed Na+ gradient. The kinetics of the Na+/H+ exchange reaction at pH 6.0 [K t for Na+=57mm,V max=42 mmol H+/liter 3OMG (3-O-methylglucose) space/min] are dramatically different from those at pH 7.4 (K t for Na+=15mm,V max=1.7 mmol H+/liter 3OMG space/min). Experiments involving imposed K+ gradients suggest that these cells have negligible K+/H+ exchange capability. They exhibit limited but measurable H+ conductance. Anion exchange for base equivalents was not detected in experiments performed in media nominally free of bicarbonate.  相似文献   

20.
Proton translocation during the reduction of NO 3 - , NO 2 - , N2O and O2, with endogenous substrates, in washed cells of Rhodopseudomonas sphaeroides f. denitrificans was investigated by an oxidant pulse method. On adding NO 2 - to washed cells, anaerobically in the dark, an alkalinization occurred in the reaction mixture followed by acidification. When NO 3 - , N2O or O2 was added to cells in the dark or with these compounds and NO 2 - in light an acidification only was observed. Proton translocation was inhibited by carbonyl cyanide-m-chlorophenyl hydrazone.Valinomycin treated cells produced acid in response to the addition of either NO 3 - , NO 2 - , N2O or O2. The proton extrusion stoichiometry ( ratios) in illuminated cells were as follows: NO 3 - 0.5N2, 4.82; NO 2 - 0.5N2, 5.43; N2ON2, 6.20; and O2H2O, 6.43. In the dark the comparable values were 3.99, 4.10, 4.17 and 3.95. Thus, illuminated cells produced higher values than those in the dark, indicating a close link between photosynthesis and denitrification in the generation of proton gradients across the bacterial cell membranes.When reduced benzyl viologen was the electron donor in the presence of 1 mM N-ethylmaleimide and 0.5 mM 2-n-heptyl-4-hydroxyquinoline-N-oxide in the dark, the addition of either NO 3 - , NO 2 - or N2O to washed cells resulted in a rapid alkalinization of the reaction mixture. The stoichiometries for proton consumption, ratios without a permeant ion were NO 3 - NO 2 - ,-1.95; NO 2 - 0.5 N2O,-3.03 and N2ON2,-2.02. The data indicate that these reductions occur on the periplasmic side of the cytoplasmic membrane.Abbreviations BVH reduced benzyl viologen - CCCP carbonyl cyanide m-chlorophenyl hydrazone - DIECA N, N-diethyl-dithiocarbamate - HOQNO 2-n-heptyl-4-hydroxyquinoline-N-oxide - NEM N-ethylmaleimide  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号