首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Chemiluminescent assay for detection of viable microorganisms   总被引:3,自引:0,他引:3  
The redox reaction between quinone and viable microorganisms produces active oxygen species. In this study, the production rates of active oxygen species were determined by a luminol chemiluminescent assay, and the luminescence intensity was found to be proportional to the viable cell number. The high sensitivity of the luminol chemiluminescent assay was achieved with Mo-ethylenediaminetetraacetate complex and menadione or coenzyme Q1. The detectable cell densities of bacteria and yeasts were found to be approximately several thousand colony-forming units (CFU/ml) when assays were performed with a 96-well microplate luminometer. The chemiluminescent assay requires 10 min for incubation of quinone and microorganisms and 2s for photon counting. Single Escherichia coli was detected after 4h of cultivation and centrifugation (5 min x 2). This simple chemiluminescent assay is expected to be useful for the rapid detection of viable bacteria and yeast.  相似文献   

2.
This study proposes a novel chemiluminescent assay of bacterial activity. Luminol chemiluminescence (LC) was amplified on addition of menadione to Escherichia coli suspension, and it was effectively inhibited by addition of superoxide dismutase rather than catalase. This fact suggests that H2O2 produced from O2 by superoxide dismutase is decomposed by catalase of E. coli. NAD(P)H:menadione reductase activities in periplasm and cytosol corresponded to the amplification of menadione-catalyzed LC, and outer and cytoplasmic membranes were only slightly involved in the LC. The total activity and Vmax of NAD(P)H:menadione reductase in the cytoplasm were greater than those in the periplasm. A transient increase in menadione-catalyzed LC was observed in the exponential phase and the LC decreased in the stationary phase during growth of E. coli. Menadione-catalyzed LC was sensitive to antibiotic action. A decrease in menadione-catalyzed LC by the impairment of membrane functions and by the inhibition of protein synthesis was observed at 5 min and 3 hr, respectively. These findings suggest the possibility that menadione-catalyzed luminol chemiluminescent assay is applicable to rapid antimicrobial assay because LC is sensitive to the change in growth and cytotoxic events caused by antimicrobial agents.  相似文献   

3.
Coenzyme Q1 is herein proposed as the best catalyst among coenzymes Q and vitamins K for quinone-catalyzed luminol chemiluminescent assays applied to rapid determination of viability or rapid antimicrobial susceptibility tests of Mycobacterium bovis. Luminol chemiluminescence intensity (LCI) was determined 10 min after the incubation of M. bovis with coenzyme Q1, and was proportional to CFU (colony-forming unit)/ml in the range of 9,000 to 2,250,000. LCI depended on the the production of the superoxide anion (O2-) rather than H2O2 during a 10-min incubation of M. bovis with coenzyme Q1, as superoxide dismutase reduced LCI more effectively than catalase. The minimal inhibitory concentrations (MICs) of 10 kinds of antituberculous agents estimated on the basis of decrease in LCI after one or two days' cultivation were in good agreement with MICs determined by turbidity analysis, which requires upwards of 1 week to complete.  相似文献   

4.
Stable luminol chemiluminescence was observed 10 min after the addition of menadione to a suspension of Mycobacterium bovis homogenized in Middlebrook 7H9 broth base including OADC enrichment. The chemiluminescence intensity was proportional to the absorbance of the bacterial suspension at 600 nm in a range of 0.005 to 0.15. Luminol chemiluminescence disappeared after 10 min incubation of M. bovis at over 60% of ethanol or 4 days of cultivation of M. bovis in the presence of 40 microg/ml of streptomycin. The bacterium showing the disappearance of chemiluminescence could not grow after being washed, suggesting that the inhibition concentration of the antimicrobials can be estimated on the basis of the disappearance of chemiluminescence. Menadione-catalyzed luminol chemiluminescent assay was rapid and sensitive in comparison to turbidimetry, tetrazolium (WST-8) reduction assay, and the assay using the Mycobacteria growth indicator tube (MGIT).  相似文献   

5.
A sensitive and easy-to-perform dipstick immunoassay to detect Escherichia coli O157:H7 in retail ground beef was developed by using a sandwich-type assay (with a polyclonal antibody to E. coli O157 as the capture antibody and a monoclonal antibody to E. coli O157:H7 as the detection antibody) on a hydrophobic polyvinylidine difluoride-based membrane. E. coli O157:H7 in ground beef could be detected within 16 h, including incubation for 12 h in enrichment broth and the immunoassay, which takes 4 h. Pure culture cell suspensions of 10(5) or 10(6) E. coli O157:H7 organisms per ml produced intense color reactions in the immunoassay, whereas faint but detectable reactions occurred with 10(3) CFU/ml. The sensitivity of the combined enrichment-immunoassay procedure as determined by using ground beef inoculated with E. coli O157:H7 was 0.1 to 1.3 cells per g, with a false-positive rate of 2.0%. A survey of retail ground beef using this procedure revealed that 1 of 76 samples was contaminated by E. coli O157:H7.  相似文献   

6.
A sensitive and easy-to-perform dipstick immunoassay to detect Escherichia coli O157:H7 in retail ground beef was developed by using a sandwich-type assay (with a polyclonal antibody to E. coli O157 as the capture antibody and a monoclonal antibody to E. coli O157:H7 as the detection antibody) on a hydrophobic polyvinylidine difluoride-based membrane. E. coli O157:H7 in ground beef could be detected within 16 h, including incubation for 12 h in enrichment broth and the immunoassay, which takes 4 h. Pure culture cell suspensions of 10(5) or 10(6) E. coli O157:H7 organisms per ml produced intense color reactions in the immunoassay, whereas faint but detectable reactions occurred with 10(3) CFU/ml. The sensitivity of the combined enrichment-immunoassay procedure as determined by using ground beef inoculated with E. coli O157:H7 was 0.1 to 1.3 cells per g, with a false-positive rate of 2.0%. A survey of retail ground beef using this procedure revealed that 1 of 76 samples was contaminated by E. coli O157:H7.  相似文献   

7.
An immunoassay based on immunomagnetic separation and time-resolved fluorometry was developed for the detection of E. coli O157:H7 in apple cider. The time-resolved fluorescent immunoassay (TRFIA) uses a polyclonal antibody bound to immunomagnetic beads as the capture antibody and the same antibody labeled with europium as the detection antibody. Cell suspensions of 10(1) to 10(8) E. coli O157:H7 and K-12 organisms per ml were used to test the sensitivity and specificity of the assay. The sensitivity of the assay was 10(3) E. coli O157:H7 cells with no cross-reaction with K-12. Pure cultures of E. coli O157:H7 (10(1) to 10(5) CFU/ml) in apple cider could be detected within 6 h, including 4 h for incubation in modified EC broth with novobiocin and 2 h for the immunoassay. When apple cider was spiked with 1 to 10(3) CFU/ml of E. coli O157:H7 and 10(6) CFU/ml of K-12, our data show that the high level of K-12 in apple cider did not impede the detection of low levels of O157:H7. The minimum detectable numbers of cells present in the initial inoculum were 10(2) and 10(1) CFU/ml after 4- and 6-h enrichment. The TRFIA provides a rapid and sensitive means of detecting E. coli O157:H7 in apple cider.  相似文献   

8.
The limit of sensitivity of the chemiluminescent assay for detection of bacteria by hemeprotein catalysis of luminol oxidation was determined, both experimentally and theoretically, to be no lower than 10(5) to 10(6) viable bacterial per ml.  相似文献   

9.
The limit of sensitivity of the chemiluminescent assay for detection of bacteria by hemeprotein catalysis of luminol oxidation was determined, both experimentally and theoretically, to be no lower than 10(5) to 10(6) viable bacterial per ml.  相似文献   

10.
AIMS: To apply the real-time Polymerase chain reaction (PCR) method to detect and quantify Escherichia coli O157:H7 in soil, manure, faeces and dairy waste washwater. METHODS AND RESULTS: Soil samples were spiked with E. coli O157:H7 and subjected to a single enrichment step prior to multiplex PCR. Other environmental samples suspected of harbouring E.coli O157:H7 were also analysed. The sensitivity of the primers was confirmed with DNA from E.coli O157:H7 strain 3081 spiked into soil by multiplex PCR assay. A linear relationship was measured between the fluorescence threshold cycle (C T ) value and colony counts (CFU ml(-1)) in spiked soil and other environmental samples. The detection limit for E.coli O157:H7 in the real-time PCR assay was 3.5 x 10(3) CFU ml(-1) in pure culture and 2.6 x 10(4) CFU g(-1) in the environmental samples. Use of a 16-h enrichment step for spiked samples enabled detection of <10 CFU g(-1) soil. E. coli colony counts as determined by the real-time PCR assay, were in the range of 2.0 x 10(2) to 6.0 x 10(5) CFU PCR (-1) in manure, faeces and waste washwater. CONCLUSIONS: The real-time PCR-based assay enabled sensitive and rapid quantification of E. coli O157:H7 in soil and other environmental samples. SIGNIFICANCE AND IMPACT OF THE STUDY: The ability to quantitatively determine cell counts of E.coli O157:H7 in large numbers of environmental samples, represents considerable advancement in the area of pathogen quantification for risk assessment and transport studies.  相似文献   

11.
Menadione-catalyzed H2O2 production by viable cells is proportional to viable cell number. The correlations between the viable cell number and the concentration of H2O2 produced are determined with the rapid chemiluminescent assay (S. Yamashoji, T. Ikeda, and K. Yamashoji, 1989, Anal. Biochem. 181, 149-152). This chemiluminescent assay of viable cells requires only 10 min and is much faster than NR (neutral red) inclusion and MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) reduction assays, which require 3-5 h. When viable cells are incubated with antitumor drugs, detergents, mycotoxins, and glycoalkaloids for 24-48 h, a decrease in menadione-catalyzed H2O2 production in a dose- or incubation time-dependent manner is observed. In general, the 50% inhibition concentration determined by the chemiluminescent assay is lower than that determined by NR inclusion and MTT reduction assays, and the order of relative cytotoxic effects of agents is the same among these assays. Furthermore, clear cytotoxic effects are observed by the chemiluminescent assay after 1 h exposure of trypsinized cells to toxic compounds. Therefore, the chemiluminescent assay is expected to be more useful for the rapid detection of cytotoxic compounds than NR inclusion and MTT reduction assays.  相似文献   

12.
Surface water and groundwater are continuously used as sources of drinking water in many metropolitan areas of the United States. The quality of water from these sources may be reduced due to increases in contaminants such as Escherichia coli from urban and agricultural runoffs. In this study, a multiplex fluorogenic PCR assay was used to quantify E. coli O157:H7 in soil, manure, cow and calf feces, and dairy wastewater in an artificial wetland. Primers and probes were designed to amplify and quantify the Shiga-like toxin 1 (stx1) and 2 (stx2) genes and the intimin (eae) gene of E. coli O157:H7 in a single reaction. Primer specificity was confirmed with DNA from 33 E. coli O157:H7 and related strains with and without the three genes. A direct correlation was determined between the fluorescence threshold cycle (C(T)) and the starting quantity of E. coli O157:H7 DNA. A similar correlation was observed between the C(T) and number of CFU per milliliter used in the PCR assay. A detection limit of 7.9 x 10(-5) pg of E. coli O157:H7 DNA ml(-1) equivalent to approximately 6.4 x 10(3) CFU of E. coli O157:H7 ml(-1) based on plate counts was determined. Quantification of E. coli O157:H7 in soil, manure, feces, and wastewater was possible when cell numbers were >/=3.5 x 10(4) CFU g(-1). E. coli O157:H7 levels detected in wetland samples decreased by about 2 logs between wetland influents and effluents. The detection limit of the assay in soil was improved to less than 10 CFU g(-1) with a 16-h enrichment. These results indicate that the developed PCR assay is suitable for quantitative determination of E. coli O157:H7 in environmental samples and represents a considerable advancement in pathogen quantification in different ecosystems.  相似文献   

13.
Addition of oxygen to whole cells of Escherichia coli suspended in the presence of the chemiluminescent probe bis-N-methylacridinium nitrate (lucigenin) resulted in a light emission increase of 200% of control. Addition of air to cells showed a chemiluminescent response far less than the response to oxygen. The redox cycling agents paraquat and menadione, which are known to increase intracellular production of O2- and H2O2, were also found to cause a measurable increase in lucigenin chemiluminescence in E. coli cells when added at concentrations of 1 and 0.1 mM, respectively. The oxygen-induced chemiluminescent response was not suppressed by extracellularly added superoxide dismutase or catalase. Further, the lucigenin-dependent chemiluminescent response of aerobically grown E. coli to oxygen was significantly greater than that of cells grown anaerobically. Heat-killed cells showed no increase in chemiluminescence on the addition of either oxygen, paraquat, or menadione. These results show that lucigenin may be used as a chemiluminescent probe to demonstrate continuous intracellular production of reactive oxygen metabolites in E. coli.  相似文献   

14.
AIMS: The minimum inhibitory concentration (MIC) of Satureja spinosa essential oil against Staphylococcus aureus, Escherichia coli O157:H7, Listeria monocytogenes, Salmonella enterica, Salmonella serovar Enteritidis PT4 and Bacillus cereus was comparatively assessed with an established optical density method as well as a novel impedimetric method. METHODS AND RESULTS: The impedimetric analysis takes into account information of microbial growth, such as detection time, maximum conductance, and slope of the conductance curve. For each pathogen two levels of inoculation were studied, a high (10(5) CFU ml(-1)) and a low level (10(2) CFU ml(-1)). Non-linear regression analysis was used to fit the data using a modification of a previously published model, from which a more exact value can be obtained for the MIC. Both methods gave similar MICs as shown by t-test statistical analysis. Salm. Enteritidis seems to be the least sensitive to the action of S. spinosa essential oil followed by L. monocytogenes, E. coli, B.cereus and Staph. aureus. The MICs of low inoculum were lower than that of high inoculum. CONCLUSIONS: The new impedimetric assay of MIC of essential oils can be considered a reliable rapid method for screening antimicrobial effectiveness of natural additives. SIGNIFICANCE AND IMPACT OF THE STUDY: Determination of the minimum inhibitory concentration of an essential oil with the simple conductance technique and further study of the mode of action of its components is a good combination for obtaining additional knowledge for industrial application of such natural additives.  相似文献   

15.
Pathogenic bacterial contaminations present serious problems for food industry and public health. Rapid, accurate and affordable assays are needed. In this study, antibody arrays to simultaneously detect two foodborne pathogenic bacteria (Escherichia coli O157:H7 and Salmonella spp.) have been developed using chemiluminescent detecting system. Solid supports using nitrocellulose membrane and poly-l-lysine (PLL) glass slide were compared and optimized for antibody array construction. Many parameters including optimal concentrations of antibodies, blocking reagents, assay time, storage time, sensitivity and cross-reactivity were considered during optimization. This study revealed that the PLL slide was a more suitable support due to highly accurate results and the absence of non-specific background. Phosphate-buffered saline (PBS, pH 7.2) and 3% skim milk in PBS buffer were optimal spotting and blocking reagents, respectively. With the same sensitivity for bacterial detection as in a conventional ELISA (10(5)-10(6)CFU/ml for the E. coli O157:H7 and 10(6)-10(7)CFU/ml for Salmonella detections), this antibody array has advantages of a much shorter assay time of 1h and much lower required amounts of antibodies. Moreover, there was no cross-reactivity in the detection among bacteria tested in this study. Bacteria detection in food sample was feasible as demonstrated using bacteria-added milk.  相似文献   

16.
The sensitivity and specificity of a polyethylene glycol terminated alkanethiol mixed self-assembled monolayers (SAM) on surface plasmon resonance (SPR) immunosensor to detect Escherichia coli O157:H7 is demonstrated. Purified monoclonal (Mabs) or polyclonal antibodies (PAbs) against E. coli O157:H7 were immobilized on an activated sensor chip and direct and sandwich assays were carried to detect E. coli O157:H7. Effect of Protein G based detection and effect of concentrations of primary and secondary antibodies in sandwich assay were investigated. The sensor surface was observed under an optical microscope at various stages of the detection process. The sensor could detect as low as 10(3)CFU/ml of E. coli O157:H7 in a sandwich assay, with high specificity against Salmonella Enteritidis. The detection limit using direct assay and Protein G were 10(6)CFU/ml and 10(4)CFU/ml, respectively. Results indicate that an alkanethiol SAM based SPR biosensor has the potential for rapid and specific detection of E. coli O157:H7, using a sandwich assay.  相似文献   

17.
Cattle drinking water is a source of on-farm Escherichia coli O157:H7 transmission. The antimicrobial activities of disinfectants to control E. coli O157:H7 in on-farm drinking water are frequently neutralized by the presence of rumen content and manure that generally contaminate the drinking water. Different chemical treatments, including lactic acid, acidic calcium sulfate, chlorine, chlorine dioxide, hydrogen peroxide, caprylic acid, ozone, butyric acid, sodium benzoate, and competing E. coli, were tested individually or in combination for inactivation of E. coli O157:H7 in the presence of rumen content. Chlorine (5 ppm), ozone (22 to 24 ppm at 5 degrees C), and competing E. coli treatment of water had minimal effects (<1 log CFU/ml reduction) on killing E. coli O157:H7 in the presence of rumen content at water-to-rumen content ratios of 50:1 (vol/wt) and lower. Four chemical-treatment combinations, including (i) 0.1% lactic acid, 0.9% acidic calcium sulfate, and 0.05% caprylic acid (treatment A); (ii) 0.1% lactic acid, 0.9% acidic calcium sulfate, and 0.1% sodium benzoate (treatment B); (iii) 0.1% lactic acid, 0.9% acidic calcium sulfate, and 0.5% butyric acid (treatment C); and (iv) 0.1% lactic acid, 0.9% acidic calcium sulfate, and 100 ppm chlorine dioxide (treatment D); were highly effective (>3 log CFU/ml reduction) at 21 degrees C in killing E. coli O157:H7, O26:H11, and O111:NM in water heavily contaminated with rumen content (10:1 water/rumen content ratio [vol/wt]) or feces (20:1 water/feces ratio [vol/wt]). Among them, treatments A, B, and C killed >5 log CFU E. coli O157:H7, O26:H11, and O111:NM/ml within 30 min in water containing rumen content or feces, whereas treatment D inactivated approximately 3 to 4 log CFU/ml under the same conditions. Cattle given water containing treatment A or C or untreated water (control) ad libitum for two 7-day periods drank 15.2, 13.8, and 30.3 liters/day, respectively, and cattle given water containing 0.1% lactic acid plus 0.9% acidic calcium sulfate (pH 2.1) drank 18.6 liters/day. The amounts of water consumed for all water treatments were significantly different from that for the control, but there were no significant differences among the water treatments. Such treatments may best be applied periodically to drinking water troughs and then flushed, rather than being added continuously, to avoid reduced water consumption by cattle.  相似文献   

18.
Sensitivities of direct plate culture (DPC) method, immunomagnetic separation (IMS) method, and polymerase chain reaction (PCR) assay for successful detection Escherichia coli O157 in the food samples were compared. Three lots of minced beef and three lots of radish sprout, both of which were commercially retailed, were enriched with non-selective broth media at 36 degrees C for 6 h. After enrichment, the cultures of the minced beef and those of the radish sprout were found to have background microflora at ca.10(5)-10(7) CFU/ml and ca.10(8) CFU/ml, respectively. The cultures were then experimentally inoculated with E. coli O157 strains at various final concentrations ranging from ca.10 to 10(7) CFU/ml. The samples thus prepared were subjected to the above three methods to evaluate their detection limits. For the samples of minced beef, the detection limits of the DPC method was 10(2) CFU/ml whilst that of the IMS method was ca.10 CFU/ml. For the samples of radish sprout, the detection limits of the DPC method, the IMS method, and the PCR assay were ca.10(4) CFU/ml, ca.10(2) CFU/ml, and ca.10(6) CFU/ml, respectively. There results strongly suggest that the IMS method is most sensitive method for the detection of O157 from food samples among the methods currently available.  相似文献   

19.
T Zhao  M P Doyle    R E Besser 《Applied microbiology》1993,59(8):2526-2530
A strain of enterohemorrhagic Escherichia coli serotype O157:H7 isolated from a patient in an apple cider-related outbreak was used to study the fate of E. coli O157:H7 in six different lots of unpasteurized apple cider. In addition, the efficacy of two preservatives, 0.1% sodium benzoate and 0.1% potassium sorbate, used separately and in combination was evaluated for antimicrobial effects on the bacterium. Studies were done at 8 or 25 degrees C with ciders having pH values of 3.6 to 4.0. The results revealed that E. coli O157:H7 populations increased slightly (ca. 1 log10 CFU/ml) and then remained stable for approximately 12 days in lots inoculated with an initial population of 10(5) E. coli O157:H7 organisms per ml and held at 8 degrees C. The bacterium survived from 10 to 31 days or 2 to 3 days at 8 or 25 degrees C, respectively, depending on the lot. Potassium sorbate had minimal effect on E. coli O157:H7 populations, with survivors detected for 15 to 20 days or 1 to 3 days at 8 or 25 degrees C, respectively. In contrast, survivors in cider containing sodium benzoate were detected for only 2 to 10 days or less than 1 to 2 days at 8 or 25 degrees C, respectively. The highest rates of inactivation occurred in the presence of a combination of 0.1% sodium benzoate and 0.1% potassium sorbate. The use of 0.1% sodium benzoate, an approved preservative used by some cider processors, will substantially increase the safety of apple cider in terms of E. coli O157:H7, in addition to suppressing the growth of yeasts and molds.  相似文献   

20.
AIMS: The goal of this study was to determine whether nisin and lactoferrin would act synergistically to inhibit the growth of Listeria monocytogenes and Escherichia coli O157:H7. METHODS AND RESULTS: Lactoferrin and nisin separately or in combination were suspended in peptone yeast glucose broth and following inoculation with L. monocytogenes or E. coli O157:H7 growth inhibition of each pathogen was determined. At 1000 microg ml(-1) lactoferrin L. monocytogenes was effectively inhibited. However, E. coli O157:H7 initially was inhibited and then grew to cell density similar to the control. A combination of 500 microg ml(-1) of lactoferrin and 250 IU ml(-1) of nisin effectively inhibited the growth of E. coli O157:H7, whereas, 250 microg ml(-1) of lactoferrin and 10 IU ml(-1) of nisin were inhibitory to L. monocytogenes. CONCLUSIONS: The results suggest that lactoferrin and nisin act synergistically to inhibit the growth of L. monocytogenes and E. coli O157:H7. SIGNIFICANCE AND IMPACT OF THE STUDY: Natural preservatives that are active against gram-positive and gram-negative pathogens are desirable to the food industry and consumers. This study demonstrates that lactoferrin and nisin work synergistically reducing the levels required independently inhibiting growth of two major foodborne pathogens. Previous reported results indicated a low level of antimicrobial activity; however, this work was not performed in low divalent cation concentration media. It has been suggested that nondivalent cation-limiting medium such as trypticase soy broth (TSB), can reduce or completely eliminate the inhibitory activity. Further knowledge of these interactions can increase the understanding of the antimicrobial activity of lactoferrin. This should make the use of these compounds by industry more attractive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号