首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plasma membrane vesicles were obtained by hypotonic lysis in an ice-cold medium containing EDTA and MgCl2. The vesicles were isolated by differential centrifugation. Compared to a total kidney homogenate, a 10–12-fold enrichment of trehalase and alkaline phosphatase (marker enzymes for renal brush border), and a 6-fold enrichment of (Na+---:K+)-stimulated ATPase, (a marker enzyme for the basal and lateral plasma membrane of the tubule cell), was achieved. Contamination by other cell organelles was very low. The plasma membrane vesicles enclosed small amounts of the cytoplasmic enzymes lactate dehydrogenase and malate dehydrogenase, which exhibited full activity only after their release into the medium by sonication.Electron micrographs of this preparation showed microvilli with drumstick-like expansions, but also spherical vesicles. By measuring the distribution of radio-actively labelled compounds of different molecular weight in a packed sediment of the plasma membranes under isotonic conditions, an intravesicular volume of 82% or 9 μl/mg of membrane protein was estimated. The intravesicular volume decreased when the osmolality of the medium was augmented by raffinose. The scattering of light by the vesicular suspension could be used to monitor rapid volume changes. By this method, the following sequence of flux rates was established: glycerol>erythritol> adonitol>mannitol. The fluxes of LiCl, NaCl, and KCl were almost identical, but faster than those of adonitol and mannitol. The data indicate, that a large fraction of the plasma membrane isolated in this preparation have formed vesicles, and also that they have retained, as far as investigated, the permeability characteristics of the plasma membrane.  相似文献   

2.
Mitochondrial bioenergetic impairment has been found in the organelles isolated from rat liver during the prereplicative phase of liver regeneration. To gain insight into the mechanism underlying this impairment, we investigated mitochondrial ultrastructure and membrane permeability properties in the course of liver regeneration after partial hepatectomy, with special interest to the role played by Ca2+ in this process. The results show that during the first day after partial hepatectomy, significant changes in the ultrastructure of mitochondria in situ occur. Mitochondrial swelling and release from mitochondria of both glutamate dehydrogenase and aspartate aminotransferase isoenzymes with an increase in the mitochondrial Ca2+ content were also observed. Cyclosporin-A proved to be able to prevent the changes in mitochondrial membrane permeability properties. At 24 h after partial hepatectomy, despite alteration in mitochondrial membrane permeability properties, no release of cytochrome c was found. The ultrastructure of mitochondria, the membrane permeability properties and the Ca2+ content returned to normal values during the replicative phase of liver regeneration. These results suggest that, during the prereplicative phase of liver regeneration, the changes in mitochondrial ultrastructure observed in liver specimens were correlated with Ca2+-induced permeability transition in mitochondria.  相似文献   

3.
Lactate dehydrogenase isoenzymes are present in matrix vesicles   总被引:2,自引:0,他引:2  
Matrix vesicles were isolated from epiphyseal growth plates of young rabbits. Lactate dehydrogenase activity was detected in the isolated matrix vesicles only in the presence of detergents, suggesting that NADH, the cofactor for the assay, does not penetrate the membrane of matrix vesicles. In contrast, the activity of alkaline phosphatase, a marker enzyme of the outer surface of matrix vesicles, was detected in the matrix vesicles using p-nitrophenyl phosphate as the substrate both in the presence and absence of detergents. Lactate dehydrogenase activity was detected only in the cytosol of chondrocytes of the epiphyseal growth plates but not in other subcellular fractions, showing that lactate dehydrogenase is not from the plasma membrane and membranes of intracellular organelles of chondrocytes. The isolated matrix vesicles contained all five lactate dehydrogenase isoenzymes but did not possess other cytosolic enzymes. These results show that lactate dehydrogenase is located in the matrix vesicles and suggest the presence of a mechanism for the specific uptake of cytosolic lactate dehydrogenase and the possibility of enzymatic quantification of the matrix vesicles at various calcification sites.  相似文献   

4.
By means of vital microscopy a possibility of histochemical detection of redox enzymes and of study of changes in their activity in intramural nerve plexuses of the small intestine on a live animal was demonstrated. Severe thermal trauma induced a disturbance of permeability of mitochondrial membranes of the Auerbach's plexus nerve cells; as a result, there was a change in the activity of redox enzymes localized within the mitochondria. Lumbar novocain block performed soon after the burn trauma normalized the state of the mitochondrial membranes of the nerve cells.  相似文献   

5.
Incubation of isolated rat hepatocytes with 0.1 mM iron nitrilotriacetic acid (FeNTA) caused a rapid rise in lipid peroxidation followed by a substantial increase in trypan blue staining and lactate dehydrogenase release, but did not affect the protein and non-protein thiol content of the cells. Hepatocyte death was preceded by the decline of mitochondrial membrane potential, as assayed by rhodamine 123 uptake, and by the depletion of cellular ATP. Chelation of extracellular Ca2+ by ethylene glycol bis(beta-aminoethyl ether) N,N'-tetraacetic acid or inhibition of Ca2+ cycling within the mitochondria by LaCl3 or cyclosporin A did not prevent the decline of rhodamine 123 uptake. On the other hand, a dramatic increase in the conjugated diene content was observed in mitochondria isolated from FeNTA-treated hepatocytes. Oxidative damage of mitochondria was accompanied by the leakage of matrix enzymes glutamic oxalacetic aminotransferase (GOT) and glutamate dehydrogenase (GLDH). The addition of the antioxidant N,N'-diphenylphenylene diamine (DPPD) completely prevented GOT and GLDH leakage, inhibition of rhodamine 123 uptake, and ATP depletion induced by FeNTA, indicating that Ca(2+)-independent alterations of mitochondrial membrane permeability consequent to lipid peroxidation were responsible for the loss of mitochondrial membrane potential. DPPD addition also protected against hepatocyte death. Similarly hepatocytes prepared from fed rats were found to be more resistant than those obtained from starved rats toward ATP depletion and cell death caused by FeNTA, in spite of undergoing a comparable mitochondrial injury. A similar protection was also observed following fructose supplementation of hepatocytes isolated from starved rats, indicating that the decline of ATP was critical for the development of FeNTA toxicity. From these results it was concluded that FeNTA-induced peroxidation of mitochondrial membranes impaired the electrochemical potential of these organelles and led to ATP depletion which was critical for the development of irreversible cell injury.  相似文献   

6.
When Escherichia coli was grown in the presence of tungstate, inactive forms of two molybdoenzymes, nitrate reductase and formate dehydrogenase, accumulated and were converted to their active forms upon incubation of cell suspensions with molybdate and chloramphenicol. The conversion to the active enzymes did not occur in cell extracts. When incubated with [(99)Mo]molybdate and chloramphenicol, the tungstate-grown cells incorporated (99)Mo into protein components which were released from membranes by procedures used to release nitrate reductase and formate dehydrogenase and which migrated with these activities on polyacrylamide gels. Although neither activity was formed during incubation of the crude extract with molybdate, (99)Mo was incorporated into protein components which were released from the membrane fraction under the same conditions and were similar to the active enzymes in their electrophoretic properties. The in vitro incorporation of (99)Mo occurred specifically into these components and was equal to or greater than the amount incorporated in vivo under the same conditions. Molybdenum in preformed, active nitrate reductase and formate dehydrogenase did not exchange with [(99)Mo]molybdate, demonstrating that the observed incorporation depended on the demolybdo forms of the enzymes. We conclude that molybdate may be incorporated into the demolybdo forms both in vivo and in vitro; some unknown additional factor or step, required for active enzyme formation, occurs in vivo but not in vitro under the conditions employed.  相似文献   

7.
The mechanism of enzyme release from isolated skeletal muscle was illustrated by the study of the release of lactate dehydrogenase (LDH). In hypotonic media of different composition but of same tonicity the increase of LDH permeability was triggered at the same range of relative osmolality R (0.45 less than R less than 0.55), although the swelling in the respective media showed appreciable differences. The kinetics of muscle swelling showed that a deviation from the theoretically computed swelling curve to lower values of swelling was connected with an increased LDH permeability. The reduction of swelling was ATP- and Ca2+ and/or Mg2-dependent. It is concluded that swelling of cells generally precedes the leakage of soluble enzymes, and the cross-linking of filaments at the sarcoplasmic side of the sarcolemma under appropriate conditions can counteract swelling, thereby blebbing off the cell membrane from the filament meshwork. In the course of this process, sufficiently large membrane lesions are produced through which macromolecules may escape into the extracellular space.  相似文献   

8.
Changes in permeability of lysosomal and mitochondrial membranes were studied under different temperatures at which cryoextracts from organelles inhibit most distinctly the protein synthesizing activity of the cell-free system from the rat liver. It is found that mitochondria are more sensitive to the effect of low temperature effect than lysosomes. Overcooling of the mitochondria suspension to the temperature of the free water crystallization is shown to cause no release of the protein synthesis inhibitor. The inhibitor release from organelles occurs from the moment of crystallization and reaches its maximum at the eutectic temperatures of the freezing medium which is due to the injury effect of the complex of physicochemical factors on the membrane structures, occurring during the phase transition of the solvent.  相似文献   

9.
Nanosecond, high‐voltage electric pulses (nsEP) induce permeabilization of the plasma membrane and the membranes of cell organelles, leading to various responses in cells including cytochrome c release from mitochondria and caspase activation associated with apoptosis. We report here evidence for nsEP‐induced permeabilization of mitochondrial membranes in living cells. Using three different methods with fluorescence indicators—rhodamine 123 (R123), tetramethyl rhodamine ethyl ester (TMRE), and cobalt‐quenched calcein—we have shown that multiple nsEP (five pulses or more, 4 ns duration, 10 MV/m, 1 kHz repetition rate) cause an increase of the inner mitochondrial membrane permeability and an associated loss of mitochondrial membrane potential. These effects could be a consequence of nsEP permeabilization of the inner mitochondrial membrane or the activation of mitochondrial membrane permeability transition pores. Plasma membrane permeabilization (YO‐PRO‐1 influx) was detected in addition to mitochondrial membrane permeabilization. Bioelectromagnetics 33:257–264, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

10.
Treatment of yeast mitochondria with digitonin was used in order to prepare an inner membrane-matrix fraction preserving its permeability properties. The incubation time of mitochondria with digitonin was an essential parameter for the selective solubilization of the outer membrane. The incubation of mitochondria for l min at different concentrations of digitonin led to a three-step release of mitochondrial enzymes: (a) at low concentrations of digitonin, adenylate kinase was released; (b) higher concentrations were required to solubilize kynurenine hydroxylase, an outer membrane marker; (c) inner membrane markers (succinate dehydrogenase and oligomycin-sensitive adenosine triphosphatase) and matrix markers (fumarase and isocitrate dehydrogenase) were significantly released at concentrations of digitonin higher than 0.4 mg/mg of protein. The electron microscopic aspects of yeast mitoplasts (inner membrane-matrix fraction obtained by treatment with 0.4 mg of digitonin) showed an orthodox and a twisted configuration. These new organelles retained respiratory control when assayed with ethanol as the substrate. Their selective permeability properties were preserved as shown by isoosmotic swelling in potassium or ammonium salt solutions.  相似文献   

11.
Fusion processes of cell organelles with granular cell apical membranes under ADH-induced water permeability has been analysed. The data obtained suggest that specific granule membranes inserted in the apical membrane may change its water permeability. This occurs due to the fusion of the granule membrane with the apical membrane without exocytosis, the granule contents remaining in the cytoplasm.  相似文献   

12.
Summary The effects of various chemical substances on the permeability of plasma membranes and tonoplasts of three suspension cultures (Catharanthus roseus, Thalictrum rugosum and Chenopodium rubrum) have been studied. The permeability of the plasma membrane is monitored by measuring the activity of the cytosolic enzyme isocitrate dehydrogenase and the permeability of the tonoplast is measured by determining the release of substances stored in the vacuoles (inorganic phosphate, berberine and betanin for the three cell lines, respectively). The minimum concentration required for quantitative release of vacuolar products have been established for five different permeabilization agents. Cell viability is lost upon permeabilization except for treatment of Catharanthus roseus with DMSO and Triton X-100.Abbreviations DMSO dimethylsulfoxide - PEA phenethylalcohol - HDTMAB hexadecyltrimethylammonium bromide - ICDH isocitrate dehydrogenase  相似文献   

13.
Organelle-damaging factor, which damages cell organelles andcauses them to release their matrix enzymes at pH 7.5, had noability to actively hydrolyze carbohydrates, proteins and lipidsat pH 7.5. When the factor was incubated with spinach chloroplastsin the presence of calcium ions, the matrix enzyme, triosephosphateisomerase, was released from chloroplasts after a lag period.A significant amount of activity of the factor was lost duringthe release. We suggest that the factor is not an enzyme andbounds tightly to organelle membranes to break them. (Received October 6, 1980; Accepted December 3, 1980)  相似文献   

14.
Eukaryotic cell viability is largely regulated at the level of mitochondria, with cell death executed by endogenous proteins that act to increase the permeability of the inner and/or outer membranes of these organelles. The gastric pathogen, Helicobacter pylori, can mimic this mechanism by producing the pro-apoptotic toxin, VacA, which was recently demonstrated to (i) localize to mitochondria within epithelial cells, (ii) rapidly transport into mitochondria in vitro, and (iii) induce changes consistent with permeabilization of mitochondrial membranes by a mechanism dependent on cellular entry and toxin membrane channel activity. The targeting of mitochondrial membranes is emerging as a strategy used by pathogenic microbes to control cell viability while circumventing upstream pathways and checkpoints of cell death.  相似文献   

15.
Spermidine dehydrogenase found in the membrane fraction of Citrobacter freundii IFO 12681 was solubilized with Triton X-100 and further purified to homogeneity. The properties of the membrane enzyme were almost identical to those obtained from the soluble fraction of the organism with respect to molecular and catalytic properties. Thus, binding properties of the enzyme to the bacterial membrane were checked. The ratio of enzyme activity found in the soluble fraction to the membrane fraction was dependent on salt concentration during cell disruption. A hydrophobic interaction was largely involved in anchoring the enzyme to the membrane fraction. Purified spermidine dehydrogenase from the soluble fraction was readily adsorbed into the membrane fraction in the presence of salt. Spermidine dehydrogenase appeared to be a membrane-bound enzyme localized in the cytoplasmic membranes in a manner that makes a partial release of the enzyme possible during mechanical cell disruption. When spermidine oxidation was done with the resting cells of C. freundii, a stoichiometric formation of two reaction products, 1,3-diaminopropane and gamma-aminobutyraldeyde, was observed without any lag time. These facts indicate that the enzyme is localized on the outer surface of the cytoplasmic membranes or in the periplasmic space of the organism.  相似文献   

16.
Studies with the seeds of soybean, navy bean, pea, and peanut were made to determine the extent of leakage of intracellular enzymes during imbition. Embryos with intact testae from all four species were found to leak detectable activities of either intracellular enzymes of the cytosol (glucose-6-phosphate dehydrogenase) or enzymes found in both the cytosol and organelles (malate dehydrogenase, glutamate dehydrogenase, glutamate oxaloacetate transaminase, and NADP-isocitrate dehydrogenase) after 6 hours imbition at 25 C. Pea and peanut embryos with testae leaked considerably lower levels of activity for these enzymes than did those of soybean and bean. Leakage of mitochondrial marker enzymes (fumarase, cytochrome c oxidase, and adenylate kinase) was not detected from embryos with testae, suggesting that a differential diffusion of intracellular components out of cells occurred. Soybean and bean embryos without testae leaked high, and proportionally (per cent dry seed basis) similar, levels of all cytosol, cytosol-organelle, and mitochondrial marker enzymes and protein during imbibition, indicating that cell membranes were not differential to leakage and that they had ruptured. Pea and peanut embryos without testae leaked detectable activities of all cytosol and cytosol-organelle enzymes, although fumarase was the only detectable mitochondrial marker enzyme leaked, suggesting that some degree of differential leakage may have occurred in these species. The outermost layers of embryo cells of seeds without testae of all four species absorbed and sequestered the nonpermeating pigment Evan's blue after 5 to 15 minutes imbibition, indicating that membranes had ruptured. This occurred to a much lesser extent in seeds with intact testae. Both soybean and bean embryos without testae were observed to disintegrate during imbibition, whereas those of pea and peanut did not. These data indicate that seeds of certain legumes are susceptible to cellular rupture during imbibition when seed coats are damaged or missing.  相似文献   

17.
Antisera have been raised to three synthetic peptides based on the sequence of human myristoyl-CoA:proteinN-myristoyl transferase (NMT) and to the purified enzyme following its expression inEscherichia coli.These antisera have been affinity purified and shown to react both with theE. coliexpressed human NMT, and specifically with a protein of molecular weight of 63 kDa in immunoblots of the human cell line HeLa. The affinity purified antibodies have also been used to localize NMT in methanol/acetone permeabilized HeLa cells by immunofluorescent staining. The immunofluorescence showed a diffuse staining pattern throughout the cell, suggesting that the enzyme is predominantly cytosolic. This was confirmed by determining the distribution of NMT activity in different subcellular fractions of HeLa cells. Over 90% of NMT enzymatic activity was released from cell lysates during either hypotonic or isotonic homogenization. However, a small amount of enzymatic activity remained associated with cell membranes, despite extensive washing, and this was confirmed by immunoblot analysis of these membranes for NMT. In comparison, over 99.5% of lactate dehydrogenase activity was released under the same conditions, which suggests that the NMT was genuinely associated with the cell membranes. The membrane-bound enzyme behaved like a peripheral membrane protein. Permeabilization of HeLa cells with 50 μMdigitonin resulted in the release of 90–93% of lactate dehydrogenase compared to 73–85% of NMT, again suggesting that the majority of the enzyme is cytosolic, but that some may be associated with cell membranes or organelles.  相似文献   

18.
1) The activities of 16 enzymes of glycolysis and of glutathione metabolism were determined in intact human red cell membranes (ghosts) which were prepared by hypotonic hemolysis. 2) Enzymes and hemoglobin of the ghosts were resolved by two toluene extractions. Only the four enzymes hexokinase, fructose-bisphosphate aldolase, glyceraldehyde-phosphate dehydrogenase and pyruvate kinase could not be released completely from the ghosts. 3) The residual membrane fraction, which was obtained after the toluene extraction of ghosts prepared at 30 imOsM, contained 0.02% of the original hemoglobin content of the red cell. Between 6.5 and 23% of the hemolysate activities of glyceraldehyde-phosphate dehydrogenase, phosphoglycerate kinase, pyruvate kinase and fructose-bisphosphate aldolase were detected in this fraction after mechanical disruption. 4) Sonication of intact ghosts increased the activities of fructose-bisphosphate aldolase, pyruvate kinase and phosphoglycerate kinase. 5) In "white" ghosts prepared at 5 imOsM phosphate buffer which contained 0.5% of the original hemoglobin the activities of fructose-bisphosphate aldolase and glyceraldehyde-phosphate dehydrogenase were detected at high levels. The activities of pyruvate kinase and phosphoglycerate kinase were low in these preparations. 6) The results indicate that one part of all enzymes is loosely attached to the inner surface of the membrane as is hemoglobin. A second part, the "cryptic enzyme activity", is available after resolving by toluene. A residual part of four enzymes is firmly bound to the membrane. Two of them (fructose-bisphosphate aldolase and glyceraldehyde-phosphate dehydrogenase) are oriented toward the inner surface of the membrane, whereas pyruvate kinase and phosphoglycerate kinase are hidden in the lipid core of the membrane.  相似文献   

19.
Experiments on rats were made to study the effect of water-soluble antioxidants on the permeability of lysosomal membranes of liver cells and liver structure under burn. Antioxidants were injected intraperitoneally shortly after burn, whereas examination was performed after one day. It has been discovered that one day after burn there takes place an appreciable destabilization of lysosomal membranes with the release of a lysosomal matrix enzyme, cathepsin D to the cytoplasm. Liver structure had undergone substantial changes by that time. After administration of water-soluble antioxidants lysosomal membranes got stabilized while liver structure manifested but insignificant disorders.  相似文献   

20.
Structural changes of isolated hepatocytes during treatment with digitonin   总被引:2,自引:0,他引:2  
The structural changes accompanying digitonin-induced release of enzymes and metabolites from isolated hepatocytes have been studied by scanning and transmission electron microscopy. In the initial phase, characterized by total release of the cytosolic marker enzyme, lactate dehydrogenase, the plasma membrane was immediately damaged, rapidly followed by extensive damage to the endoplasmic reticulum. The shape of the cell, however, was maintained, and the mitochondria and nucleus remained tightly held together by the cytoskeleton. Mitochondria remained intact initially, whereas the cytosol became less electron dense and the nuclear chromatin was more dispersed. An intermediate phase was characterized by total release of adenylate kinase and most of the glucose-6-phosphatase, marker enzymes for the mitochondrial intermembrane space and the endoplasmic reticulum, respectively. The outer mitochondrial membrane was ruptured, but mitochondria maintained their normal matrix electron density. In the final phase, characterized by the beginning of citrate synthase release from the mitochondrial matrix space, the mitochondria became swollen, and only the nucleus, inner and outer mitochondrial membranes, and the cytoskeleton could be clearly distinguished. Although the plasma membrane could not be readily discerned in electron micrographs after the initial phase, the plasma membrane marker enzyme 5'-nucleotidase remained associated with digitonin-treated hepatocytes. Acetyl-CoA carboxylase was released much more slowly than lactate dehydrogenase, indicating some severe restriction on its release. The release of acetyl-CoA carboxylase closely paralleled the release of glucose-6-phosphatase. The controlled exposure of hepatocytes to digitonin, therefore, leads to the sequential release of soluble, compartmentalized cellular components and some membrane-bound components, but the mitochondrial membrane, cytoskeleton and the nucleoskeleton survive even long-term digitonin treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号