首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A physical model of microtubule sliding in ciliary axonemes.   总被引:1,自引:0,他引:1       下载免费PDF全文
Ciliary movement is caused by coordinated sliding interactions between the peripheral doublet microtubules of the axoneme. In demembranated organelles treated with trypsin and ATP, this sliding can be visualized during progressive disintegration. In this paper, microtubule sliding behavior resulting from various patterns of dynein arm activity and elastic link breakage is determined using a simplified model of the axoneme. The model consists of a cylindrical array of microtubules joined, initially, by elastic links, with the possibility of dynein arm interaction between microtubules. If no elastic links are broken, sliding can produce stable distortion of the model, which finds application to straight sections of a motile cilium. If some elastic links break, the model predicts a variety of sliding patterns, some of which match, qualitatively, the observed disintegration behavior of real axonemes. Splitting of the axoneme is most likely to occur between two doublets N and N + 1 when either the arms on doublet N + 1 are active and arms on doublet N are inactive or arms on doublet N - 1 are active while arms on doublet N are inactive. The analysis suggests further experimental studies which, in conjunction with the model, will lead to a more detailed understanding of the sliding mechanism, and will allow the mechanical properties of some axonemal components to be evaluated.  相似文献   

2.
To investigate the role of axonemal components in the mechanics and regulation of flagellar movement, we have generated a series of monoclonal antibodies (mAb) against sea urchin (Lytechinus pictus) sperm axonemal proteins, selected for their ability to inhibit the motility of demembranated sperm models. One of these antibodies, mAb D1, recognizes an antigen of 142 kDa on blots of sea urchin axonemal proteins and of purified outer arm dynein, suggesting that it acts by binding to the heaviest intermediate chain (IC1) of the dynein arm. mAb D1 blocks the motility of demembranated sea urchin spermatozoa by modifying the beating amplitude and shear angle without affecting the ATPase activity of purified dynein or of demembranated immotile spermatozoa. Furthermore, mAb D1 had only a marginal effect on the velocity of sliding microtubules in trypsin-treated axonemes. This antibody was also capable of inhibiting the motility of flagella of Oxyrrhis marina, a primitive dinoflagellate, and those of demembranated human spermatozoa. Localization of the antigen recognized by mAb D1 by immunofluorescence reveals its presence on the axonemes of flagella from sea urchin spermatozoa and O. marina but not on the cortical microtubule network of the dinoflagellate. These results are consistent with a dynamic role for the dynein intermediate chain IC1 in the bending and/or wave propagation of flagellar axonemes.  相似文献   

3.
Flagellar dynein activity is regulated by phosphorylation. One critical phosphoprotein substrate in Chlamydomonas is the 138-kDa intermediate chain (IC138) of the inner arm dyneins (Habermacher, G., and Sale, W. S. (1997) J. Cell Biol. 136, 167-176). In this study, several approaches were used to determine that casein kinase I (CKI) is physically anchored in the flagellar axoneme and regulates IC138 phosphorylation and dynein activity. First, using a videomicroscopic motility assay, selective CKI inhibitors rescued dynein-driven microtubule sliding in axonemes isolated from paralyzed flagellar mutants lacking radial spokes. Rescue of dynein activity failed in axonemes isolated from these mutant cells lacking IC138. Second, CKI was unequivocally identified in salt extracts from isolated axonemes, whereas casein kinase II was excluded from the flagellar compartment. Third, Western blots indicate that within flagella, CKI is anchored exclusively to the axoneme. Analysis of multiple Chlamydomonas motility mutants suggests that the axonemal CKI is located on the outer doublet microtubules. Finally, CKI inhibitors that rescued dynein activity blocked phosphorylation of IC138. We propose that CKI is anchored on the outer doublet microtubules in position to regulate flagellar dynein.  相似文献   

4.
To help understand the functional properties of inner and outer dynein arms in axonemal motility, sliding velocities of outer doublets were measured in disintegrating axonemes of Chlamydomonas mutants lacking either of the arms. Measurements under improved solution conditions yielded significantly higher sliding velocities than those observed in a previous study [Okagaki and Kamiya, 1986, J. Cell Biol. 103:1895-1902]. As in the previous study, it was found that the velocities in axonemes of wild type (wt) and a mutant (oda1) missing the outer arm differ greatly: 18.5 +/- 4.1 microns/sec for wt and 4.4 +/- 2.3 microns/sec for oda1 at 0.5 mM Mg-ATP. In contrast, axonemes of two types of mutants (ida2 and ida4) that lacked different sets of two inner-arm heavy chains displayed velocities almost identical with the wild-type velocity. Moreover, axonemes of a non-motile double mutant ida2 X ida4 underwent sliding disintegration at a similar high velocity, although less frequently than in axonemes of single mutants. These observations support the hypothesis that the inner and outer dynein arms in disintegrating axonemes drive microtubules at different speeds and it is the faster outer arm that determines the overall speed when both arms are present. The inner arm may be important for the initiation of sliding. The axoneme thus appears to be equipped with two (or more) types of motors with different intrinsic speeds.  相似文献   

5.
The inner row of dynein arms contains three dynein subforms. Each is distinct in composition and location in flagellar axonemes. To begin investigating the specificity of inner dynein arm assembly, we assessed the capability of isolated inner arm dynein subforms to rebind to their appropriate positions on axonemal doublet microtubules by recombining them with either mutant or extracted axonemes missing some or all dyneins. Densitometry of Coomassie blue-stained polyacrylamide gels revealed that for each inner dynein arm subform, binding to axonemes was saturable and stoichiometric. Using structural markers of position and polarity, electron microscopy confirmed that subforms bound to the correct inner arm position. Inner arms did not bind to outer arm or inappropriate inner arm positions despite the availability of sites. These and previous observations implicate specialized tubulin isoforms or nontubulin proteins in designation of specific inner dynein arm binding sites. Further, microtubule sliding velocities were restored to dynein-depleted axonemes upon rebinding of the missing inner arm subtypes as evaluated by an ATP-induced microtubule sliding disintegration assay. Therefore, not only were the inner arm dynein subforms able to identify and bind to the correct location on doublet microtubules but they bound in a functionally active conformation.  相似文献   

6.
The dynein arms of ciliary doublet microtubules cause adjacent axonemal doublets to slide apart with fixed polarity. This suggests that there is a unique mechanochemistry to the dynein arm with unidirectional force generation in all active arms and also that not all arms are active at once during a ciliary beat. Negative stain and thin-section images of arms in axonemes treated with beta, gamma methylene adenosine triphosphate (AMP-PCP) show a consistent subunit construction where the globular head of the arm interacts with subfiber B of doublet N+1. This interpretation differs from that provided by freeze etch and STEM interpretations of in situ arm construction and has implications for the mechanochemical cycle of the arm. A computer model of the arms in relation to other axonemal structures has been constructed to test these interpretations. Attachment of the head of the arm subfiber B is directly demonstrable in splayed axonemes in AMP-PCP. About half of the doublets in an axoneme show such attachments, while half do not. This might imply that about half the doublets in an axoneme are active at any given instant and can be identified as such. This information may be useful in probing questions of how active arms differ biochemically from inactive arms and of how microtubule translocators in general become active.  相似文献   

7.
《The Journal of cell biology》1994,127(6):1683-1692
Genetic, biochemical, and structural data support a model in which axonemal radial spokes regulate dynein-driven microtubule sliding in Chlamydomonas flagella. However, the molecular mechanism by which dynein activity is regulated is unknown. We describe results from three different in vitro approaches to test the hypothesis that an axonemal protein kinase inhibits dynein in spoke-deficient axonemes from Chlamydomonas flagella. First, the velocity of dynein-driven microtubule sliding in spoke-deficient mutants (pf14, pf17) was increased to wild-type level after treatment with the kinase inhibitors HA-1004 or H-7 or by the specific peptide inhibitors of cAMP-dependent protein kinase (cAPK) PKI(6-22)amide or N alpha-acetyl-PKI(6-22)amide. In particular, the peptide inhibitors of cAPK were very potent, stimulating half-maximal velocity at 12-15 nM. In contrast, kinase inhibitors did not affect microtubule sliding in axonemes from wild- type cells. PKI treatment of axonemes from a double mutant missing both the radial spokes and the outer row of dynein arms (pf14pf28) also increased microtubule sliding to control (pf28) velocity. Second, addition of the type-II regulatory subunit of cAPK (RII) to spoke- deficient axonemes increased microtubule sliding to wild-type velocity. Addition of 10 microM cAMP to spokeless axonemes, reconstituted with RII, reversed the effect of RII. Third, our previous studies revealed that inner dynein arms from the Chlamydomonas mutants pf28 or pf14pf28 could be extracted in high salt buffer and subsequently reconstituted onto extracted axonemes restoring original microtubule sliding activity. Inner arm dyneins isolated from PKI-treated axonemes (mutant strain pf14pf28) generated fast microtubule sliding velocities when reconstituted onto both PKI-treated or control axonemes. In contrast, dynein from control axonemes generated slow microtubule sliding velocities on either PKI-treated or control axonemes. Together, the data indicate that an endogenous axonemal cAPK-type protein kinase inhibits dynein-driven microtubule sliding in spoke-deficient axonemes. The kinase is likely to reside in close association with its substrate(s), and the substrate targets are not exclusively localized to the central pair, radial spokes, dynein regulatory complex, or outer dynein arms. The results are consistent with a model in which the radial spokes regulate dynein activity through suppression of a cAMP- mediated mechanism.  相似文献   

8.
To study dynein arm activity at high temporal resolution, axonemal sliding was measured field by field for wild type and dynein arm mutants of Tetrahymena thermophila. For wt SB255 cells, when the rate of data acquisition was 60 fps, about 5x greater than previously published observations, sliding was observed to be discontinuous with very high velocity sliding (average 196 microm/sec) for a few msec (1 or 2 fields) followed by a pause of several fields. The sliding velocities measured were an order of magnitude greater than rates previously measured by video analysis. However, when the data were analyzed at 12 fps for the same axonemes, consistent with previous observations, sliding was linear as the axonemes extended several times their original length with an average velocity of approximately 10 microm/sec. The pauses or stops occurred at approximately 200 and 300% of the initial length, suggesting that dynein arms on one axonemal doublet were initially active to the limit of extension, and then the arms on the next doublet became activated. In contrast, in a mutant where OADs are missing, sliding observed at 60 fps was continuous and slow (5 microm/sec), as opposed to the discontinuous high-velocity sliding of SB255 and of the mutant at the permissive temperature where OADs are present. High-velocity step-wise sliding was also present in axonemes from an inner arm dynein mutant (KO6). These results indicate that the high-speed discontinuous pattern of sliding is produced by the mechanochemical activity of outer arm dynein. The rate of sliding is consistent with a low duty ratio of the outer arm dynein and with the operation of each arm along a doublet once per beat.  相似文献   

9.
Experiments were carried out to see if isolated inner arm dyneins could functionally combine with axonemes lacking them. High-salt extract from the axoneme of Chlamydomonas oda1 mutant lacking outer-arm dynein was added to the demembranated cell models of ida1oda1 lacking inner arm dynein f (dynein I1) and outer arm dynein. After incubation, the originally paralyzed ida1oda1 axonemes recovered the ability to beat in the presence of ATP. A similar good motility recovery after incubation with crude oda1 extract was observed in ida9oda2 lacking outer arm and inner arm dynein c, and partial recovery in ida4oda1 lacking outer arm and inner arm species a, c, and d. These observations indicate that dynein f and dynein c can functionally bind with mutant axonemes lacking them. A method for combining isolated inner arm dyneins with axonemes in a functionally active manner should provide a powerful experimental tool with which to study the mechanism of beating.  相似文献   

10.
Of the uncloned ODA genes required for outer dynein arm assembly in Chlamydomonas, ODA5 and ODA10 are of particular interest because they do not encode known subunits of the outer arm or the outer dynein arm-docking complex (ODA-DC), and because genetic studies suggest their products interact. Beginning with a tagged oda5 allele, we isolated genomic and cDNA clones of the wild-type gene. ODA5 predicts a novel, 66-kDa coiled-coil protein. Immunoblotting indicates Oda5p is an axonemal component that assembles onto the axoneme independently of the outer arm and ODA-DC and is uniquely missing in oda5 and oda10 axonemes. Oda5p is released from the axoneme by extraction with 0.6 M KCl, but the soluble Oda5p does not cosediment with the outer dynein arm/ODA-DC in sucrose gradients. Quantitative mass spectrometry by using isotope coded affinity tagging revealed that a previously unidentified adenylate kinase is reduced 35-50% in oda5 flagella. Direct enzymatic assays demonstrated a comparable reduction in adenylate kinase activity in oda5 flagella, and also in oda10 flagella, but not in flagella of other oda mutants. We propose that Oda5p is part of a novel axonemal complex that is required for outer arm assembly and anchors adenylate kinase in proximity to the arm.  相似文献   

11.
Inner dynein arms, but not outer dynein arms, require the activity of KHP1(FLA10) to reach the distal part of axonemes before binding to outer doublet microtubules. We have analyzed the rescue of inner or outer dynein arms in quadriflagellate dikaryons by immunofluorescence microscopy of p28(IDA4), an inner dynein arm light chain, or IC69(ODA6), an outer dynein arm intermediate chain. In dikaryons two strains with different genetic backgrounds share the cytoplasm. As a consequence, wild-type axonemal precursors are transported to and assembled in mutant axonemes to complement the defects. The rescue of inner dynein arms containing p28 in ida4-wild-type dikaryons progressively occurred from the distal part of the axonemes and with time was extended towards the proximal part. In contrast, the rescue of outer dynein arms in oda2-wild-type dikaryons progressively occurred along the entire length of the axoneme. Rescue of inner dynein arms containing p28 in ida4fla10-fla10 dikaryons was similar to the rescue observed in ida4-wild-type dikaryons at 21 degrees C, whereas it was inhibited at 32 degrees C, a nonpermissive temperature for KHP1(FLA10). In contrast, rescue of outer dynein arms in oda2fla10-fla10 dikaryons was similar to the rescue observed in oda2-wild-type dikaryons at both 21 degrees and 32 degrees C and was not inhibited at 32 degrees C. Positioning of substructures in the internal part of the axonemal shaft requires the activity of kinesin homologue protein 1.  相似文献   

12.
In order to clarify the role of the inner arms of the axoneme in sperm flagellar movement, we prepared an ATPase fraction (12S) from the outer arm-depleted axonemes of sea urchin sperm flagella. When both arm-depleted axonemes were incubated with the 12S ATPase, they exhibited the sliding disintegration of outer doublet microtubules. Electron microscopy revealed that the ATPase rebound to the original inner arm sites of the axoneme. Therefore, it is quite likely that the 12S ATPase is one of the components of the inner arms. We referred to it as "inner arm dynein".  相似文献   

13.
To clarify the functional differentiation between the outer and inner dynein arms in eukaryotic flagella, their mechanochemical properties were assessed by measuring the sliding velocities of outer-doublet microtubules in disintegrating axonemes of Chlamydomonas, using wild-type and mutant strains that lack either of the arms. A special procedure was developed to induce sliding disintegration in Chlamydomonas axonemes which is difficult to achieve by ordinary methods. The flagella were first fragmented by sonication, demembranated by Nonidet P-40, and then perfused under a microscope with Mg-ATP and nagarse, a bacterial protease with broad substrate specificity. The sliding velocity varied with the Mg-ATP concentration in a Michaelis-Menten manner in the axonemes from the wild type and a motile mutant lacking the outer dynein arm (oda38). The maximal sliding velocity and apparent Michaelis constant for Mg-ATP were measured to be 13.2 +/- 1.0 micron/s and 158 +/- 36 microM for the wild type and 2.0 +/- 0.1 micron/s and 64 +/- 18 microM for oda38. These maximal sliding velocities were significantly smaller than those estimated in beating axonemes; the reason is not clear. The velocities in the presence or absence of 10(-5) M Ca2+ did not differ noticeably. The axonemes of nonmotile mutants lacking either outer arms (pf13A, pf22) or inner arms (pf23) were examined for their ability to undergo sliding disintegration in the presence of 0.1 mM Mg-ATP. Whereas pf13A axonemes underwent normal sliding disintegration, the other two species displayed it only very poorly. The poor ability of pf23 axonemes to undergo sliding disintegration raises the possibility that the outer dynein arm cannot function well in the absence of the inner arm.  相似文献   

14.
The fine structure, protein composition, and roles in flagellar movement of specific axonemal components were studied in wild-type Chlamydomonas and paralyzed mutants pf-14, pf-15A, and pf-19. Electron microscope examination of the isolated axoneme of pf-14 showed that it lacks the radial spokes but is otherwise structurally normal. Comparison of isolated axonemes of wild type and pf-14 by sodium dodecyl sulfate-acrylamide gel electrophoresis indicated that the mutant is missing a protein of 118,000 mol wt; this protein is apparently a major component of the spokes. Pf-15A and pf-19 lack the central tubules and sheath; axonemes of these mutants are missing three high molecular weight proteins which are probably components of the central tubule-central sheath complex. Under conditions where wild-type axonemes reactivated, axonemes of the three mutants remained intact but did not form bends. However, mutant and wild-type axonemes underwent identical adenosine triphosphate-induced disintegration after treatment with trypsin; the dynein arms of the mutants are therefore capable of generating interdoublet shearing forces. These findings indicated that both the radial spokes and the central tubule-central sheath complex are essential for conversion of interdoublet sliding into axonemal bending. Moreover, because axonemes of pf-14 remained intact under reactivating conditions, the nexin links alone are sufficient to limit the amount of interdoublet sliding that occurs. The axial periodicities of the central sheath, dynein arms, radial spokes, and nexin links of Chlamydomonas were determined by electron microscopy using the lattice-spacing of crystalline catalase as an internal standard. Some new ultrastructural details of the components are described.  相似文献   

15.
Dynein motors of cilia and flagella function in the context of the axoneme, a very large network of microtubules and associated proteins. To understand how dyneins assemble and attach to this network, we characterized two Chlamydomonas outer arm dynein assembly (oda) mutants at a new locus, ODA16. Both oda16 mutants display a reduced beat frequency and altered swimming behavior, similar to previously characterized oda mutants, but only a partial loss of axonemal dyneins as shown by both electron microscopy and immunoblots. Motility studies suggest that the remaining outer arm dyneins on oda16 axonemes are functional. The ODA16 locus encodes a 49-kDa WD-repeat domain protein. Homologues were found in mammalian and fly databases, but not in yeast or nematode databases, implying that this protein is only needed in organisms with motile cilia or flagella. The Chlamydomonas ODA16 protein shares 62% identity with its human homologue. Western blot analysis localizes more than 90% of ODA16p to the flagellar matrix. Because wild-type axonemes retain little ODA16p but can be reactivated to a normal beat in vitro, we hypothesize that ODA16p is not an essential dynein subunit, but a protein necessary for dynein transport into the flagellar compartment or assembly onto the axoneme.  相似文献   

16.
Axonemal dyneins provide the driving force for flagellar/ciliary bending. Nucleotide-induced conformational changes of flagellar dynein have been found both in vitro and in situ by electron microscopy, and in situ studies demonstrated the coexistence of at least two conformations in axonemes in the presence of nucleotides (the apo and the nucleotide-bound forms). The distribution of the two forms suggested cooperativity between adjacent dyneins on axonemal microtubule doublets. Although the mechanism of such cooperativity is unknown it might be related to the mechanism of bending. To explore the mechanism by which structural heterogeneity of axonemal dyneins is induced by nucleotides, we used cilia from Tetrahymena thermophila to examine the structure of dyneins in a) the intact axoneme and b) microtubule doublets separated from the axoneme, both with and without additional pure microtubules. We also employed an ATPase assay on these specimens to investigate dynein activity functionally. Dyneins on separated doublets show more activation by nucleotides than those in the intact axoneme, both structurally and in the ATPase assay, and this is especially pronounced when the doublets are coupled with added microtubules, as expected. Paralleling the reduced ATPase activity in the intact axonemes, a lower proportion of these dyneins are in the nucleotide-bound form. This indicates a coordinated suppression of dynein activity in the axoneme, which could be the key for understanding the bending mechanism.  相似文献   

17.
Ciliary and flagellar axonemes contain multiple inner arm dyneins of which the functional difference is largely unknown. In this study, a Chlamydomonas mutant, ida9, lacking inner arm dynein c was isolated and shown to carry a mutation in the DHC9 dynein heavy chain gene. The cDNA sequence of DHC9 was determined, and its information was used to show that >80% of it is lost in the mutant. Electron microscopy and image analysis showed that the ida9 axoneme lacked electron density near the base of the S2 radial spoke, indicating that dynein c localizes to this site. The mutant ida9 swam only slightly slower than the wild type in normal media. However, swimming velocity was greatly reduced when medium viscosity was modestly increased. Thus, dynein c in wild type axonemes must produce a significant force when flagella are beating in viscous media. Because motility analyses in vitro have shown that dynein c is the fastest among all the inner arm dyneins, we can regard this dynein as a fast yet powerful motor.  相似文献   

18.
The outer dynein arm of Chlamydomonas flagella, when isolated under Mg(2+)-free conditions, tends to dissociate into an 11 to 12S particle (12S dynein) containing the gamma heavy chain and a 21S particle (called 18S dynein) containing the alpha and beta heavy chains. We show here that functional outer arms can be reconstituted by the addition of 12S and 18S dyneins to the axonemes of the outer armless mutants oda1- oda6. A third factor that sediments at integral 7S is required for efficient reconstitution of the outer arms on the axonemes of oda1 and oda3. However, this factor is not necessary for reconstitution on the axonemes of oda2, oda4, oda5, and oda6. SDS-PAGE analysis indicates that the axonemes of the former two mutants lack a integral of 70-kD polypeptide that is present in those of the other mutants as well as in the 7S fraction from the wild-type extract. Furthermore, electron micrographs of axonemal cross sections revealed that the latter four mutants, but not oda1 or oda3, have small pointed structures on the outer doublets, at a position in cross section where outer arms normally occur. We suggest that the 7S factor constitutes the pointed structure on the outer doublets and facilitates attachment of the outer arm. The discovery of this structure raises a new question as to how the attachment site for the outer arm dynein is determined within the axoneme.  相似文献   

19.
The dynein arms that power ciliary motility are normally permanently attached by one end exclusively to subfiber A of each axonemal doublet (N) while the other (head) end transiently attaches to the subfiber B of the adjacent doublet (N + 1) to produce sliding of the doublets. In Tetrahymena axonemes, sliding of contiguous groups of doublets is induced by ATP suggesting that, in the absence of exogenous protease, there may be sets of potentially active and potentially inactive or refractory arms in a single axoneme. In the presence of a non-hydrolyzable analog of ATP, beta,gamma-methylene adenosine 5'-triphosphate (AMP-PCP), about half the doublets in an axonemal preparation retain all arms bound to subfiber A, but half the doublets show long regions where some arms are pulled away from subfiber A of doublet N and attached to subfiber B of doublet N + 1 by their head ends. In AMP-PCP-induced splaying, positional information regarding arm state is retained. Analysis reveals that throughout regions where B subfiber attachment is found, small groups of about four subfiber B attached arms alternate with groups of about four arms that remain attached to subfiber A. This unique pattern of attachment suggests that arms function co-operatively in groups of four. Further, the repetition of the pattern is reminiscent of metachronal activity seen at higher levels of biological organization. This suggests that in these regions we have instantaneously preserved groups of arms capable of attaching to and detaching from doublet N + 1 in rapid succession. This appearance could be used to delineate the potentially active sets of arm, primed for mechanochemical activity, within an axoneme.  相似文献   

20.
ABSTRACT. Tetrahymena thermophila mutants homozygous for the oad mutation become nonmotile when grown at the restrictive temperature of 39° C. Axonemes isolated from nonmotile oad mutants ( oad 39° C axonemes) lack approximately 90% of their outer dynein arms and are deficient in 22S dynein. Here we report that oad 39° C axonemes contain 40% of the 22S dynein heavy chains that wild-type axonemes contain and that oad axonemes do not undergo ATP-induced microtubule sliding in vitro. Wild-type 22S dynein will bind to the outer arm position in oad axonemes and restore ATP-induced microtubule sliding in those axonemes. Unlike wild-type 22S dynein, oad 22S dynein does not bind to the outer arm position in oad axonemes. These data indicate that the oad mutation affects some component of the outer arm dynein itself rather than the outer arm dynein binding site. These data also indicate that oad axonemes can be used to assay outer dynein arm function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号