首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Within isolated and fragmented populations, species interactions such as predation can cause shifts in community structure and demographics in tidal marsh ecosystems. It is critical to incorporate species interactions into our understanding when evaluating the effects of sea‐level rise and storm surges on tidal marshes. In this study, we hypothesize that avian predators will increase their presence and hunting activities during high tides when increased inundation makes their prey more vulnerable. We present evidence that there is a relationship between tidal inundation depth and time of day on the presence, abundance, and behavior of avian predators. We introduce predation pressure as a combined probability of predator presence related to water level. Focal surveys were conducted at four tidal marshes in the San Francisco Bay, California where tidal inundation patterns were monitored across 6 months of the winter. Sixteen avian predator species were observed. During high tide at Tolay Slough marsh, ardeids had a 29‐fold increase in capture attempts and 4 times greater apparent success rate compared with low tide. Significantly fewer raptors and ardeids were found on low tides than on high tides across all sites. There were more raptors in December and January and more ardeids in January than in other months. Ardeids were more prevalent in the morning, while raptors did not exhibit a significant response to time of day. Modeling results showed that raptors had a unimodal response to water level with a peak at 0.5 m over the marsh platform, while ardeids had an increasing response with water level. We found that predation pressure is related to flooding of the marsh surface, and short‐term increases in sea levels from high astronomical tides, sea‐level rise, and storm surges increase vulnerability of tidal marsh wildlife.  相似文献   

2.
Eastern boundary current systems are among the most productive and lucrative ecosystems on Earth because they benefit from upwelling currents. Upwelling currents subsidize the base of the coastal food web by bringing deep, cold and nutrient‐rich water to the surface. As upwelling is driven by large‐scale atmospheric patterns, global climate change has the potential to affect a wide range of significant ecological processes through changes in water chemistry, water temperature, and the transport processes that influence species dispersal and recruitment. We examined long‐term trends in the frequency, duration, and strength of continuous upwelling events for the Oregon and California regions of the California Current System in the eastern Pacific Ocean. We then associated event‐scale upwelling with up to 21 years of barnacle and mussel recruitment, and water temperature data measured at rocky intertidal field sites along the Oregon coast. Our analyses suggest that upwelling events are changing in ways that are consistent with climate change predictions: upwelling events are becoming less frequent, stronger, and longer in duration. In addition, upwelling events have a quasi‐instantaneous and cumulative effect on rocky intertidal water temperatures, with longer events leading to colder temperatures. Longer, more persistent upwelling events were negatively associated with barnacle recruitment but positively associated with mussel recruitment. However, since barnacles facilitate mussel recruitment by providing attachment sites, increased upwelling persistence could have indirect negative impacts on mussel populations. Overall, our results indicate that changes in coastal upwelling that are consistent with climate change predictions are altering the tempo and the mode of environmental forcing in near‐shore ecosystems, with potentially severe and discontinuous ramifications for ecosystem structure and functioning.  相似文献   

3.
Long-term sampling of intertidal macroalgae along permanently marked transects within San Francisco Bay has shown a marked decline in overall species number along the estuarine gradient from the ocean to the river, presumably as a result of decreasing salinity and a progressive lack of hard substrata in the upstream direction. Green algae penetrated further landward than either brown or red species. Seasonally, macroalgal species diversity is lowest during the winter-spring months when salinity, temperature, and irradiance are at yearly minima. Macroalgal abundance as measured by percent cover was maximum during the late spring near the mouth of the estuary and during late summer towards the head. The seasonal increase in algal abundance is related to increasing salinity, temperature, and light availability to the bottom. The summer increase in irradiance is due to the longer photoperiod, increased frequency of day-time low tides, and reduced levels of suspended sediments. The aperiodic occurrence of algal blooms in San Pablo Bay may be caused by a combination of physical factors which are ultimately associated with the river inflow. A hypothesis based on interannual differences in river inflow and the contribution of phytoplankton to nutrient cycles in the benthos is presented to explain the occurrence of nuisance algal blooms.  相似文献   

4.
Climate refugia are regions that animals can retreat to, persist in and potentially then expand from under changing environmental conditions. Most forecasts of climate change refugia for species are based on correlative species distribution models (SDMs) using long‐term climate averages, projected to future climate scenarios. Limitations of such methods include the need to extrapolate into novel environments and uncertainty regarding the extent to which proximate variables included in the model capture processes driving distribution limits (and thus can be assumed to provide reliable predictions under new conditions). These limitations are well documented; however, their impact on the quality of climate refugia predictions is difficult to quantify. Here, we develop a detailed bioenergetics model for the koala. It indicates that range limits are driven by heat‐induced water stress, with the timing of rainfall and heat waves limiting the koala in the warmer parts of its range. We compare refugia predictions from the bioenergetics model with predictions from a suite of competing correlative SDMs under a range of future climate scenarios. SDMs were fitted using combinations of long‐term climate and weather extremes variables, to test how well each set of predictions captures the knowledge embedded in the bioenergetics model. Correlative models produced broadly similar predictions to the bioenergetics model across much of the species' current range – with SDMs that included weather extremes showing highest congruence. However, predictions in some regions diverged significantly when projecting to future climates due to the breakdown in correlation between climate variables. We provide unique insight into the mechanisms driving koala distribution and illustrate the importance of subtle relationships between the timing of weather events, particularly rain relative to hot‐spells, in driving species–climate relationships and distributions. By unpacking the mechanisms captured by correlative SDMs, we can increase our certainty in forecasts of climate change impacts on species.  相似文献   

5.
The rocky intertidal zone is characterized by a predictable cycle of environmental change cued by the ebb and flow of the tides. Tidepools are thus an excellent environment in which to determine whether predictability of environmental change can entrain an endogenous rhythmicity in heat shock protein (Hsp) levels. In this study, we monitored changes in Hsp mRNA and protein levels that occurred over the tidal cycle in tidepool sculpins and investigated whether there was an endogenous tidal rhythm in Hsp expression that persisted once the sculpins were transferred to a stable environment. Fluctuations in the tidepool environment increased hsc70, hsp70, and hsp90 mRNA levels, which translated into increased Hsc/Hsp70 and Hsp90 protein levels; however, this was not due to an endogenous tidal rhythm in Hsp levels because sculpins held under constant conditions did not show any rhythmicity in the expression of these genes. By exposing sculpins to an artificial temperature cycling regime that mimicked the temperature changes of a mid-intertidal pool, we were able to account for the direct role of temperature in regulating Hsp expression. However, there are additional extrinsic factors that likely integrate with temperature and result in differences between the hsp induction profiles that were observed in sculpins inhabiting their natural environment and those in cycling conditions in the laboratory.  相似文献   

6.
Poisson regression models were used to evaluate associations between temperature, precipitation, days of extreme heat, and other weather changes (lagged 7 days), as well as El Niño events, with hospitalizations for acute myocardial infarction, angina pectoris, congestive heart failure, and stroke in three California regions. Temperature changes were defined as a 3 °C decrease in maximum temperature or a 3 °C increase in minimum temperature. Temperature and precipitation were analyzed separately for normal weather periods and El Niño events, and for both weather periods combined. Associations varied by region, age, and gender. In Los Angeles, temperature changes resulted in small changes in hospitalizations. Among San Francisco residents 70+ years of age, temperature changes increased hospitalizations for nearly all outcomes from 6% to 13%. Associations among Sacramento residents were similar to those in San Francisco: among men 70+ years of age, temperature changes increased hospitalizations by 6%–11% for acute myocardial infarction and congestive heart failure, and 10%–18% for stroke. El Niño events were consistently and significantly associated with hospitalizations only in San Francisco and Sacramento, and then only for angina pectoris (increasing hospitalizations during El Niño events). These exploratory analyses merit further confirmation to improve our understanding of how admissions to hospitals for cardiovascular disease and stroke change with changing weather. Such an understanding is useful for developing current public health responses, for evaluating population vulnerability, and for designing future adaptation measures.  相似文献   

7.
The impacts of changing climate regimes on emergent processes controlling the assembly of ecological communities remain poorly understood. Human alterations to the water cycle in the western United States have resulted in greater interannual variability and more frequent and severe extremes in freshwater flow. The specific mechanisms through which such extremes and climate regime shifts may alter ecological communities have rarely been demonstrated, and baseline information on current impacts of environmental variation is widely lacking for many habitats and communities. Here, we used observations and experiments to show that interannual variation in winter salinity levels in San Francisco Bay controls the mechanisms determining sessile invertebrate community composition during the following summer. We found consistent community changes in response to decadal‐scale dry and wet extremes during a 13‐year period, producing strikingly different communities. Our results match theoretical predictions of major shifts in species composition in response to environmental forcing up to a threshold, beyond which we observed mass mortality and wholesale replacement of the former community. These results provide a window into potential future community changes, with environmental forcing altering communities by shifting the relative influences of the mechanisms controlling species distributions and abundances. We place these results in the context of historical and projected future environmental variation in the San Francisco Bay Estuary.  相似文献   

8.
9.
Forest vertebrate fauna provide critical services, such as pollination and seed dispersal, which underpin functional and resilient ecosystems. In turn, many of these fauna are dependent on the flowering phenology of the plant species of such ecosystems. The impact of changes in climate, including climate extremes, on the interaction between these fauna and flora has not been identified or elucidated, yet influences on flowering phenology are already evident. These changes are well documented in the mid to high latitudes. However, there is emerging evidence that the flowering phenology, nectar/pollen production, and fruit production of long‐lived trees in tropical and subtropical forests are also being impacted by changes in the frequency and severity of climate extremes. Here, we examine the implications of these changes for vertebrate fauna dependent on these resources. We review the literature to establish evidence for links between climate extremes and flowering phenology, elucidating the nature of relationships between different vertebrate taxa and flowering regimes. We combine this information with climate change projections to postulate about the likely impacts on nectar, pollen and fruit resource availability and the consequences for dependent vertebrate fauna. The most recent climate projections show that the frequency and intensity of climate extremes will increase during the 21st century. These changes are likely to significantly alter mass flowering and fruiting events in the tropics and subtropics, which are frequently cued by climate extremes, such as intensive rainfall events or rapid temperature shifts. We find that in these systems the abundance and duration of resource availability for vertebrate fauna is likely to fluctuate, and the time intervals between episodes of high resource availability to increase. The combined impact of these changes has the potential to result in cascading effects on ecosystems through changes in pollinator and seed dispersal ecology, and demands a focused research effort.  相似文献   

10.
Since 1972 over 940 ha (2,300 ac) of leveed former salt marsh sites around San Francisco Bay have been restored to tidal action, purposely or through natural processes. The evolution of these sites can inform predictions of rates of marshplain evolution and establishment of tidal channel systems. A review of the history of 15 re‐flooded sites ranging in size from 18 to 220 ha (45 to 550 ac) and in age from 2 to 29 years indicates that marshplain vegetation with more than 50% cover was established at nine of the sites within 4 to 20 years. The remaining six sites aged 2 to approximately 20 years continue to be less than 50% vegetated. The evolution of these sites is consistent with the following simple conceptual model of the physical evolution of restored tidal marshes in subsided breached sites. Initially, deposition of estuarine sediment builds up mudflats that allow vegetation establishment once elevations are high enough for vegetation to survive. Sites that are initially lower in the tidal frame take longer to vegetate than those that are initially higher. Three factors appear to retard the time frame for vegetation establishment: limited estuarine suspended sediment supply, erosion of deposited estuarine muds by internally generated wind waves, and restricted tidal exchange. These factors affect evolution more significantly in larger sites. The comparatively short time frame for vegetation colonization and marshplain evolution experienced in earlier, smaller, and/or less subsided breached levee restorations may not necessarily be replicable by simple levee breaching on larger subsided restoration sites now being planned. Our review of the 15 sites also indicates that the formation of tidal channels within the marshes is greatly dependent on whether and how high the site was filled before breaching. Filled sites at high intertidal elevations (above approximately 0.3 m below mean higher high water) can vegetate quickly but after several decades may show little development of tidal channels.  相似文献   

11.
Climate warming involves not only a rise of air temperature means, but also more frequent heat waves in many regions on earth, and is predicted to intensify physiological stress especially in extremely changeable habitats like the intertidal. We investigated the heat-shock response (HSR) and enzymatic antioxidant defense levels of Patagonian shallow-water limpets, adapted to distinct tidal exposure conditions in the sub- and intertidal. Limpets were sampled in the temperate Northern Patagonia and the subpolar Magellan region. Expression levels of two Hsp70 genes and activities of the antioxidants superoxide dismutase (SOD) and catalase (CAT) were measured in submerged and 2- and 12-h air-exposed specimens. Air-exposed Patagonian limpets showed a tiered HSR increasing from South to North on the latitudinal gradient and from high to low shore levels on a tidal gradient. SOD activities in the Magellan region correlated with the tidal rhythm and were higher after 2 and 12 h when the tide was low at the experimental site compared to the 6 h value taken at high tide. This pattern was observed in intertidal and subtidal specimens, although subtidal individuals are little affected by tides. Our study shows that long-term thermal adaptation shapes the HSR in limpets, while the oxidative stress response is linked to the tidal rhythm. Close to the warm border of their distribution range, energy expenses to cope with stress might become overwhelming and represent one cause why the limpets are unable to colonize the shallow intertidal zone.  相似文献   

12.
Human and natural systems have adapted to and evolved within historical climatic conditions. Anthropogenic climate change has the potential to alter these conditions such that onset of unprecedented climatic extremes will outpace evolutionary and adaptive capabilities. To assess whether and when future climate extremes exceed their historical windows of variability within impact‐relevant socioeconomic, geopolitical, and ecological domains, we investigate the timing of perceivable changes (time of emergence; TOE) for 18 magnitude‐, frequency‐, and severity‐based extreme temperature (10) and precipitation (8) indices using both multimodel and single‐model multirealization ensembles. Under a high‐emission scenario, we find that the signal of frequency‐ and severity‐based temperature extremes is projected to rise above historical noise earliest in midlatitudes, whereas magnitude‐based temperature extremes emerge first in low and high latitudes. Precipitation extremes demonstrate different emergence patterns, with severity‐based indices first emerging over midlatitudes, and magnitude‐ and frequency‐based indices emerging earliest in low and high latitudes. Applied to impact‐relevant domains, simulated TOE patterns suggest (a) unprecedented consecutive dry day occurrence in >50% of 14 terrestrial biomes and 12 marine realms prior to 2100, (b) earlier perceivable changes in climate extremes in countries with lower per capita GDP, and (c) emergence of severe and frequent heat extremes well‐before 2030 for the 590 most populous urban centers. Elucidating extreme‐metric and domain‐type TOE heterogeneities highlights the challenges adaptation planners face in confronting the consequences of elevated twenty‐first century radiative forcing.  相似文献   

13.
Mangroves are intertidal ecosystems that are particularly vulnerable to climate change. At the low tidal limits of their range, they face swamping by rising sea levels; at the high tidal limits, they face increasing stress from desiccation and high salinity. Facilitation theory may help guide mangrove management and restoration in the face of these threats by suggesting how and when positive intra- and interspecific effects may occur: such effects are predicted in stressed environments such as the intertidal, but have yet to be shown among mangroves. Here, we report the results of a series of experiments at low and high tidal sites examining the effects of mangrove density and species mix on seedling survival and recruitment, and on the ability of mangroves to trap sediment and cause surface elevation change. Increasing density significantly increased the survival of seedlings of two different species at both high and low tidal sites, and enhanced sediment accretion and elevation at the low tidal site. Including Avicennia marina in species mixes enhanced total biomass at a degraded high tidal site. Increasing biomass led to changed microenvironments that allowed the recruitment and survival of different mangrove species, particularly Ceriops tagal.  相似文献   

14.
The activity pattern of intertidal crabs is influenced by factors that usually change rhythmically following tidal and/or diel cycles, and is often associated with the use of refuges. The movement activity of the burrowing crab Neohelice granulata was compared among three populations from SW Atlantic coastal areas where they face different tidal regimes, water salinities, substrata and biological factors. At each site, we examined the seasonal activity of the crabs (individuals collected in pitfall traps) in two types of habitat: mudflat and salt marsh. The working hypothesis is that the activity would vary according to the diverse environmental conditions encountered at geographical and local scales. Crab activity varied between sites and seasons showing to be more intense when habitats were covered by water. The most active groups were large males, followed by large non-ovigerous females. Ovigerous females were almost inactive. Most crabs were near or inside burrows at low tides in Mar Chiquita and Bahía Blanca, but they were active at both low and high tides in San Antonio during spring and summer. N. granulata were active in a wide range of temperatures: from 10 to 37 °C at low tides and at temperatures as low as 2 °C when covered by water. Differences of activity between mudflat and salt marsh varied among sites depending on flooding frequencies. Movement activity of N. granulata varied both in space and in time; crabs move under very different abiotic conditions (e.g., low or high tide, daylight or night, low and high temperature) and their movement may also be prevented or elicited by biotic conditions like burrow complexity, food quality and predation pressure. The wide set of conditions under which N. granulata can be active may explain why this is the only semiterrestrial crab inhabiting latitudes higher than 40°S in South America.  相似文献   

15.
The northern salt marsh harvest mouse (Reithrodontomys raviventris halicoetes) is an endangered species endemic to the San Francisco Bay Estuary. Using a conservation behavior perspective, we examined how salt marsh harvest mice cope with both natural (daily tidal fluctuations) and anthropogenic (modification of tidal regime) changes in natural tidal wetlands and human-created diked wetlands, and investigated the role of behavioral flexibility in utilizing a human-created environment in the Suisun Marsh. We used radio telemetry to determine refuge use at high tide, space use, and movement rates to investigate possible differences in movement behavior in tidal versus diked wetlands. We found that the vast majority of the time salt marsh harvest mice remain in vegetation above the water during high tides. We also found no difference in space used by mice during high tide as compared to before or after high tide in either tidal or diked wetlands. We found no detectable difference in diurnal or nocturnal movement rates in tidal wetlands. However, we did find that diurnal movement rates for mice in diked wetlands were lower than nocturnal movement rates, especially during the new moon. This change in movement behavior in a relatively novel human-created habitat indicates that behavioral flexibility may facilitate the use of human-created environments by salt marsh harvest mice.  相似文献   

16.
The tidal migration, temporal and spatial patterns in feeding of the surface-swimming four-eyed fish Anableps anableps (Anablepidae) were studied in a macrotidal mangrove area in north Brazil to exemplify the ecology of a tropical intertidal fish. Visual censuses in the main channel showed that abundances were high at low water (LW) and low at high water (HW). Anableps anableps entered the intertidal creeks with the first flood rise. They fed in the inundated mangrove at HW and returned gradually after the ebb current maximum to concentrate again in the subtidal parts of the main channel at LW. This pattern occurred at neap, mid and spring tides throughout the year. The tidal migration was triggered by water level, not by time. In the study area the diet of A. anableps caught with block nets was dominated by intertidal red algae ( Catanella sp.). Other important food items were Insecta and Grapsidae. The combination of high inundation and daylight (spring tide-day) provided the best foraging conditions, probably emphasizing the importance of the above-water eye. Darkness and low inundation was linked to poorest foraging conditions (neap tide-night). The quantity of food consumed by A. anableps was clearly influenced by the factors tide, time of day and creek location, but not by size and sex. The qualitative composition of the diet was not influenced by any of the factors, except for mud, which was only ingested at neap tides. The temporal and spatial variability in food consumption suggests that food web modelling in macrotidal areas may lead to misinterpretations of the overall systems dynamics if the spring and neap tide alternation and the diurnal cycle are not considered.  相似文献   

17.
Microphytobenthos plays a vital role in estuarine and coastal carbon cycling and food webs. Yet, the role of exogenous factors, and thus the effects of climate change, in regulating microphytobenthic biomass is poorly understood. We aimed to unravel the mechanisms structuring microphytobenthic biomass both within and across ecosystems. The spatiotemporal distribution of the biomass of intertidal benthic algae (dominated by diatoms) was estimated with an unprecedented spatial extent from time-series of Normalized Differential Vegetation Index (NDVI) derived from a 6-year period of daily Aqua MODIS 250-m images of seven temperate, mostly turbid, estuarine and coastal ecosystems. These NDVI time-series were related to meteorological and environmental conditions. Intertidal benthic algal biomass varied seasonally in all ecosystems, in parallel with meteorology and water quality. Seasonal variation was more pronounced in mud than in sand. Interannual variation in biomass was small, but synchronized year-to-year biomass fluctuations occurred in a number of disjointed ecosystems. Air temperature explained interannual fluctuations in biomass in a number of sites, but the synchrony was mainly driven by the wind/wave climate: high wind velocities reduced microphytobenthic biomass, either through increased resuspension or reduced emersion duration. Spatial variation in biomass was largely explained by emersion duration and mud content, both within and across ecosystems. The results imply that effects on microphytobenthic standing stock can be anticipated when the position in the tidal frame is altered, for example due to sea level rise. Increased storminess will also result in a large-scale decrease of biomass.  相似文献   

18.
A. Studer  R. Poulin  D. M. Tompkins 《Oecologia》2013,172(4):1213-1222
The interactive effects of climate change and parasitism are of concern because of potentially important consequences for host populations, communities and entire ecosystems. In marine environments, the absence of historic baseline data on parasitism and disease limits our ability to make realistic predictions about these consequences. Here, we adapt a simulation model developed for a Northern Hemisphere intertidal host–parasite system to a comparable system in the Southern Hemisphere. The entire life cycle of the intertidal trematode parasite Maritrema novaezealandensis was modelled in order to investigate the interactive effects of parasitic infections and increasing temperatures on the population dynamics of the amphipod host Paracalliope novizealandiae. Despite uncertainties associated with the model and its parameterisation, most temperature increases that were predicted to cause the collapse of the modelled amphipod population in the long term lay within the range of predicted warming for the study area. The high vulnerability of the amphipods in the modelled system illustrates a potentially important ecological mechanism by which consequences of a global problem might manifest on the local scale.  相似文献   

19.
Reproduction in iteroparous marine organisms is often timed with abiotic cycles and may follow lunar, tidal amplitude, or daily cycles. Among intertidal marine invertebrates, decapods are well known to time larval release to coincide with large amplitude nighttime tides, which minimizes the risk of predation. Such bimonthly cycles have been reported for few other intertidal invertebrates. We documented the reproduction of 6 gastropod species from Panama to determine whether they demonstrate reproductive cycles, whether these cycles follow a 2‐week cycle, and whether cycles are timed so that larval release occurs during large amplitude tides. Two of the species (Crepidula cf. marginalis and Nerita scabricosta) showed nonuniform reproduction, but without clear peaks in timing relative to tidal or lunar cycles. The other 4 species show clear peaks in reproduction occurring every 2 weeks. In 3 of these species (Cerithideopsis carlifornica var. valida, Littoraria variegata, and Natica chemnitzi), hatching occurred within 4 days of the maximum amplitude tides. Siphonaria palmata exhibit strong cycles, but reproduction occurred during the neap tides. Strong differences in the intensity of reproduction of Cerithideopsis carlifornica, and in particular, Littoraria variegata, between the larger and smaller spring tides of a lunar month indicate that these species time reproduction with the tidal amplitude cycle rather than the lunar cycle. For those species that reproduce during both the wet and dry seasons, we found that reproductive timing did not differ between seasons despite strong differences in temperature and precipitation. Overall, we found that most (4/6) species have strong reproductive cycles synchronized with the tidal amplitude cycle and that seasonal differences in abiotic factors do not alter these cycles.  相似文献   

20.
长江口低盐淡水区潮间带鱼类群落结构季节及半月相变化   总被引:4,自引:0,他引:4  
基于2006年春(5月)、夏(7月)、秋(9月下旬)和冬季(2月)对长江口低盐淡水区水域进行的潮间带鱼类调查结果,分析了鱼类种类及丰度的半月相及其季节变化. 结果表明:长江口低盐淡水区水域潮间带鱼类共有53种;其中鲤科鱼类最多,虾虎鱼科次之,其他科较少. 2顶网具渔获物的鱼类种类和丰度均以春、夏、秋季较高,冬季最低.各个季节的平均种类数和平均丰度均为小潮期小于大潮期. Shannon-Weaver指数(H′)在一个潮周期内的波动幅度较大,且小潮期H′值略低于大潮期. 对鱼类种类丰度进行聚类分析发现,冬季鱼类聚成一组,春、夏和秋季聚成一组. 从整年的情况来看,潮间带鱼类的丰度变化与水温的相关性最高;与潮高的相关性次之;而与盐度的相关性最小.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号