首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A remarkable projection of bleblike protrusions, the expulsion of organelles into the protrusions formed on the apical surface, and the separation into the ventricular lumen of these protrusions was the general cellular response of choroidal epithelial cells to intravenous injection of cytochalasin D (CD). The compact microfilament mass and agglomeration of microtubules at the base of the cluster of protrusions reflect the results of cell contraction and displacement of microfilaments induced by CD. In earlier stages after intravenous injections of colchicine, an obvious increase in the number of various-sized vesicles, vacuoles, and lysosomes in the Golgi region was detected. In the later stages, these organelles were seen to accumulate in the basal portion of the epithelial cells. These changes were accompanied by an increase in vacuoles and the disorganization and displacement of the Golgi complex, and they coincided with a decrease in the number of microtubules in apical and basal cytoplasm. These findings suggest that the action of colchicine results in destruction of the three-dimensional architecture between cytoskeletal network and cell organelles. The present results suggest that the cytoskeletal network plays a role in the spatial coordination of the three-dimensional architecture of cell organelles. The study also indicates that the structural differences in the ventricles of the choroid plexus in drug-treated pigeons are manifestations of regional functional specialization in different parts of the ventricular system.  相似文献   

2.
The functional expression of vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1) and MAdCAM-1 in the choroid plexus is indicative of a role of this structure in the communication of the immune system with the central nervous system (CNS). In order to gain further insight into the possible functions of adhesion molecules expressed in the choroid plexus, we investigated the exact ultrastructural localization of VCAM-1, ICAM-1 and MAdCAM-1 on semithin and ultrathin cryosections of the choroid plexus of healthy mice and of mice suffering from experimental autoimmune encephalomyelitis (EAE). In the healthy choroid plexus VCAM-1 and ICAM-1, but not MAdCAM-1, could be detected on the apical surface of the choroid plexus epithelial cells. During EAE, immunoreactivity for VCAM-1 and ICAM-1 was dramatically increased. Additionally, apical expression of MAdCAM-1 was observed on individual choroid plexus epithelial cells during EAE. At the same time, VCAM-1, ICAM-1 or MAdCAM-1 were never present on the endothelial cells of the fenestrated capillaries within the choroid plexus. The polar expression of VCAM-1, ICAM-1 and MAdCAM-1 on the apical surface of choroid plexus epithelial cells, which form the blood-cerebrospinal fluid barrier, implies a previously unappreciated function of this barrier in the immunosurveillance of the CNS.  相似文献   

3.
Summary Light (LM-ARG) and electron microscope (EM-ARG) autoradiographs were prepared from immature rat choroid plexus and ependyma at 5, 10, 30, and 60 min and 16 h following intraperitoneal administration of [3H]- labeled amino acid mixtures. Intracellular protein synthesis and transport were ascertained in lateral and fourth ventricle choroid plexus epithelium by quantitative EM-ARG at the several post-injection intervals. ARG were also prepared from choroid plexuses cultured for one day, pulse labeled for one hour and reincubated for various periods in nonradioactive media. Significant labeling of both attached and free apical protrusions (blebs) was observed in both choroid plexus and ependyma in vivo and in choroid plexus in vitro. This phenomenon was interpreted as a physiologically significant mechanism for protein transport (apocrine secretion) by epithelia into the cerebrospinal fluid (CSF).This study was supported in part by N.I.H. Research Grant NS 12906  相似文献   

4.
The role of aquaporins in cerebrospinal fluid (CSF) secretion was investigated in this study. Western analysis and immunocytochemistry were used to examine the expression of aquaporin 1 (AQP1) and aquaporin 4 (AQP4) in the rat choroid plexus epithelium. Western analyses were performed on a membrane fraction that was enriched in Na(+)/K(+)-ATPase and AE2, marker proteins for the apical and basolateral membranes of the choroid plexus epithelium, respectively. The AQP1 antibody detected peptides with molecular masses of 27 and 32 kDa in fourth and lateral ventricle choroid plexus. A single peptide of 29 kDa was identified by the AQP4 antibody in fourth and lateral ventricle choroid plexus. Immunocytochemistry demonstrated that AQP1 is expressed in the apical membrane of both lateral and fourth ventricle choroid plexus epithelial cells. The immunofluorescence signal with the AQP4 antibody was diffusely distributed throughout the cytoplasm, and there was no evidence for AQP4 expression in either the apical or basolateral membrane of the epithelial cells. The data suggest that AQP1 contributes to water transport across the apical membrane of the choroid plexus epithelium during CSF secretion. The route by which water crosses the basolateral membrane, however, remains to be determined.  相似文献   

5.
The role of aquaporins in cerebrospinal fluid (CSF) secretion was investigated in this study. Western analysis and immunocytochemistry were used to examine the expression of aquaporin 1 (AQP1) and aquaporin 4 (AQP4) in the rat choroid plexus epithelium. Western analyses were performed on a membrane fraction that was enriched in Na+/K+-ATPase and AE2, marker proteins for the apical and basolateral membranes of the choroid plexus epithelium, respectively. The AQP1 antibody detected peptides with molecular masses of 27 and 32 kDa in fourth and lateral ventricle choroid plexus. A single peptide of 29 kDa was identified by the AQP4 antibody in fourth and lateral ventricle choroid plexus. Immunocytochemistry demonstrated that AQP1 is expressed in the apical membrane of both lateral and fourth ventricle choroid plexus epithelial cells. The immunofluorescence signal with the AQP4 antibody was diffusely distributed throughout the cytoplasm, and there was no evidence for AQP4 expression in either the apical or basolateral membrane of the epithelial cells. The data suggest that AQP1 contributes to water transport across the apical membrane of the choroid plexus epithelium during CSF secretion. The route by which water crosses the basolateral membrane, however, remains to be determined.  相似文献   

6.
Protein synthesis was studied in the isolated rat choroid plexus. When the choroid plexus was studied by transmission electron microscopy, membrane-bound structures were often observed in the ventricular space. These structures appear to bud from the apical surface of the epithelial cells. In the present study, we attempted to isolate these membrane-bound cellular fragments from the choroid plexus and to determine their ability to synthesize proteins. The apical fragments (aposomes) were isolated from the choroid plexus by allowing tissue explants to incubate in media (37 degrees C) for 1 h. The tissue was removed and the media, now containing aposomes, was incubated with [S35]methionine (100 microCi). The media was collected and analysed by SDS-PAGE followed by fluorography. Parallel [S35]methionine incubations were done with whole tissue explants. The SDS-PAGE protein derived from the aposomes was similar to the profile derived from the tissue. In addition, proteins detected in CSF had relative molecular weights comparable to the products synthesized by aposomes. These observations suggest that aposomes provide an additional route of entry for proteins into CSF.  相似文献   

7.
It is generally known that the luminal surface of the choroidal epithelial cells is covered with a luxuriant coat of slender microvilli and cilia. However, extensive ultrastructural studies on the surface morphology of choroidal epithelial cells are lacking. This study, therefore, is focused on the detailed surface morphology of the choroid plexus of the lateral ventricle of adult Wistar rats using transmission and scanning electron microscopy. The animals were anesthetized, perfused with 0.9% oxygenated saline followed by 3% gluteraldehyde and the choroid plexus was processed for routine electron microscopy. The results of the ultrastructural observations presented in this study show that even the neighboring choroidal epithelial cells may express distinct morphology. In addition to the usually described morphology of choroidal epithelial cells, in this study, the presence of cells with uniform small blebs, crenulated or doughnut shaped structures, large mature blebs, or cells with an extensive network of fibers were observed. Although, dissimilar surface morphology of adjacent choroidal epithelial cells may indicate their distinct functional status, further studies are necessary to understand the physiological relevance of the varied surface morphology of choroidal epithelial cells.  相似文献   

8.
We have sought a method capable of detecting small changes in mitochondrial cristae thickness under normal and experimental conditions. Using conventional electron microscopy and goniometry, we studied changes in mitochondria of rat heart muscle and of choroid plexus ependyma caused by treatment with 2,4-dinitrophenol (DNP). Calculation of real thickness was made using goniometric data (formula shown) and the results checked by the method of Casley-Smith and Davy. DNP produced a thickness increase of low statistical significance in choroid plexus ependymal mitochondrial cristae, but a decrease for heart muscle cristae. Although our findings do not resolve the problem of DNP-induced cristae changes, our modified goniometric method may be useful for other studies.  相似文献   

9.
Neural progenitors in the developing neocortex, neuroepithelial cells and radial glial cells, have a bipolar shape with a basal process contacting the basal membrane of the meninge and an apical plasma membrane facing the lateral ventricle, which the cerebrospinal fluid is filled with. Recent studies revealed that the meninges and the cerebrospinal fluid have certain roles to regulate brain development. γ-aminobutyric acid (GABA) is a neurotransmitter which appears first during development and works as a diffusible factor to regulate the properties of neural progenitors. In this study, we examined whether GABA can be released from the meninges and the choroid plexus in the developing mouse brain. Immunohistochemical analyses showed that glutamic acid decarboxylase 65 and 67 (GAD65 and GAD67), both of which are GABA-synthesizing enzymes, are expressed in the meninges. The epithelial cells in the choroid plexus express GAD65. GABA immunoreactivity could be observed beneath the basal membrane of the meninge and in the epithelial cells of the choroid plexus. Expression analyses on Bestrophin-1, which is known as a GABA-permeable channel in differentiated glial cells, suggested that the cells in the meninges and the epithelial cells in the choroid plexus have the channels able to permeate non-synaptic GABA into the extracellular space. Further studies showed that GAD65/67-expressing meningeal cells appear in a manner with rostral to caudal and lateral to dorsal gradient to cover the entire neocortex by E14.5 during development, while the cells in the choroid plexus in the lateral ventricle start to express GAD65 on E11–E12, the time when the choroid plexus starts to develop in the developing brain. These results totally suggest that the meninges and the choroid plexus can work as non-neuronal sources for ambient GABA which can modulate the properties of neural progenitors during neocortical development.  相似文献   

10.
Notch family molecules are transmembrane receptors that play various roles in contact-dependent cell–cell interactions in a wide range of organs. In the brain, Notch2, but not the other members of Notch, is expressed in the choroid plexus at an exceptionally high level. We immunohistochemically examined the cellular and subcellular localization of Notch2 protein in the choroid plexus using confocal and electron microscopy. Unexpectedly, Notch2 was asymmetrically localized on the microvillous surface of epithelial cells in the choroid plexus of both postnatal and adult rats. This localization pattern of Notch2 suggests its novel and unknown role independent of contact with adjacent cells in the choroid plexus. In organotypic cultures of the choroid plexus, the addition of anti-Notch2 antibody resulted in deformation of microvilli in epithelial cells, which suggests a role of Notch2 in the maintenance of the microvillous structure in choroid plexus epithelial cells.  相似文献   

11.
Epithelial cells and surrounding free cells in the choroid plexus were examined cytochemically using filipin to clarify the distribution pattern of cholesterol within plasma membranes. The apical and basal membranes of the choroid epithelial cell are less susceptible to filipin than the lateral epithelial membrane and plasma membranes of adjacent mesenchymal cells such as macrophages and fibroblasts. Apical and basal domains of the epithelial membranes, which are relatively resistant to action of filipin, appear to have a slightly lower cholesterol content. We suggest that the apical and basal membranes may possess a unique membrane fluidity or stability that differs from that of the lateral epithelial, macrophage or fibroblast membranes.  相似文献   

12.
The choroid plexus and its associated epiplexus cells in the fourth ventricle in cats were studied with scanning and transmission electron microscopy (SEM, TEM) following a cisternal injection of crotoxin complex (phospholipase A2). In SEM, the epiplexus cells of the control animals were predominantly stellate with long radiating processes. At 2 h after the administration of crotoxin complex, these radiating processes flattened out forming sheet-like membranes covering the ventricular surface of the choroid epithelial cells. The membranous coverings remained extended in 5-hour-survival cats. Numerous blebs of different sizes were observed in areas that were not covered by the cytoplasmic membrane in 5-hour animals. Some of the blebs appeared to have ruptured. In TEM, the microvilli of the choroid epithelial cells in crotoxin complex-treated rats were dilated. The luminal surface of the epithelial cells showed eruption of blebs filled with amorphous materials. Pinocytotic vesicles increased in number in the apical cytoplasm. The lumen of the ventricle often contained portions of cytoplasm believed to be derived from the extrusion of the blebs. These appeared to be engulfed by the overlying epiplexus cells. It was concluded that the injected crotoxin complex stimulated both the secretory as well as pinocytotic activity of the choroid epithelial cells. The phagocytosis of the secretory products from the epithelial cells by epiplexus cells suggests a close functional relationship between the two cell types.  相似文献   

13.
14.
Streptococcus suis capsular type 2 is an important agent of diseases including meningitis among pigs worldwide, and is also a zoonotic agent. The barrier function of the choroid plexus epithelium that constitutes the structural basis for the blood-cerebrospinal fluid (CSF) barrier has not been elucidated yet in bacterial meningitis. We investigated the influence of various S. suis isolates on the barrier function of cultured porcine choroid plexus epithelial cells with respect to the transepithelial resistance and paracellular [(3)H]-mannitol flux. Preferentially apical application of S. suis isolates significantly decreased transepithelial resistance and significantly increased paracellular [(3)H]-mannitol flux in a time-, dose- and strain-dependent manner. Viable S. suis isolates caused cytotoxicity determined by lactate dehydrogenase assay and electron microscopy, whereas S. suis sonicates and UV-inactivated S. suis did not cause cytotoxicity. The observed effects on porcine choroid plexus epithelial cells barrier function could not exclusively be ascribed to known virulence factors of S. suis such as suilysin. In conclusion, S. suis isolates induce loss of blood-cerebrospinal fluid barrier function in an in vitro model. Thus, S. suis may facilitate trafficking of bacteria and leucocytes across the blood-cerebrospinal fluid barrier. The underlying mechanisms for the barrier breakdown have yet to be determined.  相似文献   

15.
16.
Aquaporin-1 (AQP1) is a water channel expressed abundantly at the apical pole of choroidal epithelial cells. The protein expression was quantified by immunocytochemistry and confocal microscopy in adult rats adapted to altered gravity. AQP1 expression was decreased by 64% at the apical pole of choroidal cells in rats dissected 5.5-8 h after a 14-day spaceflight. AQP1 was significantly overexpressed in rats readapted for 2 days to Earth's gravity after an 11-day flight (48% overshoot, when compared with the value measured in control rats). In a ground-based model that simulates some effects of weightlessness and alters choroidal structures and functions, apical AQP1 expression was reduced by 44% in choroid plexus from rats suspended head down for 14 days and by 69% in rats suspended for 28 days. Apical AQP1 was rapidly enhanced in choroid plexus of rats dissected 6 h after a 14-day suspension (57% overshoot, in comparison with control rats) and restored to the control level when rats were dissected 2 days after the end of a 14-day suspension. Decreases in the apical expression of choroidal AQP1 were also noted in rats adapted to hypergravity in the NASA 24-ft centrifuge: AQP1 expression was reduced by 47% and 85% in rats adapted for 14 days to 2 G and 3 G, respectively. AQP1 is downregulated in the apical membrane of choroidal cells in response to altered gravity and is rapidly restored after readaptation to normal gravity. This suggests that water transport, which is partly involved in the choroidal production of cerebrospinal fluid, might be decreased during spaceflight and after chronic hypergravity.  相似文献   

17.
PEPT2 is functionally active and localized to the apical membrane of rat choroid plexus epithelial cells. However, little is known about the transport mechanisms of endogenous neuropeptides in choroid plexus, and the role of PEPT2 in this process. In the present study, we examined the uptake kinetics of carnosine in rat choroid plexus primary cell cultures and choroid plexus whole tissue from wild-type (PEPT2(+/+)) and null (PEPT2(-/-)) mice. Our results indicate that carnosine is preferentially taken up from the apical as opposed to basolateral membrane of cell monolayers, and that basolateral efflux in limited. Transepithelial flux of carnosine was not distinguishable from that of paracellular diffusion. The apical uptake of carnosine was characterized by a high affinity (K(m) = 34 microM), low capacity (V(max) = 73 pmol/mg protein/min) process, consistent with that of PEPT2. The non-saturable component was small (K(d) = 0.063 microL/mg protein/min) and, under linear conditions, was only 3% of the total uptake. Studies in transgenic mice clearly demonstrated that PEPT2 was responsible for over 90% of carnosine's uptake in choroid plexus whole tissue. These findings elucidate the unique role of PEPT2 in regulating neuropeptide homeostasis at the blood-cerebrospinal fluid interface.  相似文献   

18.
The mechanism and membrane localization of choroid plexus (CP) organic anion transport were determined in apical (or brush border) membrane vesicles isolated from bovine choroid plexus and in intact CP tissue from cow and rat. Brush border membrane vesicles were enriched in Na(+),K(+)-ATPase (20-fold; an apical marker in CP) and demonstrated specific, sodium-coupled transport of proline, glucose, and glutarate. Vesicular uptake of the anionic herbicide 2, 4-dichlorophenoxyacetic acid (2,4-D) was markedly stimulated by an inward sodium gradient but only in the presence of glutarate, indicating the presence of apical dicarboxylate/organic anion exchange. Consistent with this interpretation, an imposed outward glutarate gradient stimulated 2,4-D uptake in the absence of sodium. Under both conditions, uptake was dramatically slowed and overshoot was abolished by probenecid. Likewise, apical accumulation of 2,4-D by intact bovine choroid plexus tissue in vitro was stimulated by external glutarate in the presence of sodium. Glutarate stimulation was abolished by 5 mM LiCl. Identical findings were obtained using rat CP tissue, which showed both sodium/glutarate-stimulated 2,4-D (tissue/medium (T/M) approximately 8) and p-aminohippurate (T/M = 2) transport. Finally, since the renal exchanger (rROAT1) has been cloned in rat kidney, a rROAT1-green fluorescent protein construct was used to analyze exchanger distribution directly in transiently transfected rat CP. As predicted by the functional studies, the fluorescently tagged transporter was seen in apical but not basolateral membranes of the CP.  相似文献   

19.
Critical to the exchange and metabolic functions served by tissues like brain choroid plexi and lung is the coherent development of an epithelial sheet of large surface area in tight apposition to an extensive vascular bed. Here, we present functional experiments in the mouse demonstrating that Sonic hedgehog (Shh) produced by hindbrain choroid plexus epithelium induces the extensive vascular outgrowths and vascular surface area fundamental to choroid plexus functions, but does not induce the more specialized endothelial cell features of fenestrations and bore size. Our findings indicate that these Shh-dependent vascular elaborations occur even in the presence of Vegf and other established angiogenic factors, suggesting either that the levels of these factors are inadequate in the absence of Shh or that a different set of factors may be more essential to choroid plexus outgrowth. Transducing the Shh signal is a perivascular cell—the pericyte—rather than the more integral vascular endothelial cell itself. Moreover, our findings suggest that hindbrain choroid plexus endothelial cells, as compared to other vascular endothelial cells, are more dependent upon pericytes for instruction. Thus, in addition to Shh acting on the progenitor pool for choroid plexus epithelial cells, as previously shown, it also acts on choroid plexus pericytes, and together serves the important role of coordinating the development of two disparate yet functionally dependent structures—the choroid plexus vasculature and its ensheathing epithelium.  相似文献   

20.
We have developed a primary culture system for fetal mouse choroid plexus epithelial cells which maintains their differentiated phenotype. When grown on a reconstituted basement membrane substrate (Matrigel) epithelial cells formed aggregates which became embedded in the matrix and developed into characteristic and highly reproducible multicellular vesicular structures. These vesicles consisted of a squamous layer of epithelial cells with extensive attachment to the matrix substrate, surrounding a fluid-filled lumen. Electron microscopy showed that cells comprising these vesicles had a high degree of membrane specialization and polarized morphology which in many respects mimicked the in vivo morphology. Biochemical analyses demonstrated that under these culture conditions the tissue-specific pattern of gene expression of fetal choroid plexus epithelium was maintained. After 6 days in culture these cells contained approximately the same amount of transthyretin mRNA as the 12.5-day choroid plexus in vivo, and the level of total RNA per cell, which is proportional to the protein synthetic capability of the cells, was also maintained. The pattern of protein secretion was also very similar to that generated by fetal mouse choroid plexus cells in vivo. In contrast choroid plexus epithelial cells attached poorly to collagen I gels. Heterogeneous aggregates were formed in which cell-cell interactions were more extensive than cell-substrate interactions, and in no cases was a central lumen observed. Cells on the surface of large aggregates showed some evidence of membrane polarization, while the majority of cells in the cultures exhibited little evidence of polarized morphology. Despite the striking difference in morphology and multicellular organization these cells still expressed high levels of transthyretin mRNA and maintained the same pattern of protein synthesis as cells cultured on Matrigel. These results indicate that the basement membrane is important for the organization of choroid plexus epithelial cells into a functional epithelium in vitro and thus presumably the maintenance of the integrity of the blood-brain barrier in vivo. In contrast to several other epithelial systems which have been studied, the type of extracellular matrix does not appear to directly influence tissue-specific gene expression by choroid plexus epithelial cells. Thus the level of gene expression is not dependent on the cytoarchitecture and multicellular organization of this cell type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号