首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
J S Yao  E G Strauss    J H Strauss 《Journal of virology》1996,70(11):7910-7920
During the assembly of alphaviruses, a preassembled nucleocapsid buds through the cell plasma membrane to acquire an envelope containing two virally encoded glycoproteins, E2 and E1. Using two chimeric viruses, we have studied interactions between E1, E2, and a viral peptide called 6K, which are required for budding. A chimeric Sindbis virus (SIN) in which the 6K gene had been replaced with that from Ross River virus (RR) produced wild-type levels of nucleocapsids and abundant PE2/E1 heterodimers that were processed and transported to the cell surface. However, only about 10% as much chimeric virus as wild-type virus was assembled, demonstrating that there is a sequence-specific interaction between 6K and the glycoproteins required for efficient virus assembly. In addition, the conformation of E1 in the E2/E1 heterodimer on the cell surface was different for the chimeric virus from that for the wild type, suggesting that one function of 6K is to promote proper folding of E1 in the heterodimer. A second chimeric SIN, in which both the 6K and E1 genes, as well as the 3' nontranslated region, were replaced with the corresponding regions of RR also resulted in the production of large numbers of intracellular nucleocapsids and of PE2/E1 heterodimers that were cleaved and transported to the cell surface. Budding of this chimera was severely impaired, however, and the yield of the chimera was only approximately 10(-7) of the SIN yield in a parallel infection. The conformation of the SIN E2/RR E1 heterodimer on the cell surface was different from that of the SIN E2/SIN E1 heterodimer, and no interaction between viral glycoproteins and nucleocapsids at the cell plasma membrane could be detected in the electron microscope. We suggest that proper folding of the E2/E1 heterodimer must occur before the E2 tail is positioned properly in the cytoplasm for budding and before heterodimer trimerization can occur to drive virus budding.  相似文献   

2.
We have studied interactions between nucleocapsids and glycoproteins required for budding of alphaviruses, using Ross River virus-Sindbis virus chimeras in which the nucleocapsid protein is derived from one virus and the envelope glycoproteins are derived from the second virus. A virus containing the Ross River virus genome in which the capsid protein had been replaced with that from Sindbis virus was almost nonviable. Nucleocapsids formed in normal numbers in the infected cell, but very little virus was released from the cell. There are 11 amino acid differences between Ross River virus and Sindbis virus in their 33-residue E2 cytoplasmic domains. Site-specific mutagenesis was used to change 9 of these 11 amino acids in the chimera from the Ross River virus to the Sindbis virus sequence in an attempt to adapt the E2 of the chimera to the nucleocapsid. The resulting mutant chimera grew 4 orders of magnitude better than the parental chimeric virus. This finding provides direct evidence for a sequence-specific interaction between the nucleocapsid and the E2 cytoplasmic domain during virus budding. The mutated chimeric virus readily gave rise to large-plaque variants that grew almost as well as Ross River virus, suggesting that additional single amino acid substitutions in the structural proteins can further enhance the interactions between the disparate capsid and the glycoproteins. Unexpectedly, change of E2 residue 394 from lysine (Ross River virus) to glutamic acid (Sindbis virus) was deleterious for the chimera, suggesting that in addition to its role in nucleocapsid-E2 interactions, the N-terminal part of the E2 cytoplasmic domain may be involved in glycoprotein-glycoprotein interactions required to assemble the glycoprotein spikes. The reciprocal chimera, Sindbis virus containing the Ross River virus capsid, also grew poorly. Suppressor mutations arose readily in this chimera, producing a virus that grew moderately well and that formed larger plaques.  相似文献   

3.
Alphavirus glycoproteins E2 and E1 form a heterodimer that is required for virus assembly. We have studied adaptive mutations in E2 of Sindbis virus (SIN) and E1 of Ross River virus (RR) that allow these two glycoproteins to interact more efficiently in a chimeric virus that has SIN E2 but RR E1. These mutations include K129E, K131E, and V237F in SIN E2 and S310F and C433R in RR E1. Although RR E1 and SIN E2 will form a chimeric heterodimer, the chimeric virus is almost nonviable, producing about 10(-7) as much virus as SIN at 24 h and 10(-5) as much after 48 h. Chimeras containing one adaptive change produced 3 to 20 times more virus than did the parental chimera, whereas chimeras with two changes produced 10 to 100 times more virus and chimeras containing three mutations produced yields that were 180 to 250 times better. None of the mutations had significant effects upon the parental wild-type viruses, however. Passage of the triple variants eight or nine times resulted in variants that produced virus rapidly and were capable of producing >10(8) PFU/ml of culture fluid within 24 h. These further-adapted variants possessed one or two additional mutations, including E2-V116K, E2-S110N, or E1-T65S. The RR E1-C433R mutation was studied in more detail. This Cys is located in the putative transmembrane domain of E1 and was shown to be palmitoylated. Mutation to Arg-433 resulted in loss of palmitoylation of E1. The positively charged arginine residue within the putative transmembrane domain of E1 would be expected to alter the conformation of this domain. These results suggest that interactions within the transmembrane region are important for the assembly of the E1/E2 heterodimer, as are regions of the ectodomains possibly identified by the locations of adaptive mutations in these regions. Further, the finding that four or five changes in the chimera allow virus production that approaches the levels seen with the parental SIN and exceeds that of the parental RR illustrates that the structure and function of SIN and RR E1s have been conserved during the 50% divergence in sequence that has occurred.  相似文献   

4.
Chimeric alphaviruses in which the 6K and glycoprotein E1 moieties of Sindbis virus are replaced with those of Ross River virus grow very poorly, but upon passage, adapted variants arise that grow >100 times better. We have sequenced the entire domain encoding the E2, 6K, and E1 proteins of a number of these adapted variants and found that most acquired two amino acid changes, which had cumulative effects. In three independent passage series, amino acid 380 of E2, which is in the transmembrane domain, was mutated from the original isoleucine to serine in two instances and to valine once. We have now changed this residue to seven others by site-directed mutagenesis and tested the effects of these mutations on the growth of both the chimera [SIN(RRE1)] and of parental Sindbis. These results indicate that the transmembrane domains of glycoproteins E2 and E1 of alphaviruses interact in a sequence-dependent manner and that this interaction is required for efficient budding and assembly of infectious virions.  相似文献   

5.
Sindbis virus mutant ts103 is aberrant in the assembly of virus particles. During virus budding, proper nucleocapsid-glycoprotein interactions fail to occur such that particles containing many nucleocapsids are formed, and the final yield of virus is low. We have determined that a mutation in the external domain of glycoprotein E2, Ala-344----Val, is the change that leads to this phenotype. Mapping was done by making recombinant viruses between ts103 and a parental strain of the virus, using a full-length cDNA clone of Sindbis virus from which infectious RNA can be transcribed, together with sequence analysis of the region of the genome shown in this way to contain the ts103 lesion. A partial revertant of ts103, called ts103R, was also mapped and sequenced and found to be a second-site revertant in which a change in glycoprotein E1 from lysine to methionine at position 227 partially suppresses the phenotypic effects of the change at E2 position 344. An analysis of revertants from ts103 mutants in which the Ala----Val change had been transferred into a defined background showed that pseudorevertants were more likely to arise than were true revertants and that the ts103 change itself reverted very infrequently. The assembly defect in ts103 appeared to result from weakened interactions between the virus membrane glycoproteins or between these glycoproteins and the nucleocapsid during budding. Both the E2 mutation leading to the defect in virus assembly and the suppressor mutation in glycoprotein E1 are in the domains external to the lipid bilayer and thus in domains that cannot interact directly with the nucleocapsid. This suggests that in ts103, either the E1-E2 heterodimers or the trimeric spikes (consisting of three E1-E2 heterodimers) are unstable or have an aberrant configuration, and thus do not interact properly with the nucleocapsid, or cannot assembly correctly to form the proper icosahedral array on the surface of the virus.  相似文献   

6.
There are 80 trimeric, glycoprotein spikes that cover the surface of an alphavirus particle. The spikes, which are composed of three E2 and E1 glycoprotein heterodimers, are responsible for receptor binding and mediating fusion between the viral and host-cell membranes during entry. In addition, the cytoplasmic domain of E2 interacts with the nucleocapsid core during the last stages of particle assembly, possibly to aid in particle stability. During assembly, the spikes are nonfusogenic until the E3 glycoprotein is cleaved from E2 in the trans-Golgi network. Thus, a mutation in E2 potentially has effects on virus entry, spike assembly, or spike maturation. E2 is a highly conserved, cysteine-rich transmembrane glycoprotein. We made single cysteine-to-serine mutations within two distinct regions of the E2 ectodomain in both Sindbis virus and Ross River virus. Each of the E2 Cys mutants produced fewer infectious particles than wild-type virus. Further characterization of the mutant viruses revealed differences in particle morphology, fusion activity, and polyprotein cleavage between Sindbis and Ross River virus mutants, despite the mutations being made at corresponding positions in E2. The nonconserved assembly defects suggest that E2 folding and function is species dependent, possibly due to interactions with a virus-specific chaperone.  相似文献   

7.
The alphavirus envelope is built by heterodimers of the membrane proteins E1 and E2. The complex is formed as a p62E1 precursor in the endoplasmic reticulum. During transit to the plasma membrane (PM), it is cleaved into mature E1-E2 heterodimers, which are oligomerized into trimeric complexes, so-called spikes that bind both to each other and, at the PM, also to nucleocapsid (NC) structures under the membrane. These interactions drive the budding of new virus particles from the cell surface. The virus enters new cells by a low-pH-induced membrane fusion event where both inter- and intraheterodimer interactions are reorganized to establish a fusion-active membrane protein complex. There are no intact heterodimers left after fusion activation; instead, an E1 homotrimer remains in the cellular (or viral) membrane. We analyzed whether these transitions depend on interactions in the transmembrane (TM) region of the heterodimer. We observed a pattern of conserved glycines in the TM region of E1 and made two mutants where either the glycines only (SFV/E1(4L)) or the whole segment around the glycines (SFV/E1(11L)) was replaced by leucines. We found that both mutations decreased the stability of the heterodimer and increased the formation of the E1 homotrimer at a suboptimal fusion pH, while the fusion activity was decreased. This suggested that TM interactions play a role in virus assembly and entry and that anomalous or uncoordinated protein reorganizations take place in the mutants. In addition, the SFV/E1(11L) mutant was completely deficient in budding, which may reflect an inability to form multivalent NC interactions at the PM.  相似文献   

8.
We have determined the three-dimensional structures of the wild-type Sindbis virus and two of its mutants that retain the E3 sequence within PE2. Using difference imaging between these mutants and the wild-type virus, we have assigned a location for the 64-amino-acid sequence corresponding to E3 in the mutant spike complex. In the wild-type virus, the spike is composed of an E1-E2 heterotrimer. The E3 protein was found to protrude midway between the center of the spike complex and the tips. Based on these results and the work of others, we propose a distribution for the functional domains of the spike proteins within the structure of wild-type Sindbis virus. Within the structure of the virus, the E1 domains form the central portion of the spike complex, while the tips are formed by the E2 domains that flare out from the center of the complex. The structural similarity between these Sindbis virus mutants and Ross River virus suggests that E3 may also be present in the latter, which is also a member of the Alphavirus genus.  相似文献   

9.
BHK-21 cells infected with temperature-sensitive mutants of Sindbis virus in complementation groups D and E differed in their appearance under nonpermissive conditions. Cells infected at nonpermissive temperature with virus defective in complementation group E had nucleocapsids attached in large numbers to the inside surface of the host plasma membrane. Infection with a group D mutant produced nucleocapsids that did not attach to the plasma membrane but rather remained free in the cell cytoplasm.  相似文献   

10.
Semliki Forest virus, SFV, directs the synthesis of two membrane proteins, p62 and E1, which form a p62E1 heterodimer in the endoplasmic reticulum. After being transported to the plasma membrane (PM), they are incorporated into the virus membrane during the process of virus budding. Electronmicroscopic analyses of the envelope in matured virus show that the heterodimers are clustered into trimeric structures (spikes) which further form a regular surface lattice with T = 4. In this work we have used a genetic approach to study the importance of the trimerization event for virus budding. We have coexpressed a budding competent form of the virus heterodimer with another one which cannot be used for particle formation because of a defect in nucleocapsid (NC) binding. We show that the NC binding-deficient heterodimer is able to inhibit the budding of the competent one in a concentration-dependent manner and that the NC binding-competent heterodimers can rescue the incompetent ones into virus particles. This suggests that the heterodimers are complexed together, probably into the trimeric structures (spikes), at the PM to expose a multivalent binding site for the NC and thereby drive efficient virus budding.  相似文献   

11.
Intracellular alphavirus nucleocapsids express a binding site for the cytoplasmic domain of the viral E2 spike glycoprotein. This binding site is recognized by the anti-idiotype monoclonal antibody, F13. The monoclonal anti-anti-idiotype antibody, raised against F13 and designated 3G10, recognizes the carboxy-terminal eight residues of the E2 cytoplasmic domain in Semliki Forest virus (SFV), identifying this as the signal for nucleocapsid interaction. F13 binding to cells infected with SFV or a second alphavirus, Sindbis virus, is inhibited by a synthetic peptide corresponding to the entire 31 residue cytoplasmic domain (E2c), and also by a synthetic peptide corresponding to the eight residue epitope recognized by 3G10. Both E2c and the eight residue peptide inhibited viral budding in microinjection experiments and when conjugated to colloidal gold are bound specifically to nucleocapsids in infected cells. These results identify a short linear signal in the E2 cytoplasmic domain required for the interaction with nucleocapsids which leads to budding of at least two alphaviruses from infected cells.  相似文献   

12.
Sindbis virus and Ross River virus are alphaviruses whose nonstructural proteins share 64% identity and whose structural proteins share 48% identity. Starting from full-length cDNA clones of both viruses, we have generated two reciprocal Sindbis-Ross River chimeric viruses in which the structural and nonstructural regions have been exchanged. These chimeric viruses replicate readily in several cell lines. Both chimeras grow more poorly than do the parental viruses, with the chimera containing Sindbis virus nonstructural proteins and Ross River virus structural proteins growing considerably better in both mosquito and Vero cell lines than the reciprocal chimera does. The reduction in replicative capacity in comparison with the parental viruses appears to result at least in part from a reduction in RNA synthesis, which suggests that the structural proteins or sequence elements within the structural region interact with the nonstructural proteins or sequence elements within the nonstructural region, that these interactions are required for efficient RNA replication, and that these interactions are suboptimal in the chimeras. The chimeras are able to infect mice, but their growth is attenuated. Western equine encephalitis virus, a virus widely distributed throughout the Americas, has been previously shown to have arisen by natural recombination between two distinct alphaviruses, but other naturally occurring recombinant alphaviruses have not been found. The present results suggest that most nonstructural/structural chimeras that might arise by natural recombination will be viable but that interactions between different regions of the genome, some of which were previously known but some of which remain unknown, limit the ability of such recombinants to become established.  相似文献   

13.
Fluorescence photobleaching recovery (FPR) measurements of virus glycoproteins on the surfaces of cells infected with vesicular stomatitis virus (VSV) and Sindbis virus showed that the VSV glycoprotein (G) remained mobile throughout the infectious cycle, whereas Sindbis virus glycoproteins (E1, E2) were partially mobile early after infection and immobile at later times when greater amounts of these proteins were on the cell surface. A highly mobile fraction of Sindbis virus glycoproteins was detected throughout the replication cycle of a temperature-sensitive mutant unable to form virus particles. Thus immobilization of E1 and E2 was the result of increasing surface glycoprotein concentrations and virus budding. Together with other data, which included the detection of E1 and E2 in particles as soon as these proteins were transported to the cell surface, the FPR results suggest that Sindbis virus assembly initiates on intracellular vesicles, where glycoproteins aggregate and bind nucleocapsids. In contrast, our FPR data on VSV support a model previously suggested by others, in which a small fraction of cell-surface G is immobilized into budding sites formed by interactions with virus matrix and nucleoproteins. FPR measurements also provide direct evidence for strong interactions between E1 and E2, as well as between E1 and PE2, the precursor form of E2.  相似文献   

14.
Several conserved domains critical for E1E2 assembly and hepatitis C virus entry have been identified in E1 and E2 envelope glycoproteins. However, the role of less conserved domains involved in cross-talk between either glycoprotein must be defined to fully understand how E1E2 undergoes conformational changes during cell entry. To characterize such domains and to identify their functional partners, we analyzed a set of intergenotypic E1E2 heterodimers derived from E1 and E2 of different genotypes. The infectivity of virions indicated that Con1 E1 did not form functional heterodimers when associated with E2 from H77. Biochemical analyses demonstrated that the reduced infectivity was not related to alteration of conformation and incorporation of Con1 E1/H77 E2 heterodimers but rather to cell entry defects. Thus, we generated chimeric E1E2 glycoproteins by exchanging different domains of each protein in order to restore functional heterodimers. We found that both the ectodomain and transmembrane domain of E1 influenced infectivity. Site-directed mutagenesis highlighted the role of amino acids 359, 373, and 375 in transmembrane domain in entry. In addition, we identified one domain involved in entry within the N-terminal part of E1, and we isolated a motif at position 219 that is critical for H77 function. Interestingly, using additional chimeric E1E2 complexes harboring substitutions in this motif, we found that the transmembrane domain of E1 acts as a partner of this motif. Therefore, we characterized domains of E1 and E2 that have co-evolved inside a given genotype to optimize their interactions and allow efficient entry.  相似文献   

15.
Passage of Ross River virus strain NB5092 in avian cells has been previously shown to select for virus variants that have enhanced replication in these cells. Sequencing of these variants identified two independent sites that might be responsible for the phenotype. We now demonstrate, using a molecular cDNA clone of the wild-type T48 strain, that an amino acid substitution at residue 218 in the E2 glycoprotein can account for the phenotype. Substitutions that replaced the wild-type asparagine with basic residues had enhanced replication in avian cells while acidic or neutral residues had little or no observable effect. Ross River virus mutants that had increased replication in avian cells also grew better in BHK cells than the wild-type virus, whereas the remaining mutants were unaffected in growth. Replication in both BHK and avian cells of Ross River virus mutants N218K and N218R was inhibited by the presence of heparin or by the pretreatment of the cells with heparinase. Binding of the mutants, but not of the wild type, to a heparin-Sepharose column produced binding comparable to that of Sindbis virus, which has previously been shown to bind heparin. Replication of these mutants was also adversely affected when they were grown in a CHO cell line that was deficient in heparan sulfate production. These results demonstrate that amino acid 218 of the E2 glycoprotein can be modified to create an heparan sulfate binding site and this modification expands the host range of Ross River virus in cultured cells to cells of avian origin.  相似文献   

16.
Binding of Sindbis Virus to Cell Surface Heparan Sulfate   总被引:13,自引:10,他引:3       下载免费PDF全文
Alphaviruses are arthropod-borne viruses with wide species ranges and diverse tissue tropisms. The cell surface receptors which allow infection of so many different species and cell types are still incompletely characterized. We show here that the widely expressed glycosaminoglycan heparan sulfate can participate in the binding of Sindbis virus to cells. Enzymatic removal of heparan sulfate or the use of heparan sulfate-deficient cells led to a large reduction in virus binding. Sindbis virus bound to immobilized heparin, and this interaction was blocked by neutralizing antibodies against the viral E2 glycoprotein. Further experiments showed that a high degree of sulfation was critical for the ability of heparin to bind Sindbis virus. However, Sindbis virus was still able to infect and replicate on cells which were completely deficient in heparan sulfate, indicating that additional receptors must be involved. Cell surface binding of another alphavirus, Ross River virus, was found to be independent of heparan sulfate.  相似文献   

17.
Crystals of Sindbis virus, which contains a lipid-bilayer membrane, have been grown using polyethylene glycol. The space group is R32, a = b = 640 A, c = 1520 A. The crystals are highly mosaic, and recorded diffraction is therefore restricted to spacings of about 30 A. The crystals show that the packing of glycoproteins E1 and E2 in the icosahedral outer shell is sufficiently precise that it permits regular and repeated interactions between virus particles in the lattice. Crystals of Sindbis nucleocapsids have also been grown. The limited diffraction data are consistent with close packing of nucleocapsids 404 A in diameter.  相似文献   

18.
J M Wahlberg  W A Boere    H Garoff 《Journal of virology》1989,63(12):4991-4997
The budding and the fusion processes of the enveloped animal virus Semliki Forest virus serve the purpose of transporting its nucleocapsid, containing its genome, from the cytoplasm of an infected cell into that of an uninfected one. We show here that, in the infected cell, the viral membrane (spike) proteins p62 and E1 are organized as heterodimers which are very resistant to dissociation in acidic conditions. In contrast, the mature form of the heterodimer, E2E1, which is found in the virus particle and which is generated by proteolytic processing of p62, is very prone to dissociate upon treatment with mildly acidic buffers. We discuss the possibility that this difference in behavior of the intracellular precursor form and the mature form of the spike protein complex represents an important regulatory mechanism for the processes involving membrane binding around the nucleocapsid during budding and membrane release from the nucleocapsid at the stage of virus fusion.  相似文献   

19.
Envelopment of Sindbis virus at the plasma membrane is a multistep process in which an initial step is the association of the E2 protein via a cytoplasmic endodomain with the preassembled nucleocapsid. Sindbis virus is vectored in nature by blood-sucking insects and grows efficiently in a number of avian and mammalian vertebrate hosts. The assembly of Sindbis virus, therefore, must occur in two very different host cell environments. Mammalian cells contain cholesterol which insect membranes lack. This difference in membrane composition may be critical in determining what requirements are placed on the E2 tail for virus assembly. To examine the interaction between the E2 tail and the nucleocapsid in Sindbis virus, we have produced substitutions and deletions in a region of the E2 tail (E2 amino acids 408 to 415) that is initially integrated into the endoplasmic reticulum. This sequence was identified as being critical for nucleocapsid binding in an in vitro peptide protection assay. The effects of these mutations on virus assembly and function were determined in both vertebrate and invertebrate cells. Amino acid substitutions (at positions E2: 408, 410, 411, and 413) reduced infectious virus production in a position-dependent fashion but were not efficient in disrupting assembly in mammalian cells. Deletions in the E2 endodomain (delta406-407, delta409-411, and delta414-417) resulted in the failure to assemble virions in mammalian cells. Electron microscopy of BHK cells transfected with these mutants revealed assembly of nucleocapsids that failed to attach to membranes. However, introduction of these deletion mutants into insect cells resulted in the assembly of virus-like particles but no assayable infectivity. These data help define protein interactions critical for virus assembly and suggest a fundamental difference between Sindbis virus assembly in mammalian and insect cells.  相似文献   

20.
Alphaviruses are small, spherical, enveloped, positive-sense, single-stranded, RNA viruses responsible for considerable human and animal disease. Using microinjection of preassembled cores as a tool, a system has been established to study the assembly and budding process of Sindbis virus, the type member of the alphaviruses. We demonstrate the release of infectious virus-like particles from cells expressing Sindbis virus envelope glycoproteins following microinjection of Sindbis virus nucleocapsids purified from the cytoplasm of infected cells. Furthermore, it is shown that nucleocapsids assembled in vitro mimic those isolated in the cytoplasm of infected cells with respect to their ability to be incorporated into enveloped virions following microinjection. This system allows for the study of the alphavirus budding process independent of an authentic infection and provides a platform to study viral and host requirements for budding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号