首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The rates of CO2 fixation and respiratory CO2 fluxes in six C3 species, namely Solanum tuberosum, Nicotiana tabacum, Arabidopsis thaliana, Hordeum vulgare, Triticum aestivum, and Secale cereale, were determined under steady-state photosynthesis. The plants may be divided into two groups: (a) cereals with a low rate of starch synthesis (7–5% of true photosynthesis); (b) plants with a high rate of starch synthesis (45–35% of true photosynthesis). In the light, primary and stored photosynthates are consumed as substrates for both respiratory and photorespiratory pathways. In leaves of cereals, the total rate of respiratory and photorespiratory decarboxylations of stored photosynthates was higher in the light than in the dark, while, in starch-synthesizing species, stored photosynthates were consumed at a higher rate in the dark. Under normal environmental conditions, respiratory decarboxylation of stored photosynthates was suppressed by light in all species studied. The total rate of respiration as the sum of decarboxylation of stored and primary photosynthates was not affected by light in cereals, but suppressed in starch-accumulating plants. This suppression was not compensated for by the additional supply of respiratory substrates from primary photosynthates in the light.  相似文献   

2.
Ray TB  Black CC 《Plant physiology》1977,60(2):193-196
3-Mercaptopicolinic acid (3-MPA), an inhibitor of phosphoenolpyruvate carboxykinase, was employed to study the role of organic acid decarboxylation during C(4) photosynthesis. Treatment of detached Panicum maximum leaves with 5 mm 3-MPA inhibited photosynthesis 70 to 75%. Oxygen was found to have no effect on the degree of inhibition. The postillumination (14)CO(2) burst associated with P. maximum photosynthesis was almost abolished by 5 mm 3-MPA. The turnover rates of malate and aspartate during C(4) photosynthesis were severely reduced as well as the rates of formation of C(3) cycle intermediates in P. maximum leaves treated with 3-MPA. These results are interpreted as direct evidence for the fixation of CO(2), arising from the decarboxylation of oxaloacetate, by the C(3) cycle in bundle sheath cells of P. maximum leaves.  相似文献   

3.
We used an advanced radiogasometric method to study the effects of short-term changes in CO2 concentration ([CO2]) on the rates and substrates of photorespiratory and respiratory decarboxylations under steady-state photosynthesis and in the dark. Experiments were carried out on Plantago lanceolata, Poa trivialis, Secale cereale, Triticum aestivum, Helianthus annuus and Arabidopsis thaliana plants. Rates of photorespiration and respiration measured at a low [CO2] (40 micromol mol(-1)) were equal to those at normal [CO2] (360 micromol mol(-1)). Under low [CO2], the substrates of decarboxylation reactions were derived mainly from stored photosynthates, while under normal [CO2] primary photosynthates were preferentially consumed. An increase in [CO2] from 320 to 2300 micromol mol(-1) brought about a fourfold decrease in the rate of photorespiration with a concomitant 50% increase in the rate of respiration in the light. Respiration in the dark did not depend on [CO2] up to 30 mmol mol(-1). A positive correlation was found between the rate of respiration in the dark and the rate of photosynthesis during the preceding light period. The respiratory decarboxylation of stored photosynthates was suppressed by light. The extent of light inhibition decreased with increasing [CO2]; no inhibition was detected at 30 mmol mol(-1) CO2.  相似文献   

4.
Effects of temperature on the gas exchange of leaves in the light and dark   总被引:3,自引:0,他引:3  
G. Hofstra  J. D. Hesketh 《Planta》1969,85(3):228-237
Summary Evolution of CO2 into CO2-free air was measured in the light and in the dark over a range of temperatures from 15 to 50°. Photosynthetic rates were measured in air and O2-free air over the same range of temperatures. Respiration in the light had a different sensitivity to temperature compared with respiration in the dark. At the lower temperatures the rate of respiration in the light was higher than respiration in the dark, whereas at temperatures above 40° the reverse was observed. For any one species the maximum rates of photosynthesis and photorespiration occur at about the same temperature. The maximum rate for dark respiration generally is found at a temperature about 10° higher. Zea mays and Atriplex nummularia showed no enhancement of photosynthesis in O2-free air nor any evolution of CO2 in CO2-free air at any of the temperatures.  相似文献   

5.
6.
We recently obtained evidence that the activity of spinach (Spinacia oleracea L.) leaf nitrate reductase (NR) responds rapidly and reversibly to light/dark transitions by a mechanism that is strongly correlated with protein phosphorylation. Phosphorylation of the NR protein appears to increase sensitivity to Mg2+ inhibition, without affecting activity in the absence of Mg2+. In the present study, we have compared the light/dark modulation of sucrose-phosphate synthase (SPS), also known to be regulated by protein phosphorylation, and NR activities (assayed with and without Mg2+) in spinach leaves. There appears to be a physiological role for both enzymes in mature source leaves (production of sucrose and amino acids for export), whereas NR is also present and activated by light in immature sink leaves. In mature leaves, there are significant diurnal changes in SPS and NR activities (assayed under selective conditions where phosphorylation status affects enzyme activity) during a normal day/night cycle. With both enzymes, activities are highest in the morning and decline as the photoperiod progresses. For SPS, diurnal changes are largely the result of phosphorylation/dephosphorylation, whereas with NR, the covalent modification is super-imposed on changes in the level of NR protein. Accumulation of end products of photosynthesis in excised illuminated leaves increased maximum NR activity, reduced its sensitivity of Mg2+ inhibition, and prevented the decline in activity with time in the light seen with attached leaves. In contrast, SPS was rapidly inactivated in excised leaves. Overall, NR and SPS share many common features of control but are not identical in terms of regulation in situ.  相似文献   

7.
In spinach (Spinacia oleracea Hybrid 102 [New World seeds]) and wheat (Triticum aestivum L. cv Gabo) leaves, O2 uptake rates in the dark were faster after the plants had been allowed to photosynthesize for a period of several hours. Alternative path activity also increased following a period of photosynthesis in these leaves. No such effects were observed with isolated mitochondria. In spinach and wheat leaves, the level of fructose plus glucose decreased during a period of darkness. In pea (Pisum sativum cv Alaska) leaves, the level of these sugars did not vary significantly during the day, and respiratory rates were also constant. In slices cut from wheat leaves harvested at the end of the night, addition of sugars increased the rate of respiration and engaged the previously latent alternative oxidase. In pea leaves, O2 uptake in the first few minutes following illumination was faster than that observed before illumination, but declined during the next 15 to 20 minutes. Adding the alternative oxidase inhibitor salicylhydroxamic acid, or imposing high bicarbonate concentrations during the period of photosynthesis, prevented the rise in O2 uptake rate during the immediate post illumination period.

We conclude that the level of respiratory substrate in leaves determines their rate of O2 uptake, and the degree to which the alternative path contributes to that O2 uptake.

  相似文献   

8.
9.
After the leaves of Tillandsia usneciaes were fixed in 2.5% glutaraldehyde under strong sun light ,some globular objects were found in the chloroplast. These globular objects did not take the ordinary U-Pb double stain but they showed a cyclic change in amount following the change of sum light intensity. At 8 O′clock in the morning,only a few globular objects appeared in the chloroplast, At 10: 00 a. m.,there were several globular objects and they greatly increased at noon and gradually reduced in the afternoon,and finally disappearred at 4: 00 p. m. For detection of periodie acid-reactive complex carbohydrates with silver methenamine staining technique , the globular objects stained black. This result demonstrated that the globular objects may be polymers of intermediat products of the carbon cycle in photosynthesis and C3 compounds in malate decarboxylation.  相似文献   

10.
Nicotiana sylvestris leaves challenged by the bacterial elicitor harpin N(Ea) were used as a model system in which to determine the respective roles of light, oxygen, photosynthesis, and respiration in the programmed cell death response in plants. The appearance of cell death markers, such as membrane damage, nuclear fragmentation, and induction of the stress-responsive element Tnt1, was observed in all conditions. However, the cell death process was delayed in the dark compared with the light, despite a similar accumulation of superoxide and hydrogen peroxide in the chloroplasts. In contrast, harpin-induced cell death was accelerated under very low oxygen (<0.1% O(2)) compared with air. Oxygen deprivation impaired accumulation of chloroplastic reactive oxygen species (ROS) and the induction of cytosolic antioxidant genes in both the light and the dark. It also attenuates the collapse of photosynthetic capacity and the respiratory burst driven by mitochondrial alternative oxidase activity observed in air. Since alternative oxidase is known to limit overreduction of the respiratory chain, these results strongly suggest that mitochondrial ROS accumulate in leaves elicited under low oxygen. We conclude that the harpin-induced cell death does not require ROS accumulation in the apoplast or in the chloroplasts but that mitochondrial ROS could be important in the orchestration of the cell suicide program.  相似文献   

11.
Responses of foliar and isolated intact chloroplast photosynthetic carbon metabolism observed in spinach (Spinacia oleracea cv Wisconsin Bloomsdale) plants exposed to a shortened photosynthetic period (7-hour light/17-hour dark cycle), were used as probes to examine in vivo metabolic factors that exerted rate determination on photosynthesis (PS) and on starch synthesis. Compared with control plants propagated continuously on a 12-hour light/12-hour dark cycle, 14 to 15 days were required, subsequent to a shift from 12 to 7 hours daylength, for 7-hour plants to begin to grow at rates comparable to those of 12-hour daylength plants. Because of shorter daily durations of PS, daily demand for photosynthate by growth processes appeared to be greater in the 7-hour than in the 12-hour plants. The result was that 7-hour plants established a 1.5- to 2.0-fold higher total PS rate than 12-hour plants.

Intact chloroplasts isolated from the leaves of 7-hour plants (7-h PLD) displayed 1.5- to 2.0-fold higher PS rates than plastids isolated from 12-hour plants (12-h PLD). Plastid lamellae prepared from 7- and 12-h PLD isolates displayed equivalent rates of ferredoxin-dependent ATP and NADPH photoformation indicating that electron transport processes were not factors in the establishment of higher 7-h PLD PS rates. Analyses, both in leaves as well as intact PLD isolates, of dark to light transitional increases in Calvin cycle intermediates, e.g., ribulose-1,5-bisphosphate (RuBP) and 3-phosphoglycerate (3-PGA), as well as estimations of activities of RuBP carboxylase and fructose-1,6-bisphosphate phosphatase, indicated that 7-hour plant leaves displayed higher PS rates (than 12-hour plants), because there was a higher magnitude of activity of the Calvin cycle.

Although both the foliar level of starch and sucrose, as well as starch synthesis rate, often was higher in 7-hour compared with 12-hour plant foliage, the higher 7-hour plant total PS rates indicated that maximal sucrose and starch levels did not mediate any `feedback' inhibition of PS. The higher 7-hour plant foliar and PLD PS rates resulted in higher glucose-1-P levels as well as a higher ratio of 3-PGA:Pi, both factors of which would enhance the activity of chloroplast ADP-glucose pyrophosphorylase, and which were attributed to be causal to the higher starch synthesis rates observed in 7-hour plant foliage and PLD isolates.

  相似文献   

12.
In CO2-free air, the CO2 postirradiation burst (PIB) in wheat leaves was measured with an IRGA in an open gas exchange system to ascertain its potential role in alleviating photoinhibition of photorespiratory carbon oxidation (PCO) under a CO2 deficiency. A pre-photosynthesized leaf having been transferred into CO2-free air exhibited a typical CO2 PIB following darkening which could last, with a rate substantially higher than that of dark respiration, over a long time period (at least more than 2 h) of continuously alternate irradiation (2 min)-dark (2 min)-light transitions. The rate and the time of PIB maintenance, although unaffected by the exogenous dark respiration inhibitor iodoacetic acid, were stimulated largely by increasing irradiance and O2 level, and suppressed by DCMU and N-ethyl-maleimide (NEM). They also showed a large photosynthates-loading dependence. In a darkened leaf, the irradiation-induced PIB in the CO2-free air was clearly revealed and it was characterized by an initial net uptake of respiratory CO2. The light-induced PIB was accelerated by increasing irradiance, and delayed by prolonging the period of darkening the leaves. Hence, the origin of carbon needed for a long-term CO2 evolution in the CO2-free air might not only be derived directly from the pool of intermediates in the Calvin cycle, but it might also arise indirectly from a remotely fixed reserve of photosynthates in the leaf via a PCO-mediated, yet to be further clarified, mobilization process. Such mobilization of photosynthates probably exerted an important role in coordination of photochemical reactions and carbon assimilation during photosynthesis in C3 plants under the photoinhibitory conditions.  相似文献   

13.
Stomatal opening on Vicia faba can be induced by high CO2 partial pressures (10.2%) in dark as well as in light. Stomatal aperture was measured in both cases with a hydrogen porometer. The distribution of 14C among early products of photosynthesis was studied. Comparisons are made with carboxylations occurring when stomata were open in the dark with CO2-free air and in light with 0.034% CO2. Results showed that in high CO2 partial pressure in light, less radioactivity was incorporated in Calvin cycle intermediates and more in sucrose. carboxylations and photorespiration seemed to be inhibited. In the dark in both CO2 conditions, 14C incorporation was found in malate and aspartate but also in serine and glycerate in high CO2 conditions. In light these changes in metabolic pathways may be related with the deleterious effects recorded on leaves after long-term expositions to high partial pressure of CO2.Abbreviations DHAP dihydroxyacetone phosphate - PEP phosphonenolpyruvate - PEPCK phosphonenolpyruvatecarboxykinase - PGA 3-phosphoglyceric acid - RUBPc ribulose 1,5-bisphosphate carboxylase  相似文献   

14.
Zelitch I  Day PR 《Plant physiology》1968,43(11):1838-1844
The hypothesis that net photosynthesis is diminished in many plant species because of a high rate of CO2 evolution in the light has been tested further. High rates of CO2 output in CO2-free air in comparison with dark respiration were found in Chlamydomonas reinhardi, wheat leaves, tomato leaves, and to a lesser extent in Chlorella pyrenoidosa by means of the 14C-photorespiration assay. In tobacco leaves high photorespiration was characteristic of a standard variety, Havana Seed, and a possibly still higher rate was found in a yellow heterozygous mutant, JWB Mutant. However, the dark homozygous sibling of the latter, JWB Wild, had a low photorespiration for the tobacco species. The relative rates of photorespiration were in the same sequence when measured by the 14CO2 released in normal air from leaf disks supplied with glycolate-1-14C in the light.

As would be predicted by the hypothesis, the maximal net rate of photosynthesis at 300 ppm of CO2 in the air in JWB Wild leaves was greater (24%) than in Havana Seed, while JWB Mutant had less CO2 uptake than the standard variety (21%). At 550 ppm of CO2 the differences in net photosynthesis were not as great between the 2 siblings as at 200 ppm. The relative leaf expansion rates of seedlings of the 3 tobacco varieties in a greenhouse had the same relationship as their rates of CO2 assimilation.

Thus within the tobacco species, as in a comparison between tobacco and maize, low photorespiratory CO2 evolution was correlated with higher photosynthetic efficiency. Therefore it seems that increased CO2 uptake should be achieved by genetic interference with the process of photorespiration.

  相似文献   

15.
Growing bean plants (Phaseolus vulgaris L. cv. Blue Lake) on cycles of 1 minute light-1 minute dark or 5 minutes light-5 minutes dark, providing an integrated 12 hours light-12 hours dark per day for each set of plants, led to production after 21 days of new leaves low or lacking in chloroplast pigments. Subsequently, dry weight increase was sharply cut. Leaf area was affected by the light regimes after the second week of growth. By the fourth week, plants on the 1 minute light-1 minute dark cycle showed about one-half the leaf area of the controls. Shoot growth was favored over root growth to the greatest degree on the 1 minute light-1 minute dark regimes. Chlorophyll a/b ratios were close to 3.0 in all of the intermittent light regimes, but the total amounts of chlorophyll in milligrams per primary leaf were higher from day 9 to day 23 for the 12 hour light-12 hours dark controls than for other plants.

Although they produced chlorophyll, the plants receiving 1 or 2 milliseconds per second of light continued to lose weight at the same rate as the dark controls; thus, it is assumed there was no net photosynthesis. Plants receiving flashing light allocated significantly more food reserves from the seed to roots than did dark controls. Total chlorophyll formation was significantly accelerated by 2 milliseconds per second light. With 1 millisecond per second light, it took 5 days longer to achieve the same level of chlorophyll. After the 18th day, there was a steady decline in chlorophyll, b degrading more rapidly than a.

It is thought that several light-driven reactions are involved in the observed pigment synthesis, photosynthesis, food allocation, and growth of bean. Some of these reactions may be cyclic and others linear. Collectively, they must reach a harmonic point for normal metabolism and development to occur. Because time courses for each of these reactions are different, the intermittent and flashing light technique offers the possibility of individually studying some of the key light-driven reactions.

  相似文献   

16.
The amount of wax/cm2 on expanding primary leaves of Bonus barley depends on both the photo- and thermoperiods in which the seedlings are grown. With a temperature cycle of 15–10°, transfer of dark grown leaves to the light stopped leaf expansion and after 24 hr yielded 2·5 times more wax/cm2 than is characteristic for light grown leaves. This demonstrates that wax synthesis and extrusion is not directly correlated with leaf expansion. The relative amounts of the wax classes formed by the decarboxylation pathways (< 1%), the reductive pathways (89%) or only by elongation (10%) are the same in light and dark. Within the reductive pathways, however, light stimulates aldehyde formation. Both environmental parameters can strongly influence the chain length composition of the wax classes. In the light one chain length or one group of chain lengths dominates a given wax class. In the dark two prominent chain lengths or groups thereof are found. The major chain length in these two groups differs by two or more carbons.  相似文献   

17.
1. Measurements on the photosynthesis of Cabomba caroliniana show an induction period at low and high light intensities and CO2 concentrations. 2. The equation which describes the data for Cabomba also describes the data obtained by other investigators on different species. The phenomenon is thus shown to be similar in plants representative of three phyla. 3. A derivation of the induction period equation is made from a consideration of the cycle of light and dark processes known to occur in photosynthesis. The equation indicates that light intensity enters as the square, and that the same light reactions are involved as those which affect the stationary state rates. However, a different dark reaction appears to limit photosynthesis during the induction period.  相似文献   

18.
Fisher K  Dilworth MJ  Kim CH  Newton WE 《Biochemistry》2000,39(35):10855-10865
Wild-type and three altered Azotobacter vinelandii nitrogenase MoFe proteins, with substitutions either at alpha-195(His) (replaced by alpha-195(Asn) or alpha-195(Gln)) or at alpha-191(Gln) (replaced by alpha-191(Lys)), were used to probe the interactions of HCN and CN(-), both of which are present in NaCN solutions at pH 7.4, with nitrogenase. The first goal was to determine how added C(2)H(2) enhances the rate of CH(4) production from HCN reduction by wild-type nitrogenase. In the absence of C(2)H(2), wild-type Mo-nitrogenase showed a declining total electron flux, which is an overall measure of all products formed, as the NaCN concentration was increased from 1 to 5 mM, whereas the rates of both CH(4) and NH(3) production increased with increasing NaCN concentration. The NH(3) production rate exceeded the CH(4) production rate up to 5 mM NaCN, at which point they became equal. The "excess NH(3)" likely arises from the two-electron reduction of HCN to CH(2)=NH, some of which is released and hydrolyzed to HCHO plus NH(3). With added C(2)H(2), the rate of CH(4) production increased but only until it equaled that of NH(3) production, which remained unchanged. In addition, total electron flux was decreased even more at each NaCN concentration by C(2)H(2). The increased CH(4) production did not arise from the added C(2)H(2). The lowered total electron flux with C(2)H(2) present would decrease the affinity of the enzyme for HCN, making it a poorer competitor for the binding site. Thus, less CH(2)=NH would be displaced, more CH(2)=NH would undergo the full six-electron reduction, and the rate of CH(4) production would be enhanced. A second goal was to gain mechanistic insight into the roles of the amino acid residues in the alpha-subunit of the MoFe protein at positions alpha-191 and alpha-195 in substrate reduction. At 5 mM NaCN and in the presence of excess wild-type Fe protein, the specific activity for CH(4) production by the alpha-195(Asn), alpha-195(Gln), and alpha-191(Lys) MoFe proteins was 59%, 159%, and 6%, respectively, of that of wild type. For the alpha-195(Asn) MoFe protein, total electron flux decreased with increasing NaCN concentration like wild type. However, the rates of both CH(4) and NH(3) production were maximal at 1 mM NaCN, and they remained unequal even at 5 mM NaCN. With the alpha-195(Gln) MoFe protein, the rates of production of both CH(4) and NH(3) were equal at all NaCN concentrations, and total electron flux was hardly affected by changing the NaCN concentration. With the alpha-191(Lys) MoFe protein, the rates of both CH(4) and NH(3) production were very low, but the rate of NH(3) production was higher, and both rates slowly increased with increasing NaCN concentration. A hypothesis, which is based on the varying apparent affinities of the altered MoFe proteins for HCN and CN(-), is advanced to explain the higher rate of NH(3) production versus the rate of CH(4) production and the effect of increasing NaCN concentration on electron flux to products. A new method for CH(3)NH(2) quantification showed that all four MoFe proteins produced CH(3)NH(2). Added CO significantly inhibited both CH(4) and NH(3) production from HCN with all MoFe proteins except for the alpha-191(Lys) MoFe protein, which still manifested its very low rate of NH(3) production but without CH(4) production. All of the MoFe proteins responded differently to the addition of C(2)H(2) to reactions containing NaCN. With the alpha-195(Asn) MoFe protein, added C(2)H(2) decreased the rates of both CH(4) and NH(3) production, but the rate of NH(3) production decreased much less. C(2)H(2) also exacerbated the inhibition of electron flux. With the alpha-195(Gln) MoFe protein, added C(2)H(2) decreased the rates of both CH(4) and NH(3) production substantially and about equally. C(2)H(2) also eliminated the slight decrease in total electron flux that was caused by NaCN. Added C(2)H(2) hardly affected the alpha-191(Lys) MoFe protein. (ABSTRACT TRUNCA  相似文献   

19.
The biochemical regulation of photosynthate partitioning was investigated in a starchless mutant (TC7) of Arabidopsts thaliana (L.) Henyh, that was deficient in chloroplast phosphoglucomutase (Caspar et al. 1985. Plant Physiol. 79: 11–17). Plants were raised at 20°C with a 20 h light and 4 h dark period, so that the growth rates of the mutant and wild type were similar. Two or 3 isoforms of phosphoglucomutase were separated by ion-exchange chromatography using mutant and wild type leaf preparations, respectively. Initial rate kinetics of all isoforms were similar. Light-saturated photosynthetic oxygen evolution rates of the mutant and wild type were 224 and 302 nmol g-1 chlorophyll h-1, respectively. Starch, sucrose and hexose concentrations were unchanged in wild type leaves after a dark to light transition, whereas sucrose and hexose increased in mutant leaves. Hexose-phosphates accumulated in both genotypes in the light, although the steady-state leaf concentrations of glucose 6-phosphate were 3-fold higher in mutant than in wild type samples. Fructose 2,6-bisphosphate and glucose 1,6-bisphosphate were lower in the mutant than in the wild type at the end of the dark period when mutant leaves were depleted of carbohydrates. Levels of UTP were lower in the mutant than in the wild type, possibly indicating that growth conditions had induced phosphate limited photosynthesis. These results are discussed in relation to the regulation of photosynthetic carbon metabolism.  相似文献   

20.
Photoinhibition of photosynthesis was studied in Vitis berlandieri and Vitis rupestris leaves under controlled conditions (irradiation of detached leaves to about 1900 micromol m(-2) s(-1)). The degree of photoinhibition was determined by means of the ratio of variable to maximum chlorophyll (Chl) fluorescence (Fv/Fm) and electron transport measurements. The potential efficiency of PS2, Fv/Fm declined, Fo increased significantly in leaves of V. berlandieri, while Fo decreased in V. rupestris. In isolated thylakoids, the rate of whole chain and PS2 activity markedly decreased in high light irradiated more in leaves of V. berlandieri than in leaves of V. rupestris. A smaller inhibition of PS1 activity was also observed in both leaves. In the subsequent dark incubation, fast recovery was observed in both leaves and reached maximum PS2 efficiencies similar to those observed in non-photoinhibited leaves. The artificial exogenous electron donors DPC, NH2OH and Mn2+ failed to restore the high light induced loss of PS2 activity in V. berlandieri leaves, while DPC and NH2OH significantly restored in V. rupestris leaves. It is concluded that high light inactivates on the donor side of PS2 and acceptor side of PS2 in V. rupestris and V. berlandieri leaves, respectively. Quantification of the PS2 reaction center protein D1 and 33 kDa protein of water splitting complex following high light exposure of leaves showed pronounced differences between V. berlandieri and V. rupestris leaves. The marked loss of PS2 activity in high light irradiated leaves was due to the marked loss of D1 protein and 33 kDa protein in V. berlandieri and V. rupestris leaves, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号