首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Parthenogenesis is an asexual mode of reproduction that plays an important role in the evolution of sex, sociality, and reproduction strategies in insects. Some species of cockroach exhibit thelytoky, a type of parthenogenesis in which female offspring are produced without fertilization. However, the cytological and genetic mecha? nisms of parthenogenesis in cockroaches are not well understood. Here we provide the first molecular genetic evidence that cockroaches can reproduce through automixis. Using the American cockroach Periplaneta aniericana, we performed microsatellite analysis to investigate the genetic relationship between parthenogenetically produced nymphs and the parent virgin females, and found that all parthenogenetic offspring were homozygous for autosomal microsatellite markers, whereas the female parents were heterozygous. In addition, flow cytometry analysis revealed that the parthenogenetic offspring were diploid. Taken together, our results demonstrate that P. americana exhibits automixis-type thelytoky, in which diploidy is restored by gamete duplication or terminal fusion. These findings highlight the unique reproduction strategies of cockroaches, which are more varied than was previously recognized.  相似文献   

2.
Geographic parthenogenesis is a distribution pattern, in which parthenogenetic populations tend to live in marginal habitats, at higher latitudes and altitudes and island‐like habitats compared with the sexual forms. The facultatively parthenogenetic ant Platythyrea punctata is thought to exhibit this general pattern throughout its wide range in Central America and the Caribbean Islands. Workers of P. punctata from the Caribbean produce diploid female offspring from unfertilized eggs by thelytokous parthenogenesis, and mated females and males are rare. In contrast, workers in one colony from Costa Rica were incapable of thelytoky; instead mated workers produced all female offspring. Because sample sizes were very low in former studies, we here use microsatellite markers and explicit tests of thelytoky to examine the population genetic structure of ancestral and derived populations of P. punctata throughout the Caribbean and Central America. Populations from the Caribbean islands were fully capable of parthenogenesis, and population genetic signatures indicate that this is the predominant mode of reproduction, although males are occasionally produced. In contrast, the northernmost population on the mainland (Texas) showed signatures of sexual reproduction, and individuals were incapable of reproduction by thelytoky. Contrary to expectations from a geographic parthenogenesis distribution pattern, most parts of the mainland populations were found to be facultatively thelytokous, with population genetic signatures of both sexual and parthenogenetic reproduction.  相似文献   

3.
Parthenogenesis has evolved independently in more than 10 Drosophila species. Most cases are tychoparthenogenesis, which is occasional or accidental parthenogenesis in normally bisexual species with a low hatching rate of eggs produced by virgin females; this form is presumed to be an early stage of parthenogenesis. To address how parthenogenesis and sexual reproduction coexist in Drosophila populations, we investigated several reproductive traits, including the fertility, parthenogenetic capability, diploidization mechanisms, and mating propensity of parthenogenetic D. albomicans. The fertility of mated parthenogenetic females was significantly higher than that of virgin females. The mated females could still produce parthenogenetic offspring but predominantly produced offspring by sexual reproduction. Both mated parthenogenetic females and their parthenogenetic-sexual descendants were capable of parthenogenesis. The alleles responsible for parthenogenesis can be propagated through both parthenogenesis and sexual reproduction. As diploidy is restored predominantly by gamete duplication, heterozygosity would be very low in parthenogenetic individuals. Hence, genetic variation in parthenogenetic genomes would result from sexual reproduction. The mating propensity of females after more than 20 years of isolation from males was decreased. If mutations reducing mating propensities could occur under male-limited conditions in natural populations, decreased mating propensity might accelerate tychoparthenogenesis through a positive feedback mechanism. This process provides an opportunity for the evolution of obligate parthenogenesis. Therefore, the persistence of facultative parthenogenesis may be an adaptive reproductive strategy in Drosophila when a few founders colonize a new niche or when small populations are distributed at the edge of a species'' range, consistent with models of geographical parthenogenesis.  相似文献   

4.
Transitions from sexual reproduction to parthenogenesis may occur along multiple evolutionary pathways and involve various cytological mechanisms to produce diploid eggs. Here, we investigate routes to parthenogenesis in Timema stick insects, a genus comprising five obligate parthenogens. By combining information from microsatellites and karyotypes with a previously published mitochondrial phylogeny, we show that all five parthenogens likely evolved spontaneously from sexually reproducing species, and that the sexual ancestor of one of the five parthenogens was probably of hybrid origin. The complete maintenance of heterozygosity between generations in the five parthenogens strongly suggests that eggs are produced by apomixis. Virgin females of the sexual species were also able to produce parthenogenetic offspring, but these females produced eggs by automixis. High heterozygosity levels stemming from conserved ancestral alleles in the parthenogens suggest, however, that automixis has not generated the current parthenogenetic Timema lineages but that apomixis appeared abruptly in several sexual species. A direct transition from sexual reproduction to (at least functional) apomixis results in a relatively high level of allelic diversity and high efficiency for parthenogenesis. Because both of these traits should positively affect the demographic success of asexual lineages, spontaneous apomixis may have contributed to the origin and maintenance of asexuality in Timema .  相似文献   

5.
Asexual reproduction could offer up to a two‐fold fitness advantage over sexual reproduction, yet higher organisms usually reproduce sexually. Even in facultatively parthenogenetic species, where both sexual and asexual reproduction is sometimes possible, asexual reproduction is rare. Thus, the debate over the evolution of sex has focused on ecological and mutation‐elimination advantages of sex. An alternative explanation for the predominance of sex is that it is difficult for an organism to accomplish asexual reproduction once sexual reproduction has evolved. Difficulty in returning to asexuality could reflect developmental or genetic constraints. Here, we investigate the role of genetic factors in limiting asexual reproduction in Nauphoeta cinerea, an African cockroach with facultative parthenogenesis that nearly always reproduces sexually. We show that when N. cinerea females do reproduce asexually, offspring are genetically identical to their mothers. However, asexual reproduction is limited to a nonrandom subset of the genotypes in the population. Only females that have a high level of heterozygosity are capable of parthenogenetic reproduction and there is a strong familial influence on the ability to reproduce parthenogenetically. Although the mechanism by which genetic variation facilitates asexual reproduction is unknown, we suggest that heterosis may facilitate the switch from producing haploid meiotic eggs to diploid, essentially mitotic, eggs.  相似文献   

6.
Facultative reproductive strategies that incorporate both sexual and parthenogenetic reproduction should be optimal, yet are rarely observed in animals. Resolving this paradox requires an understanding of the economics of facultative asexuality. Recent work suggests that switching from parthenogenesis to sex can be costly and that females can resist mating to avoid switching. However, it remains unclear whether these costs and resistance behaviors are dependent on female age. We addressed these questions in the Cyclone Larry stick insect, Sipyloidea larryi, by pairing females with males (or with females as a control) in early life prior to the start of parthenogenetic reproduction, or in mid‐ or late life after a period of parthenogenetic oviposition. Young females were receptive to mating even though mating in early life caused reduced fecundity. Female resistance to mating increased with age, but reproductive switching in mid‐ or late life did not negatively affect female survival or offspring performance. Overall, mating enhanced female fitness because fertilized eggs had higher hatching success and resulted in more adult offspring than parthenogenetic eggs. However, female fecundity and offspring viability were also enhanced in females paired with other females, suggesting a socially mediated maternal effect. Our results provide little evidence that switching from parthenogenesis to sex at any age is costly for S. larryi females. However, age‐dependent effects of switching on some fitness components and female resistance behaviors suggest the possibility of context‐dependent effects that may only be apparent in natural populations.  相似文献   

7.
Worldwide, parthenogenetic reproduction has evolved many times in the stick insects (Phasmatidae). Many parthenogenetic stick insects show the distribution pattern known as geographic parthenogenesis, in that they occupy habitats that are at higher altitude or latitude compared with their sexual relatives. Although it is often assumed that, in the short term, parthenogenetic populations will have a reproductive advantage over sexual populations; this is not necessarily the case. We present data on the distribution and evolutionary relationships of sexual and asexual populations of the New Zealand stick insect, Clitarchus hookeri. Males are common in the northern half of the species’ range but rare or absent elsewhere, and we found that most C. hookeri from putative‐parthenogenetic populations share a common ancestor. Female stick insects from bisexual populations of Clitarchus hookeri are capable of parthenogenetic reproduction, but those insects from putative‐parthenogenetic populations produced few offspring via sexual reproduction when males were available. We found similar fertility (hatching success) in mated and virgin females. Mated females produce equal numbers of male and female offspring, with most hatching about 9–16 weeks after laying. In contrast, most eggs from unmated females took longer to hatch (21–23 weeks), and most offspring were female. It appears that all C. hookeri females are capable of parthenogenetic reproduction, and thus could benefit from the numerical advantage this yields. Nevertheless, our phylogeographic evidence shows that the majority of all‐female populations over a wide geographic area originate from a single loss of sexual reproduction.  相似文献   

8.
Parthenogenesis, including facultative parthenogenesis, is common among orthopteroid insects. We investigated the fitness associated with sexual and asexual reproduction within a population of the facultatively parthenogenetic cockroach Nauphoeta cinerea. There is significantly reduced fitness for females reproducing parthenogenetically compared to sexually. Fewer than half of all females can reproduce parthenogenetically. In addition, tenfold fewer offspring are produced by parthenogenesis due to reductions in both the number of offspring produced per clutch and the number of clutches produced. Development and brooding of sexually or parthenogenetically produced first instar nymphs does not differ, although the production of the first parthenogenetic clutch is delayed relative to the first sexually produced clutch. The fitness of parthenogens is also lower than the fitness of sexually produced offspring. Parthenogens are less viable than sexually produced offspring even in the benign conditions of the laboratory. Development to adulthood of parthenogens is slower. Fewer parthenogens survive to adulthood and the adult life span of parthenogens is reduced. Individuals produced by parthenogenetic reproduction are unlikely to reproduce parthenogenetically themselves. Finally, parthenogenetically produced females produce fewer offspring by sexual reproduction than do sexually produced females. Since parthenogenetic reproduction is apomictic in N. cinerea and parthenogens are diploid, we suggest that asexual reproduction is developmentally constrained. Once meiosis has evolved, returning to a mitotic mode of reproduction may be difficult. Nauphoeta cinerea offers a system for testing how asexuality is constrained as modes of reproduction can be compared within a facultative parthenogen.  相似文献   

9.
SUMMARY 1. Sexual reproduction in the heterogonic life cycle of many rotifers occurs when amictic females, which produce diploid eggs developing parthenogenetically into females, are environmentally induced to produce mictic females. Mictic females produce haploid eggs which develop parthenogenetically into males or, if fertilised, into resting eggs – encysted embryos which develop into amictic females after an obligatory diapause. 2. A Florida strain of Brachionus calyciflorus was used to test the prediction that amictic females hatching from resting eggs (Generation 1), and those from the next few parthenogenetic generations, have a lower propensity to produce mictic daughters in response to crowding than those from later parthenogenetic generations. In 10 replicate clones, populations initiated by amictic females from generations 1, 5, 8, 12 and 18 were exposed to a standardised crowding stimulus, and the proportion of mictic females in the populations was determined. These proportions varied significantly across generations and clones. They were very low in the early generations and gradually increased to a mean of about 0.5 at Generation 12. 3. The mechanism for the transgenerational plasticity in response to crowding is not known. One possibility is that resting eggs contain an agent from their fertilised mictic mother's yolk gland that prevents development into mictic females and is transmitted in increasingly low concentrations through successive parthenogenetic generations of amictic females. 4. This parental effect may contribute to clonal fitness by ensuring that a clone developing from a resting egg will attain a higher population size through female parthenogenesis before maximising its commitment to sexual reproduction, even in the presence of a crowding stimulus from a high population density of other clones. Therefore, the number of resting eggs to which a clone contributes its genes should be maximised. 5. The clonal variation in propensity to produce mictic females in this strain indicates genetic variation in the trade‐off between maximising population growth via female parthenogenesis and increasing the probability of producing at least some resting eggs before local extinction from the plankton.  相似文献   

10.
Naturally occurring unisexual reproduction has been documented in less than 0.1% of all vertebrate species. Among vertebrates, true parthenogenesis is known only in squamate reptiles. In all vertebrate cases that have been carefully studied, the clonal or hemiclonal taxa have originated through hybridization between closely related sexual species. In contrast, parthenogenetic reproduction has arisen in invertebrates by a variety of mechanisms, including likely cases of “spontaneous” (nonhybrid) origin, a situation not currently documented in natural populations of vertebrates. Here, we present molecular data from the Neotropical night lizard genus Lepidophyma that provides evidence of independent nonhybrid origins for diploid unisexual populations of two species from Costa Rica and Panama. Our mitochondrial and nuclear phylogenies are congruent with respect to the unisexual taxa. Based on 14 microsatellite loci, heterozygosity (expected from a hybrid origin) is low in Lepidophyma reticulatum and completely absent in unisexual L. flavimaculatum. The unique value of this system will allow direct comparative studies between parthenogenetic and sexual lineages in vertebrates, with an enormous potential for this species to be a model system for understanding the mechanisms of nonhybrid parthenogenesis.  相似文献   

11.
The little fire ant, Wasmannia auropunctata, displays a peculiar breeding system polymorphism. Classical haplo-diploid sexual reproduction between reproductive individuals occurs in some populations, whereas, in others, queens and males reproduce clonally. Workers are produced sexually and are sterile in both clonal and sexual populations. The evolutionary fate of the clonal lineages depends strongly on the underlying mechanisms allowing reproductive individuals to transmit their genomes to subsequent generations. We used several queen-offspring data sets to estimate the rate of transition from heterozygosity to homozygosity associated with recombination events at 33 microsatellite loci in thelytokous parthenogenetic queen lineages and compared these rates with theoretical expectations under various parthenogenesis mechanisms. We then used sexually produced worker families to define linkage groups for these 33 loci and to compare meiotic recombination rates in sexual and parthenogenetic queens. Our results demonstrate that queens from clonal populations reproduce by automictic parthenogenesis with central fusion. These same parthenogenetic queens produce normally segregating meiotic oocytes for workers, which display much lower rates of recombination (by a factor of 45) than workers produced by sexual queens. These low recombination rates also concern the parthenogenetic production of queen offspring, as indicated by the very low rates of transition from heterozygosity to homozygosity observed (from 0% to 2.8%). We suggest that the combination of automixis with central fusion and a major decrease in recombination rates allows clonal queens to benefit from thelytoky while avoiding the potential inbreeding depression resulting from the loss of heterozygosity during automixis. In sterile workers, the strong decrease of recombination rates may also facilitate the conservation over time of some coadapted allelic interactions within chromosomes that might confer an adaptive advantage in habitats disturbed by human activity, where clonal populations of W. auropunctata are mostly found.  相似文献   

12.
This study reports on two parthenogenetic strains of the migratory locust Locusta migratoria. The offspring of thelytokou females had a single fragment per microsatellite loci. All offspring of the parthenogenetic F1 females were genetically identical. These results further confirmed that restitution of the sister products of early cleavage mitoses and cell fusion might be the most likely diploidization mechanisms in the thelytokous locusts. Polymerase chain reaction amplification results demonstrated that thelytoky in the locust was not induced by Wolbachia bacteria. Apart from the low fitness gained in thelytokous females, large populations with migration and losing heterozygosity may be other reasons why regular parthenogenesis has not evolved in the locust.  相似文献   

13.
Groot TV  Bruins E  Breeuwer JA 《Heredity》2003,90(2):130-135
Parthenogenesis among reptiles is rare. Only a few species have the ability to reproduce asexually. Most of these are obligate parthenogenetic species that consist (almost) entirely of females, which can reproduce solely through parthenogenesis. Rarer are sexual species that only sporadically reproduce through parthenogenesis. A female Python molurus bivittatus (Reptilia, Boidae) from the Artis Zoo, Amsterdam, produced eggs in five consecutive years that contained embryos while she was isolated from males. These eggs might be fertilized with stored sperm, or might be the product of parthenogenesis. Parthenogenesis has not been shown for the Boidae family before. We performed parentship analyses on the snake and seven of her embryos using microsatellites and AFLP. Four microsatellite loci developed for this species combined with three loci developed previously for different snake species revealed too little variation to discriminate between sperm retention and parthenogenesis. With AFLP we were able to confirm that the Artis Zoo female reproduced parthenogenetically. Because the offspring are genetically identical to their mother, whereas in previous studies on sporadic parthenogenesis in snakes a loss of genetic information was reported, we conclude that the meiotic pathways that produce the diploid egg cells are different.  相似文献   

14.
Microbe-associated parthenogenesis (thelytoky) has been discovered in nineTrichogramma species, parasitoids of mainly lepidopteran eggs. Parthenogenetic and bisexual conspecifics co-occur in many field populations. As an initial step to understand the dynamics of these two reproductive strategies we studied the effect of microbe-associated parthenogenesis on fecundity. The fecundity of two parthenogenetic isofemale lines ofT. pretiosum and one ofT. deion was compared with bisexual lines derived from them by antibiotic treatment. In all three cases parthenogenetic females were less fecund over their lifetime than bisexual females. Also, parthenogenetic females produced fewer daughters in two cases and in one case a similar number of daughters as their respective bisexual counterparts. The lack of mating and insemination was excluded as an explanation for the reduced fecundity of parthenogenetic females, because mated and virgin parthenogenetic females produce the same number of offspring. Antibiotic treatment can also be excluded because females of field-collected bisexual line treated with antibiotics produced the same number of offspring as untreated females. The reduced fecundity of parthenogenetic females was caused by a lower number of eggs being laid rather than by a greater developmental mortality. Parthenogenetic females produced less daughters than bisexual females when host availability was not limiting, but when host availability was severely limited, parthenogenetic females produced more daughters than the bisexual females.  相似文献   

15.
Until recently, facultative automictic parthenogenesis within the squamate reptiles exhibiting ZZ:ZW genetic sex determination has resulted in single reproductive events producing male (ZZ) or female (ZW) offspring. With the recent discovery of viable parthenogenetically produced female (WW) Boa constrictors, the existence of further parthenogenetic events resulting in WW females was questioned. Here, we provide genetic evidence for consecutive virgin births by a female Colombian rainbow boa (Epicrates maurus), resulting in the production of WW females likely through terminal fusion automixis. Samples were screened at 22 microsatellite loci with 12 amplifying unambiguous products. Of these, maternal heterozygosity was observed in 4, with the offspring differentially homozygous at each locus. This study documents the first record of parthenogenesis within the genus Epicrates, a second within the serpent lineage Boidae, and the third genetically confirmed case of consecutive virgin births of viable offspring within any vertebrate lineage. Unlike the recent record in Boa constrictors, the female described here was isolated from conspecifics from birth, demonstrating that males are not required to stimulate parthenogenetic reproduction in this species and possibly other Boas.  相似文献   

16.
 Gametophytic apomixis in Kentucky bluegrass (Poa pratensis L.) involves the parthenogenetic development of unreduced eggs from aposporic embryo sacs. Attempts to transfer the apomictic trait beyond natural sexual barriers require further elucidation of its inheritance. Controlled crosses were made between sexual clones and apomictic genotypes, and the parthenogenetic capacity of (poly)diploid hybrids was ascertained by the auxin test. A bulked segregant analysis with RAPD and AFLP markers was then used to identify a genetic linkage group related to the apomictic mode of reproduction. This approach enabled us to detect both an AFLP marker located 6.6 cM from the gene that putatively controls parthenogenesis and a 15.4-cM genomic window surrounding the target locus. A map of the P. pratensis chromosome region carrying the gene of interest was constructed using additional RAPD and AFLP markers that co-segregated with the parthenogenesis locus. Highly significant linkage between parthenogenesis and a number of AFLP markers that also appeared to belong to a tight linkage block strengthens the hypothesis of monogenic inheritance of this trait. If a single gene is assumed, apomictic polyploid types of P. pratensis would be simplex for a dominant allele that confers parthenogenesis, and this genetic model would be further supported by the bimodal distribution of the degree of parthenogenesis exhibited in the (poly)diploid progenies from sexual x apomictic matings. The molecular tagging of apomixis in P. pratensis is an essential step towards marker-assisted breeding and map-based cloning strategies aimed at investigating and manipulating its mode of reproduction. Received: 13 January 1998 / Accepted: 19 January 1998  相似文献   

17.
The molecular mechanisms leading to asexuality remain little understood despite their substantial bearing on why sexual reproduction is dominant in nature. Here, we examine the role of hybridization in the origin and spread of obligate asexuality in Daphnia pulex, arguably the best‐documented case of contagious asexuality. Obligately parthenogenetic (OP) clones of D. pulex have traditionally been separated into ‘hybrid’ (Ldh SF) and ‘nonhybrid’ (Ldh SS) forms because the lactase dehydrogenase (Ldh) locus distinguishes the cyclically parthenogenetic (CP) lake dwelling Daphnia pulicaria (Ldh FF) from its ephemeral pond dwelling sister species D. pulex (Ldh SS). The results of our population genetic analyses based on microsatellite loci suggest that both Ldh SS and SF OP individuals can originate from the crossing of CP female F1 (D. pulex × D. pulicaria) and backcross with males from OP lineages carrying genes that suppress meiosis specifically in female offspring. In previous studies, a suite of diagnostic markers was found to be associated with OP in Ldh SS D. pulex lineages. Our association mapping supports a similar genetic mechanism for the spread of obligate parthenogenesis in Ldh SF OP individuals. Interestingly, our study shows that CP D. pulicaria carry many of the diagnostic microsatellite alleles associated with obligate parthenogenesis. We argue that the assemblage of mutations that suppress meiosis and underlie obligate parthenogenesis in D. pulex originated due to a unique historical hybridization and introgression event between D. pulex and D. pulicaria.  相似文献   

18.
A 22‐year‐old captive Brazilian rainbow boa (Epicrates cenchria cenchria) gave birth to four offspring after being housed with a vasectomized male. Sexual reproduction as a result of failed prior vasectomy, recanalization of the vas deferens, or prolonged sperm storage was ruled out using the clinical history, histopathology, and gross necropsy. Short tandem repeat (STR) DNA markers were genotyped in the male, female, and four offspring. None of the offspring possessed a diagnostic STR allele present in the potential sire. In addition, all offspring were homozygous at each STR locus evaluated, supporting parthenogenetic reproduction. This is the first report of parthenogenesis in a Brazilian rainbow boa and has implications for the conservation of reptiles maintained in captive breeding programs. Zoo Biol. 32:172–176, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

19.
The link between adaptive genetic variation, individual fitness and wildlife population dynamics is fundamental to the study of ecology and evolutionary biology. In this study, a Bayesian modelling approach was employed to examine whether individual variability at two major histocompatibility complex (MHC) class II loci (DQA and DRB) and eight neutral microsatellite loci explained variation in female reproductive success for wild populations of European brown hare (Lepus europaeus). We examined two aspects of reproduction: the ability to reproduce (sterility) and the number of offspring produced (fecundity). Samples were collected from eastern Austria, experiencing a sub‐continental climatic regime, and from Belgium with a more Atlantic‐influenced climate. As expected, reproductive success (both sterility and fecundity) was significantly influenced by age regardless of sampling locality. For Belgium, there was also a significant effect of DQA heterozygosity in determining whether females were able to reproduce (95% highest posterior density interval of the regression parameter [−3.64, −0.52]), but no corresponding effect was found for Austria. In neither region was reproduction significantly associated with heterozygosity at the DRB locus. DQA heterozygotes from both regions also showed a clear tendency, but not significantly so, to produce a larger number of offspring. Predictive simulations showed that, in Belgium, sub‐populations of homozygotes will have higher rates of sterile individuals and lower average offspring numbers than heterozygotes. No similar effect is predicted for Austria. The mechanism for the spatial MHC effect is likely to be connected to mate choice for increased heterozygosity or to the linkage of certain MHC alleles with lethal recessives at other loci.  相似文献   

20.
The citrine forktail, Ischnura hastata, is an American damselfly species, widely distributed, with only‐female populations also found at the Azores islands. Here we report the development of nine microsatellite loci for this species. The number of alleles per locus ranged from six to 11, with an observed heterozygosity ranging from 0.245 to 0.737. Eight of the nine loci successfully amplified in a sample of parthenogenetic females from the Azores. The developed microsatellite system will be a useful tool to investigate population structure, as well as the number of clones, the type of parthenogenesis and the origin of the parthenogenetic populations of this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号