首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The spotted‐wing drosophila (SWD), Drosophila suzukii (Diptera: Drosophilidae), originally distributed across a few Asian countries including South Korea, has invaded North America and Europe but is absent from Australia. In order to export the South Korean grape cultivar Campbell Early to Australia, its potential to serve as an oviposition and development medium for SWD must first be determined. In this study, we determined the oviposition and development potential of SWD on Campbell Early, after elucidating the SWD life cycle and establishing an artificial diet‐based mass‐culturing system. An investigation of the life cycle under five temperature regimes (16, 19, 22, 25 and 28°C) showed that the durations of the egg, larval and adult stages were shortened when temperature was increased from 16, 19, 22, 25 and 28°C, but pupal duration was shortest at 25°C and extended again at 28°C. A test of oviposition and development potential of SWD on Campbell Early grape clusters showed oviposition of 30.8 ± 6.8 eggs per cluster of injured grapes and 157.7 ± 16.2 eggs on a culture dish of artificial diet. However, in a similar experiment using uninjured grape clusters, only a single egg was deposited on the grape skin, which soon dried. In light of these results, newly harvested grapes left at vineyards during daily harvests are unlikely to serve as an oviposition and development medium for SWD, as long as the grapes remain uninjured.  相似文献   

2.
The spotted wing drosophila (SWD) causes massive losses in red raspberry (Rubus idaeus L.) cultivation by direct oviposition leading to damages of the soft skin fruits. Knowledge of the fly's host preference could help farmers in managing the pest. We used a laboratory-based oviposition assay for screening the germplasm of Rubus to ascertain whether the spotted wing drosophila prefers certain cultivars to others for oviposition and if preference is based on citric acid and Brix content or firmness. Correlation analyses of evaluated characters with no-choice tests results in 3 years obtained no correlation between citric acid, Brix content and oviposition. Primocane raspberries were lower affected by SWD than floricane raspberries. The Rubus hybrid cultivar “Dorman Red” and the primocane cultivar “Pokusa” showed the lowest oviposition rate compared to the other 58 evaluated genotypes. We found that oviposition correlates to firmness of the investigated cultivars, which strongly indicates that host preference is partly connected to that character in raspberries. The results are discussed regarding the use of Rubus genetic resources in breeding and integrated pest management to control spotted wing drosophila in the field.  相似文献   

3.
Sour rot is a disease complex that causes serious damage in viticulture. The common vinegar fly Drosophila melanogaster (Diptera: Drosophilidae) is associated with sour rot in overripe or otherwise damaged grapes. Drosophila suzukii (Diptera: Drosophilidae) is an invasive species, which is suspected to induce sour rot in previously undamaged grapes due to the flies' ability to infest healthy, undamaged soft fruits with its serrated ovipositor. As a consequence, infection of healthy grapes by D. suzukii may facilitate the colonization by D. melanogaster. We investigated the single and combined effects of D. suzukii and D. melanogaster on sour rot development by measuring volatile acidity under near-natural conditions in the vineyard, along with laboratory experiments under controlled climate. In 2017, the combined field and laboratory experiments suggested that the presence of D. suzukii and D. melanogaster increased the volatile acidity levels at a similar rate. In 2018, the field experiments showed an only marginal increase in sour rot development in treatments with both Drosophila species. Under more favourable laboratory conditions, the presence of D. suzukii, but not D. melanogaster triggered sour rot emergence. A facilitating effect of D. suzukii infestation for D. melanogaster was not detectable. These findings suggest that D. suzukii does in fact have the potential to trigger sour rot, but will probably rarely do so under field conditions in the vineyard, at least in the studied region. Instead, our study showed that D. melanogaster can have a similar impact on sour rot development as D. suzukii, emphasizing the need of comparative studies.  相似文献   

4.
Temperature and humidity affect insect physiology, survival, fecundity, reproductive status and behaviour. Complementing previous work investigating the effects of temperature on adult survival and fecundity of the invasive frugivorous pest, Drosophila suzukii (Matsumura), this study was conducted to determine the effect of humidity on D. suzukii larval development, adult survival, fecundity and reproductive status using blueberry as a host substrate. The five constant humidity levels in laboratory bioassays were 20, 33, 71, 82 and 94% RH at 20.6 ± 0.2°C. As RH increased, fecundity and longevity increased. At the higher humidity levels, RH had limited impact on mean generation times (T), larval development and eclosion times. The highest net reproductive rate (Ro = 68) and highest intrinsic rate of population increase (rm = 0.17) were both recorded at 94% RH. The reproductive status of females, as indicated by the number of mature oocytes per female, was significantly greater at 82 and 94% RH, compared to 71% RH. In addition to the laboratory procedures, we correlated field trap captures over an 81‐day summer period to relative humidity (RH) levels in close proximity to those traps. In the field, low ambient humidity levels resulted in decreased trap captures. A humidity‐dependent population model predicted lower densities of D. suzukii relative to populations at higher humidity. This study supports the hypothesis that cultural practices that minimize lower humidity levels in crops can contribute to the management of D. suzukii. Such methods may include open pruning, drip irrigation and field floor management.  相似文献   

5.
Drosophila suzukii is a major pest of soft‐skinned fruits, and insecticides are often used to prevent fruit damage caused by oviposition. As D. suzukii produces many generations per year, repeated insecticide applications are required. Furthermore, D. suzukii attacks ripening and ripe fruits shortly before harvest. Therefore, the use of synthetic insecticides is limited by long pre‐harvest intervals and maximum residue limits. To be able to offer producers immediate and sustainable solutions, we tested 25 natural crop protection products with three different application methods in a laboratory screening. We show that application method is an important factor for the efficacy of the tested products. Of six natural insecticides, only Spinosad was toxic for D. suzukii and reduced the oviposition on treated blueberries. The tested oil products had no control effect and products based on different entomopathogenic fungi and Bacillus thuringiensis rather enhanced oviposition. Mineral products (Kaolin, CaCO3, Ca(OH)2 and clinoptilolith) applied as spray solutions were not toxic, but significantly reduced oviposition on blueberries. We provide the first study in which different application methods have been used to compare numerous, commercially available, natural crop protection products with different modes of action against adult D. suzukii. Our findings provide consultants and producers with important insights for the development of sustainable pest control strategies against D. suzukii.  相似文献   

6.
Drosophila suzukii (Matsumura) is a major pest of soft‐skinned fruit. Females have an enlarged serrated ovipositor that is used to cut into ripening fruit and lay their eggs. Larvae develop inside infested fruit, rendering fruit unmarketable. Previous research has indicated that D. suzukii can move from adjacent woodlands into cultivated fields. Furthermore, multiple generations can occur in a single season as a result of fallen, infested fruit in the fields. Our hypothesis was that border sprays and soil tillage of field aisles can reduce D. suzukii presence in commercial blackberry fields (Rubus spp.). To test our hypothesis, we conducted split‐plot field trials in organic blackberry fields for 3 and 4 weeks in 2014 and 2015, respectively. Treatments were border sprays (whole plot, pyrethrins + azadirachtin) and tillage (subplot, ~15 cm). We evaluated adult D. suzukii in both years and berry infestation and natural enemies in 2015 only. We found that plots with border treatments had fewer D. suzukii (larvae and adults) than plots without border sprays. Tilling the soil between rows of blackberry bushes did not have a significant effect on adult captures or larval infestation of fruit. Natural enemies were unaffected by the border spray and tillage treatments. Our results confirmed our hypothesis that border sprays can be utilized to reduce populations of D. suzukii in organic blackberry fields, while maintaining populations of natural enemies. However, the effect of soil tillage is unclear and requires further investigation. Additional research should investigate the timing of border sprays and their effect on high infestations of D. suzukii as well as quantify fruit fall and depth of burial to reduce D. suzukii emergence using soil tillage.  相似文献   

7.
  1. Drosophila suzukii is an invasive, polyphagous pest of soft-skinned fruits, having huge impact on fruit production in Asia, North and South America and Europe including Germany.
  2. To investigate the effect of temperature on oviposition, egg-to-adult development success and duration, as well as immature heat survival and adult cold survival for a German D. suzukii population several experiments were conducted under different constant temperatures in the laboratory. The resulting life cycle data were described mathematically as functions of temperature and compared with experimental results of other researchers in a summary table.
  3. Curve fittings used herein revealed that minimum, optimum and maximum temperatures are: 13.2, 26.7 and 33.6 °C for oviposition, 14.1, 22.6 and 30.0 °C for egg-to-adult development success, and 9.6, 27.3 and 35.7 °C for egg-to-adult development duration. Eggs and larvae of D. suzukii showed a reduced heat survival within the tested temperature range of 29 to 41 °C and exposure durations from 1 to 8 h. A cold survival rate of 50% was measured at e.g. −6 °C for 4 h in summer morph adults and at e.g. −6 °C for 45 h in winter morph adults confirming that the latter are more cold tolerant.
  4. Results obtained in this study for a German population of D. suzukii are similar to those obtained for populations of other origins such as Canada, Japan, Spain and USA. Thus, presumably, present data based on a German D. suzukii population can be used for a new or fine-tune of already existing population dynamics models of D. suzukii in order to support an effective pest management strategy.
  相似文献   

8.
Laboratory trials were conducted to determine whether the spotted wing drosophila, Drosophila suzukii (Matsumura) (Diptera: Drosophilidae), puparium can provide an effective physical barrier to protect immature stages of the pupal parasitoid Pachycrepoideus vindemiae (Rondani) (Hymenoptera: Pteromalidae) from spinosad treatments. Spinosad insecticides are currently an important suppression strategy for D. suzukii in organically managed fruit orchards although they are well known to cause mortality in hymenopteran parasitoids. High adult P. vindemiae female mortality (83%) occurred within 24 h of exposure to D. suzukii pupae treated with 10 mg a.i. l?1 spinosad and female parasitoids did not avoid the pupae treated with similar low levels of spinosad in choice tests that included untreated pupae. Pachycrepoideus vindemiae develops as an idiobiont ectoparasitoid on host fly pupa within the sclerotized host puparium. Significant P. vindemiae survival and emergence was recorded when parasitized D. suzukii puparia were exposed to field treatment levels of spinosad; however, the parasitoid survival was dependent on the time of the spinosad treatment of the host post‐parasitization. Significant parasitoid survival occurred when the host puparia were treated at 2 weeks when the parasitoid was in the pupal stage but did not occur when the host puparia were treated at 1 week post‐parasitization, when the parasitoids were still in a larval stage. The parasitoid adults consumed or otherwise came in contact with residual degrading spinosad when they exited the treated host, and consequently high and low adult parasitoid mortality occurred when the adults emerged from puparia treated at 2 and 1 week(s), respectively. Our study indicates that generally the integration of P. vindemiae parasitism into a sustainable D. suzukii management program is not compatible with spinosad treatments, although P. vindemiae in the pupal stage inside sclerotized host puparia appear to be minimally impacted by spinosad treatments, provided that the spinosad degrades before parasitoid emergence.  相似文献   

9.
Drosophila suzukii (Matsumura) is a major global pest of soft fruit crops. Based on field observations, we tested in the laboratory whether sweet alyssum (Lobularia maritima (L.)) flower volatiles and their major constituent compounds, acetophenone and benzaldehyde, repelled D. suzukii flies. Volatiles from cut flowers and acetophenone reduced numbers of D. suzukii attracted to raspberries, and acetophenone reduced numbers of larvae in the raspberries. Testing of sweet alyssum plantings or dispensing acetophenone to repel D. suzukii in fields and lower fruit infestation should be conducted.  相似文献   

10.
Drosophila suzukii (Matsumura) (Diptera: Drosophilidae) is a widely distributed pest species of soft-skinned fruits. Recent studies suggest the use of sterile insect technique (SIT) as a control method for this species; however, many factors can impact effectiveness of a SIT programme, including the environmental conditions. Environmental condition is critical at the time of the release and in the days afterwards, since it may impact sterile insects’ survival and ability to mate. Thus, we verified the influence of temperature and relative humidity on mating and survival of fertile and sterile D. suzukii, when insects were food provided or deprived. Highest mating rates occurred when sterile or fertile flies provided with food were exposed to 25ºC or 81%–100% relative humidity, while temperatures of 10 and 35ºC and humidity below 60% impaired mating. Overall, mating rate among food-deprived flies was low in all temperatures and humidity levels tested, but fertile insects were more prone to mate when compared to sterile flies. Survival was negatively influenced by high temperatures, low relative humidity and food deprivation. The information present in this study is useful to be considered for release of sterile D. suzukii.  相似文献   

11.
The spotted wing drosophila, Drosophila suzukii (Matsumura) (Diptera: Drosophilidae) is a highly polyphagous pest of a wide variety of wild or cultivated berry and stone fruit. Originating from Southeast Asia, it has recently invaded a wide range of regions in Europe and North America. It is well known that insect microbiotas may significantly influence several aspects of the host biology and play an important role in invasive species introduction into new areas. However, in spite of the great economic importance of D. suzukii, a limited attention has been given so far to its microbiota. In this study, we present the first in‐depth characterization of gut bacterial diversity from field (native and invasive range) and lab‐reared populations of this insect. The gut bacterial communities of field insects were dominated, regardless of their origin, by 2 families of the phylum Proteobacteria: Acetobacteraceae and Enterobacteriaceae, while Firmicutes, mainly represented by the family Staphylococcaceae, prevailed in lab‐reared population. Locality was the most significant factor in shaping the microbiota of wild flies. Moreover, a negative correlation between diversity and abundance of Enterobacteriaceae and the time elapsed since the establishment of D. suzukii in a new region was observed. Altogether our results indicate that habitat, food resources as well as the colonization phase of a new region contribute to shape the bacterial communities of the invasive species which, in turn, by evolving more quickly, could influence host adaptation in a new environment.  相似文献   

12.
The spotted wing drosophila, Drosophila suzukii Matsumura, is an invasive pest of many fruit crops throughout North America, South America and Europe. The presence of this destructive pest has led to an increase in the number of insecticide applications. While conventional growers have an arsenal of different insecticides at their disposal, organic growers have a limited selection of effective options and rely heavily on applications of Entrust®, the organic formulation of spinosad. An important part of research is to develop more tools for organic growers and evaluate the effects of insecticides intended to target D. suzukii on natural enemies in the system. The effects of six organic pesticides alone and in combination with three adjuvants and two phagostimulants were tested in laboratory bioassays on three common natural enemies in berry production systems including two predators, Chrysoperla rufilabris and Orius insidiosus, and a parasitoid wasp, Aphidius colemani. Under the IOBC toxicity rating scale, spinosad was rated consistently from slightly harmful to harmful across natural enemy species and residue age (the effects of pesticides over time). Sabadilla alkaloids caused mortality to O. insidiosus equal to that of spinosad. All tested pesticides were at least slightly harmful to A. colemani, and the adjuvant polyether-polymethylsiloxane-copolymer polyether caused mortality that was not significantly different from spinosad. In general, neither the addition of adjuvants nor phagostimulants increased the mortality of the insecticides tested. The exception was polyether-polymethylsiloxane-copolymer polyether, but it is unclear whether it increased the toxicity of the pesticides or was simply toxic itself since it caused high mortality to A. colemani when applied alone. Sublethal effects were measured for two predatory species by measuring eggs laid and % egg hatch. Minimal sublethal effects were observed in C. rufilabris. In contrast, all tested insecticides caused reduced egg hatch in O. insidiosus compared with the control.  相似文献   

13.
Drosophila suzukii (Diptera: Drosophilidae), known commonly as spotted wing drosophila, is a vinegar fly originating from South‐East Asia and a major pest to many soft‐skinned fruits. Due to the species recent arrival in North America in 2008, many fruit varieties are yet untested for susceptibility to infestation. While previous work has focused on Vitis vinifera, this study aimed to determine grape susceptibility of cold hardy varieties based on hybrids of V. labrusca, V. riparia and V. vinifera. Field sampling was conducted in Southern Wisconsin (USA) vineyards to establish adult and larval abundance and determine whether the number of adults caught in traps correlates with fruit infestation. Host susceptibility was further assessed through no‐choice bioassays of both intact and damaged fruits. The field study found D. suzukii adults present in all varieties, low larval abundance and no correlation between adult abundance and larval presence. Peak adult abundance occurred mid‐season between veraison and harvest, while larval infestation rates were highest near harvest. In laboratory no‐choice tests, significantly more eggs, larvae and adults occurred in damaged than undamaged grapes. In damaged grapes, larvae and adult abundance was comparable between varieties and to the highly susceptible control of undamaged raspberry; however, D. suzukii developed significantly faster in raspberry than grapes. Fruit characteristics (°Brix, titratable acidity, pH) in grapes were uncorrelated with D. suzukii performance. Together, these findings suggest that cold hardy grapes are overall resistant to D. suzukii if intact and highly susceptible if damaged.  相似文献   

14.
Drosophila suzukii is an invasive pest causing severe damages to a large panel of cultivated crops.To facili tate its biocontrol with stratcgies such as sterile or incompatible insect techniques,D.suzukid must be mass-produced and then stored and transported under low temperature.Prolonged cold exposure induces chill injuries that can be mitigated if the cold period is interrupted with short warming intervals,referred to as fluctuating thermal regimes(FTR).In this study,we tested how to optimally use FTR to extend the shelf life of D.suzukii under cold storage.Several FTR parameters were asessed:temperature(15,20,25℃),duration(0.5,1,2,3 h),and frequency(every 12,24,36,48 h)of warming intervals,in two wild-type lines and in two developmental stages(pupac and adults).Generally,FTR improved cold storage tolerance with respect to constant low temperatures(CLT).Cold mortality was lower when recovery temperature was 20℃ or higher,when duration was 2 h per day or longer,and when warming interruptions occurred frequently(every 12 or 24 h).Applying an optimized FTR protocol to adults greatly reduced cold mortality over long-term storage(up to 130 d).Consequences of FTR on fitness-related traits were also investigated.For adults,poststorage survival was unaffected by FTR,as was the case for female fecundity and male mating capacity.On the other hand,when cold storage occurred at pupal stage,postorage survival and male mating capacity were altered under CLT,but not under FTR.After storage of pupae,female fecundity was lower under FTR compared to CLT,suggesting an energy trade-off between repair of chill damages and C22 production.This study provides detailed information on the application and optimization of an FTR-based protocol for cold storage of D.suzuki that could be useful for the biocontrol of this pest.  相似文献   

15.
Drosophila suzukii (Matsumura) (Diptera: Drosophilidae), the spotted wing drosophila, is a pest endemic to Southeast Asia that invaded the Americas and Europe in 2008. In contrast to most of its congeners, D. suzukii possesses a serrated ovipositor that allows it to lay eggs in unwounded commercial fruits, resulting in severe revenue losses for the industry. The purpose of this study was to determine the susceptibility of known host fruits, including cherry, strawberry, blueberry, and grape, and potential host fruits, such as banana and apple, to attack by D. suzukii. Based on the responses to volatile cues offered in a six‐choice olfactometer, the preference of female D. suzukii was ranked in the following order: strawberry = cherry > banana = apple = blueberry = grape, but in no‐choice and choice oviposition tests, the preferences were ranked as follows: cherry > strawberry = blueberry > grape = banana > apple. Furthermore, we reconfirmed that D. suzukii mainly targets rotten fruit for feeding and ripe fruit for oviposition, and females preferred fruits with intensive mechanical damage. Based on developmental parameters, apple was the least suitable host. This study has implications for the control of D. suzukii, especially in mixed fruit orchards, by providing a promising avenue for exploiting behaviour‐based control tools and emphasizing the importance of phenology in host fruit susceptibility.  相似文献   

16.
The spotted wing drosophila (SWD), Drosophila suzukii, is an invasive species to the USA, and Europe and biological control methods are urgently sought for. In this study, the potential of commercial microbial control products based on the Dipteran‐specific B. thuringiensis serovar. israelensis (B.t.i.) were evaluated in laboratory experiments. These products were tested on SWD larvae and adults but neither one showed more than 10% mortality. A repellent effect of the products to SWD adults was also ruled out. We conclude that B.t.i. products are not suitable for SWD control.  相似文献   

17.
Understanding the dynamics of pest insect populations in relation to the presence of non‐crop habitats and infestation levels of adjacent crops is essential to develop sustainable pest management strategies. The invasive pest species Drosophila suzukii (Diptera: Drosophilidae) is able to utilize a broad range of host plants. In viticulture, scientific risk assessment for D. suzukii has only recently started and studies assessing the effects of field margins containing wild host plants on D. suzukii population dynamics and on infestation risks in adjacent vineyards are lacking. Thus, in a one‐year field study, the role of different field margins on fly abundance and crop infestation in adjacent vineyards of Vitis vinifera, variety “Pinot Noir,” were investigated. Different monitoring methods were conducted to assess fly distribution, sex ratio and grape infestation in 14 vineyards adjacent to field margins containing either blackberry (BB) Rubus spp. or non‐host (NH) plants. Our results show that blackberries strongly enhanced D. suzukii abundance within field margin vegetation all year long, whereas fly abundance in vineyards adjacent to BB margins was just enhanced in some seasonal periods. Moreover, the influence of BB margins was limited by distance. However, high fly numbers in BB field margins did result in zero egg infestation of “Pinot Noir” berries. These results may have important implications for winegrowers to make efficient management decisions: regardless of high abundance of adult D. suzukii, only grape berry monitoring can assess the actual infestation risk and the potential need to take management action.  相似文献   

18.
An improved understanding of the biology of the invasive pest, Drosophila suzukii (Matsumura) (Diptera: Drosophilidae), is critical for the development of effective management strategies. Trapping is one technique used for both detection and control; however, the efficacy of trapping can vary depending on the target insect's physiological state, its behavioural priorities and the type of attractant used in the trap. We conducted a series of caged trapping experiments and a greenhouse trapping experiment to investigate the effects of D. suzukii feeding status, age, mating status, ovipositional status and seasonal morph type on the capture rate of traps baited with fermentation odours. Starved flies were trapped at greater rates compared to fed flies; more virgin flies were trapped than mated flies; flies deprived of an oviposition substrate were trapped more frequently than flies given an oviposition substrate. It is still unclear whether age or seasonal morphology affect bait response. Lastly, a caged choice experiment investigated the relationship between female reproductive status and attraction to fermentation or fruit odours. Fermentation‐based traps captured female flies regardless of their reproductive status but, ripe fruit‐based traps were more attractive to flies with more than seven eggs. In summary, studies that use fermentation‐based traps should recognize that capture rates of D. suzukii will depend on the feeding, mating and oviposition experiences of the population; also, fruit‐based traps may better target gravid females.  相似文献   

19.
Drosophila suzukii is a new invasive pest that in recent years has become established in the Great Lakes region of the United States. Understanding the level of infestation in potentially susceptible crops is an important first step for planning appropriate management responses. This study was conducted in 2010–2012 to determine the infestation potential of this pest in native Vitis labrusca, French hybrid and V. vinifera grape cultivars grown in Michigan vineyards. Drosophila suzukii adults were reared out of collected grape samples in all 3 years, comprising a low proportion of all emerged drosophilids in each of the years. This trend was also found in vacuum sampling, conducted in 2011, with the majority of flies collected being non‐D. suzukii drosophilids. Another recently introduced invasive fly species, Zaprionus indianus, was also reared out of grape samples collected in 2012. While the results of this study indicate no immediate threats to commercial grape production from D. suzukii, further research is needed to elucidate possible secondary effects that this species may have on vineyards, such as the introduction of diseases to the fruit.  相似文献   

20.
The invasive frugivore Drosophila suzukii (Matsumura) (Diptera: Drosophilidae) utilizes a wide range of host plants and damages important fruit crops, including blueberries, cherries, blackberries, raspberries, and strawberries. Field infestations of D. suzukii often exceed one larva per berry, suggesting that intraspecific competition may frequently occur. Because dietary resources are also likely to vary across the host range of D. suzukii, we designed a laboratory assay to measure larval performance across diets of varying quality: a standard artificial diet, a fruit‐based medium, a low‐protein, and a low‐carbohydrate diet. We manipulated egg density across these diets to provide increasing levels of competition and measured larval performance by observing survival to pupation and adulthood, and development times for both life stages. Although increasing density generally negatively impacted D. suzukii performance across diets, the magnitude of these impacts varied by diet type. Drosophila suzukii performance was generally similar in fruit and standard diets, although larval development was more rapid in fruit diets at lower densities. Even at low densities (5 or 10 eggs per arena), survival was reduced and development time increased in low‐protein diets relative to standard and fruit diets. At the two highest larval densities (20 or 40 eggs per arena), survivorship was reduced in low‐carbohydrate diets as compared to standard and fruit diets. There is evidence that larvae compensated in both low‐quality diets by extending development time, which could have consequences for population dynamics. Population models for use in D. suzukii management may need to account for both host nutritional quality and relative competition to accurately predict turnover and geographic expansion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号