首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Members of the TGFβ superfamily are known to exert a myriad of physiologic and pathologic growth controlling influences on mammary development and oncogenesis. In epithelial cells, TGFβ signaling inhibits cell growth through cytostatic and pro-apoptotic activities but can also induce cancer cell EMT and, thus, has a dichotomous role in breast cancer biology. Mechanisms governing this switch are the subject of active investigation. Smad3 is a critical intracellular mediator of TGFβ signaling regulated through phosphorylation by the TGFβ receptor complex at the C terminus. Smad3 is also a substrate for several other kinases that phosphorylate additional sites within the Smad protein. This discovery has expanded the understanding of the significance and complexity of TGFβ signaling through Smads. This review highlights recent advances revealing the critical role of phospho-specific Smad3 in malignancy and illustrates the potential prognostic and therapeutic impact of Smad3 phospho-isoforms in breast cancer.  相似文献   

3.
Members of the TGFβ superfamily are known to exert a myriad of physiologic and pathologic growth controlling influences on mammary development and oncogenesis. In epithelial cells, TGFβ signaling inhibits cell growth through cytostatic and pro-apoptotic activities but can also induce cancer cell EMT and, thus, has a dichotomous role in breast cancer biology. Mechanisms governing this switch are the subject of active investigation. Smad3 is a critical intracellular mediator of TGFβ signaling regulated through phosphorylation by the TGFβ receptor complex at the C terminus. Smad3 is also a substrate for several other kinases that phosphorylate additional sites within the Smad protein. This discovery has expanded the understanding of the significance and complexity of TGFβ signaling through Smads. This review highlights recent advances revealing the critical role of phospho-specific Smad3 in malignancy and illustrates the potential prognostic and therapeutic impact of Smad3 phospho-isoforms in breast cancer.  相似文献   

4.
分化聚类36(cluster of differentiation 36,CD36)是一种位于细胞表面的膜蛋白受体,可以结合并转运脂肪酸。内质网膜蛋白4B (Nogo-B)在肝脏中调控脂肪酸代谢而影响肝癌的发展。目前并不清楚CD36和Nogo-B的相互作用是否能够影响乳腺癌细胞的增殖和迁移。本研究在三阴性乳腺癌(triple-negative breast cancer,TNBC)细胞中同时干预CD36与Nogo-B的表达来探索它们对细胞增殖与迁移的影响。结果表明在三阴性乳腺癌细胞中,单独抑制CD36或Nogo-B的表达都能够抑制细胞的增殖与迁移;同时抑制CD36与Nogo-B的表达时,这种抑制效果更加明显,且Vimentin、B细胞淋巴瘤-2(B-cell lympoma-2,BCL2)和增殖细胞核抗原(proliferating cell nuclear antigen,PCNA)的表达受到抑制。在小鼠移植瘤模型中,E0771细胞转染CD36或Nogo-B的siRNA后成瘤能力降低;同时敲减CD36和Nogo-B时,肿瘤生长速度显著减慢。机制研究发现,抑制CD36和Nogo-B表达能够抑制脂肪酸结合蛋白4(fatty acid binding protein 4,FABP4)和脂肪酸转运蛋白4(fatty acid transport protein 4,FATP4) mRNA的含量,同时CD36和Nogo-B过表达刺激的细胞增殖被FABP4的siRNA降低,预示着抑制乳腺癌细胞中CD36与Nogo-B的表达可能通过抑制脂肪酸的吸收和转运而抑制细胞的生长和迁移。此外,抑制CD36与Nogo-B的表达可激活P53-P21-Rb信号通路,参与抑制CD36与Nogo-B表达而抑制的细胞增殖与迁移。本研究证明同时抑制CD36和Nogo-B的表达能够协同抑制三阴性乳腺癌细胞的增殖和迁移,为临床抗三阴性乳腺癌药物的开发提供了新的靶点。  相似文献   

5.
The biological characteristics of bladder cancer include enhanced invasion and migration, which are the main causes of death in patients. Starvation is a typical feature of the bladder cancer microenvironment and can induce autophagy. Autophagy has an important relationship with the invasion and migration of tumors. However, the role of autophagy in the invasion and migration of bladder cancer cells remains unclear. Hence, the aim of the current study was to clarify this role and underlying mechanism. In this study, we found that starvation enhanced the epithelial-mesenchymal transition (EMT)-mediated invasion and migration of T24 and 5637 cells while inducing autophagy. The inhibition of autophagy with chloroquine (CQ) or 3-methyladenine (3MA) decreased EMT-mediated invasion and migration. In addition, the expression of transforming growth factor 1 (TGF-β1) and phosphorylated Smad3 (p-Smad3) increased after starvation. The inhibition of autophagy with CQ or 3MA also decreased the expression of TGF-β1 and p-Smad3. The inhibitor of TGF-β receptor sb431542 also inhibited the invasion, migration, and EMT of T24 and 5637 cells during starvation. Furthermore, recombinant TGF-β1 induced autophagy and inhibition of the TGF-β/Smad signaling pathway with sb431542 suppressed autophagy. In summary, our results suggested that autophagy promotes the invasion and migration of bladder cancer cells by inducing EMT through the TGF-β1/Smad3 signaling pathway. Moreover, autophagy and TGF-β1 can form a positive feedback loop to synergistically promote invasion and migration. Thus, our findings may provide a theoretical basis for the prevention of invasion and migration in bladder cancer.  相似文献   

6.
Triple negative breast cancer (TNBC) is a heterogeneous subclass of breast cancer (BC) distinguished by lack of hormone receptor expression. It is highly aggressive and difficult to treat with traditional chemotherapeutic regimens. Targeted-therapy using microRNAs (miR) has recently been proposed to improve the treatment of TNBC in the early stages. Here, we explore the roles of miR-483-3p/HDAC8 HDAC8 premiR-vector on tumorigenicity in TNBC patients. Clinical TNBC specimens and three BC cell lines were prepared. miR-483-3p and expression levels were measured using quantitative real-time polymerase chain reaction. Cell cycle progression was assessed by a flow-cytometry method. We also investigated cell proliferation by 3-2, 5-diphenyl tetrazolium bromide assay and colony formation assay. We used a to overexpress miR-483-3p, and a HDAC8-KO-vector for knocking out the endogenous production of HDAC8. Our data showed significant downregulation of miR-483-3p expression in TNBC clinical and cell line samples. The HDAC8 was also upregulated in both tissue specimens and BC cell lines. We found that increased levels of endogenous miR-483-3p affects tumorigenecity of MDA-MB-231. Downregulation of HDAC8 using the KO-vector showed the same pattern. Our results revealed that the miR-483-3p suppresses cellular proliferation and progression in TNBC cell lines via targeting HDAC8. Overall, our outcomes demonstrated the role of miR-483-3p as a tumor suppressor in TNBC and showed the possible mechanism via HDAC8. In addition, targeted treatment of TNBC with miR-483-3p might be considered in the future.  相似文献   

7.
8.
Primary TNBCs are treated as if they were a single disease entity, yet it is clear they do not behave as a single entity in response to current therapies. Recently, we reported that statins might have a potential benefit for TNBCs associated with ets-1 overexpression. The aim of this study is to investigate the role of PTEN loss in the effects of statin on TNBC cells. In addition, we analyze the relationship between AKT downstream pathways and the effects of statin on TNBC cells. We investigated the effect of a statin on TNBC cells and analyzed the association of PI3K pathways using various TNBC cells in terms of PTEN loss and AKT pathways. Simvastatin treatments resulted in decreased cell viabilities in various TNBC cell lines. Compared with PTEN wild-type TNBC cells, PTEN mutant-type TNBC cells showed a decreased response to simvastatin. Expressions of phosphorylated Akt and total Akt showed an inverse relationship with PTEN expression. The TNBC cell lines, which showed increased expression of p-Akt, appeared to attenuate the expression of p-Akt by PTEN loss in simvastatin-treated TNBC cells. The Akt inhibitor, LY294002, augmented the effect of simvastatin on PTEN wild-type TNBC cells. Simvastatin induces inhibition of TNBC cells via PI3K pathway activation.  相似文献   

9.
ULK1 (unc-51 like autophagy activating kinase 1) is well known to be required to initiate the macroautophagy/autophagy process, and thus activation of ULK1-modulating autophagy/autophagy-associated cell death (ACD) may be a possible therapeutic strategy in triple negative breast cancer (TNBC). Here, our integrated The Cancer Genome Atlas (TCGA) data set, tissue microarray-based analyses and multiple biologic evaluations together demonstrate a new small-molecule activator of ULK1 for better understanding of how ULK1, the mammalian homolog of yeast Atg1, as a potential drug target can regulate ACD by the ULK complex (ULK1-ATG13-RB1CC1/FIP200-ATG101), as well as other possible ULK1 interactors, including ATF3, RAD21 and CASP3/caspase3 in TNBC. Moreover, such new inspiring findings may help us discover that this activator of ULK1 (LYN-1604) with its anti-tumor activity and ACD-modulating mechanisms can be further exploited as a small-molecule candidate drug for future TNBC therapy.  相似文献   

10.
11.
Triple‐negative breast cancer (TNBC) has a relatively poor outcome. Acquired chemoresistance is a major clinical challenge for TNBC patients. Previously, we reported that kinase‐dead Aurora kinase A (Aurora‐A) could effectively transactivate the FOXM1 promoter. Here, we demonstrate an additional pathway through which Aurora‐A stabilizes FOXM1 by attenuating its ubiquitin in TNBC. Specifically, Aurora‐A stabilizes FOXM1 in late M phase and early G1 phase of the cell cycle, which promotes proliferation of TNBC cells. Knock‐down of Aurora‐A significantly suppresses cell proliferation in TNBC cell lines and can be rescued by FOXM1 overexpression. We observe that paclitaxel‐resistant TNBC cells exhibit high expression of Aurora‐A and FOXM1. Overexpression of Aurora‐A offers TNBC cells an additional growth advantage and protection against paclitaxel. Moreover, Aurora‐A and FOXM1 could be simultaneously targeted by thiostrepton. Combination of thiostrepton and paclitaxel treatment reverses paclitaxel resistance and significantly inhibits cell proliferation. In conclusion, our study reveals additional mechanism through which Aurora‐A regulates FOXM1 and provides a new therapeutic strategy to treat paclitaxel‐resistant triple‐negative breast cancer.  相似文献   

12.
13.
14.
Breast cancer (BC) is one of the most common malignant tumors in women, and screening relevant genes and markers that are involved in BC tumor genesis and progression is of great value. We previously found that messenger RNA expression of ARHGAP9 was high in BC tissue, but it is unclear whether ARHGAP9 participates in the progression of human BC. In this study, we found that ARHGAP9 expression was correlated with poor patient survival, American Joint Committee on Cancer clinical staging, tumor size, and tumor differentiation. MCF‐7 and MDA‐MB‐231 cells exhibited higher expression of ARHGAP9 than other human BC cell lines (HCC1937, MDA‐MB‐453, ZR‐75‐1, and Hs 578T). Knockdown of ARHGAP9 in human BC cells markedly reduced the cell proliferation, migration, and invasive ability of MCF‐7 and MDA‐MB‐231 cells. Furthermore, small interfering RNA (siRNA) of ARHGAP9 also induced G0‐G1 cell cycle arrest and apoptosis in MCF‐7 and MDA‐MB‐231 cells. Expressions of cell cycle markers (CDK2 and CCNB1) and invasion‐related protein (RhoC and MTA1) were downregulated in siRNA‐ARHGAP9‐transfected cells. siRNA of ARHGAP9 also inhibited the phosphorylation of mitogen‐activated protein kinases in BC cells. In conclusion, the abnormal expression of ARHGAP9 may correlate with the genesis, development, and diagnosis of BC.  相似文献   

15.
The triple‐negative breast cancer is the most malignant type of breast cancer. Its pathogenesis and prognosis remain poor despite the significant advances in breast cancer diagnosis and therapy. Meanwhile, long noncoding RNAs (LncRNAs) play a pivotal role in the progression of malignant tumors. In this study, we found that LncRNA‐ZEB2‐AS1 was dramatically up‐regulated in our breast cancer specimens and cells (MDA231), especially in metastatic tumor specimens and highly invasive cells, and high lncRNA‐ZEB2‐AS1 expression is associated with clinicopathologic features and short survival of breast cancer patients. LncRNA‐ZEB2‐AS1 promotes the proliferation and metastasis of MDA231 cells in SCID mice. Thus, it is regarded as an oncogene in triple‐negative breast cancer. It is mainly endo‐nuclear and situated near ZEB2, positively regulating ZEB2 expression and activating the epithelial mesenchymal transition via the PI3K/Akt/GSK3β/Zeb2 signaling pathway. Meanwhile, EGF‐induced F‐actin polymerization in MDA231 cells can be suppressed by reducing lncRNA‐ZEB2‐AS1 expression. The migration and invasion of triple‐negative breast cancer can be altered through cytoskeleton rearrangement. In summary, we demonstrated that lncRNA‐ZEB2‐AS1 is an important factor affecting the development of triple‐negative breast cancer and thus a potential oncogene target.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号