首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
RNA interference (RNAi) is a powerful tool for functional gene analysis, which has been successfully used to down-regulate the levels of specific target genes, enabling loss-of-function studies in living cells. Hairpin (hp) RNA expression cassettes are typically constructed on binary plasmids and delivered into plant cells by Agrobacterium-mediated genetic transformation. Realizing the importance of RNAi for basic plant research, various vectors have been developed for RNAi-mediated gene silencing, allowing the silencing of single target genes in plant cells. To further expand the collection of available tools for functional genomics in plant species, we constructed a set of modular vectors suitable for hpRNA expression under various constitutive promoters. Our system allows simple cloning of the target gene sequences into two distinct multicloning sites and its modular design provides a straightforward route for replacement of the expression cassette's regulatory elements. More importantly, our system was designed to facilitate the assembly of several hpRNA expression cassettes on a single plasmid, thereby enabling the simultaneous suppression of several target genes from a single vector. We tested the functionality of our new vector system by silencing overexpressed marker genes (green fluorescent protein, DsRed2, and nptII) in transgenic plants. Various combinations of hpRNA expression cassettes were assembled in binary plasmids; all showed strong down-regulation of the reporter genes in transgenic plants. Furthermore, assembly of all three hpRNA expression cassettes, combined with a fourth cassette for the expression of a selectable marker, resulted in down-regulation of all three different marker genes in transgenic plants. This vector system provides an important addition to the plant molecular biologist's toolbox, which will significantly facilitate the use of RNAi technology for analyses of multiple gene function in plant cells.  相似文献   

3.

Background

Although human islet transplantation is a promising approach for treating type I diabetes, its success is limited as a result of the poor survival rate of transplanted islets. Expression of a growth factor gene to promote revascularization and silencing of pro‐apoptotic genes before transplantation may improve the outcome of islet transplantation.

Methods

In the present study, we constructed bipartite plasmid vectors to co‐express a vascular endothelial growth factor (VEGF) cDNA and short hairpin (sh)RNA targeting inducible NO synthase (iNOS) gene. First, we screened shRNA sequences against human iNOS by transfecting plasmids encoding shRNA targeting different start sites of human iNOS. Then, the effect of different promoters [such as H1, U6 and cytomegalovirus (CMV)] and micro RNA backbones on gene silencing was determined.

Results

No statistical difference in iNOS gene silencing was observed for the shRNA with H1, U6 and CMV promoters. In addition, a conventional shRNA showed better silencing of the iNOS gene compared to shRNA containing mir375 and mir30 backbones. A bipartite plasmid was also constructed with mir30‐shRNA and a VEGF cDNA controlled by a single CMV promoter. This plasmid showed a better silencing effect compared to plasmid without VEGF cDNA.

Conclusions

In the present study, we have successfully constructed bipartite vectors co‐expressing a VEGF cDNA and a shRNA against the iNOS gene. These vectors could be attractive candidates for improving the survival of transplanted islets. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
Shuttle vectors for Bacillus thuringiensis or Bacillus cereus usually cannot hold fragments larger than 20 kb. With the development of genome research, shuttle vectors with higher loading capacity are necessary. We constructed an Escherichia coli to B. thuringiensis shuttle vector, pEMB0557, with a large loading capacity. This vector incorporated the ori60 replicon from B. thuringiensis subsp. kurstaki YBT-1520, erythromycin resistance (B. thuringiensis), and chloromycetin resistance (E. coli) genes. A bacterial artificial chromosome library of B. thuringiensis strain CT-43 was constructed and pEMB0557 was able to accommodate at least a 70-kb DNA fragment. Simultaneously, the cry1B gene on a 40-kb fragment could express a 140-kDa protein in plasmid-cured B. thuringiensis BMB171. Due to its high capacity and utility in expressing exogenous genes, pEMB0557 will be useful in cloning (especially silencing genes) and expressing large DNA fragments (e.g., gene clusters) in B. thuringiensis. Plasmid pEMB0557 provides a new tool for B. thuringiensis genome or B. cereus group research.  相似文献   

5.
Here, we report on the construction of doxycycline (tetracycline analogue)‐inducible vectors that express antisense RNAs in Escherichia coli. Using these vectors, the expression of genes of interest can be silenced conditionally. The expression of antisense RNAs from the vectors was more tightly regulated than the previously constructed isopropyl‐β‐D‐galactopyranoside‐inducible vectors. Furthermore, expression levels of antisense RNAs were enhanced by combining the doxycycline‐inducible promoter with the T7 promoter‐T7 RNA polymerase system; the T7 RNA polymerase gene, under control of the doxycycline‐inducible promoter, was integrated into the lacZ locus of the genome without leaving any antibiotic marker. These vectors are useful for investigating gene functions or altering cell phenotypes for biotechnological and industrial applications.

Significance and Impact of the Study

A gene silencing method using antisense RNAs in Escherichia coli is described, which facilitates the investigation of bacterial gene function. In particular, the method is suitable for comprehensive analyses or phenotypic analyses of genes essential for growth. Here, we describe expansion of vector variations for expressing antisense RNAs, allowing choice of a vector appropriate for the target genes or experimental purpose.  相似文献   

6.
7.
RNA interference (RNAi) has emerged as a powerful tool to silence specific genes. Vector‐based RNAi systems have been developed to downregulate targeted genes in a spatially and temporally regulated fashion both in vitro and in vivo. The zebrafish (Danio rerio) is a model animal that has been examined based on a wide variety of biological techniques, including embryonic manipulations, forward and reverse genetics, and molecular biology. However, a heritable and tissue‐specific knockdown of gene expression has not yet been developed in zebrafish. We examined two types of vector, which produce small interfering RNA (siRNA), the direct effector in RNAi system; microRNA (miRNA) process mimicking vectors with a promoter for RNA polymerase II and short hairpin RNA (shRNA) expressing vector through a promoter for RNA polymerase III. Though gene‐silencing phenotypes were not observed in the miRNA process mimicking vectors, the transgenic embryos of the second vector (Tg(zU6‐shGFP)), shRNA expressing vector for enhanced green fluorescence protein, revealed knockdown of the targeted gene. Interestingly, only the embryos from Tg(zU6‐shGFP) female but not from the male fish showed the downregulation. Comparison of the quantity of siRNA produced by each vector indicates that the vectors tested here induced siRNA, but at low levels barely sufficient to silence the targeted gene.  相似文献   

8.
9.
Physical and genetic maps have been used for chromosomal localization of genes in vectors of infectious diseases. The availability of polytene chromosomes in malaria mosquitoes provides a unique opportunity to precisely map genes of interest. We report the physical mapping of two actin genes on polytene chromosomes of the major malaria vector in the Amazon, Anopheles darlingi (Diptera: Culicidae). Clones with actin gene sequences were obtained from a cDNA library constructed from RNA isolated from adult females and males of An. darlingi. Each of the two clones was mapped to a unique site on chromosomal arm 2L in subdivisions 21A (clone pl05‐A04) and 23B (clone pl17‐G06). The obtained results, together with previous mapping data, provide a suitable basis for comparative genomics and for establishing chromosomal homologies among major malaria vectors.  相似文献   

10.
11.
Lentivirus-mediated RNA interference (RNAi) is a potent experimental tool for investigating gene functions in vitro and in vivo. It has advantages that transgenic technology lacks. However, in vivo applications are difficult to apply in the central nervous system of non-model organisms due to the lack of a standard brain atlas and genetic information. Here, we report the development of an in vivo gene delivery system used in bat brain tissue for the first time, based on lentivirus (LV) vectors expressing short hairpin RNA (shRNA) targeting Hipposideros armiger forkhead box P2 (FoxP2). In vitro transfection into HEK 293T cell with the vector bearing the cassettes encoding FoxP2 shRNA verified the knockdown efficiency. Pseudovirus particles were administered via stereotactic intracerebral microinjection into the anterior cingulate cortex of H. armiger. FoxP2 is of major interest because of its role in sensorimotor coordination and probably in echolocation. Subsequent in situ hybridization validated the in vivo silencing of the target gene. This report demonstrates that LV-mediated expression of RNAi could achieve effective gene silencing in bats, a non-model organism, and will assist in elucidating the functions of bat genes.  相似文献   

12.
13.
Plant virus‐based gene‐silencing vectors have been extensively and successfully used to elucidate functional genomics in plants. However, only limited virus‐induced gene‐silencing (VIGS) vectors can be used in both monocot and dicot plants. Here, we established a dual gene‐silencing vector system based on Bamboo mosaic virus (BaMV) and its satellite RNA (satBaMV). Both BaMV and satBaMV vectors could effectively silence endogenous genes in Nicotiana benthamiana and Brachypodium distachyon. The satBaMV vector could also silence the green fluorescent protein (GFP) transgene in GFP transgenic N. benthamiana. GFP transgenic plants co‐agro‐inoculated with BaMV and satBaMV vectors carrying sulphur and GFP genes, respectively, could simultaneously silence both genes. Moreover, the silenced plants could still survive with the silencing of genes essential for plant development such as heat‐shock protein 90 (Hsp90) and Hsp70. In addition, the satBaMV‐ but not BaMV‐based vector could enhance gene‐silencing efficiency in newly emerging leaves of N. benthamiana deficient in RNA‐dependant RNA polymerase 6. The dual gene‐silencing vector system of BaMV and satBaMV provides a novel tool for comparative functional studies in monocot and dicot plants.  相似文献   

14.
RNA interference (RNAi) is one of the most important technologies currently available for the analysis of gene function. However, despite the development of various methods, it is still difficult to construct RNAi vectors for plants with the appropriate inverted repeat fragments to produce double-stranded RNA for knockdown experiments. To solve this problem we have developed an easy and simple method to make RNAi constructs using two long oligonucleotides consisting of partially complementary sequences without the need for PCR amplification and multiple cloning steps. CHS RNAi plants generated using this method showed yellow seed color and a decrease in antocyanin content—phenotypes typically observed in CHS loss-of-function mutants. Moreover, we demonstrated specific knockdown of both the PHYA and PHYB genes using a tandem RNAi construct. This method thus represents a powerful tool for gene knockdown in plants.  相似文献   

15.
16.
17.
Transfection of an expression plasmid possessing inverted repeat (IR) DNA into cultured cells leads to the overexpression of hairpin RNA and efficient suppression of target gene expression. Such DNA vector-based RNA interference (RNAi) is widely used for characterizing genes of interest in cultured cell lines. In this study, we developed a new method to convert an inserted DNA fragment (IDF) in specially designed plasmid vectors into an IR structure by using nicking endonucleases and BcaBEST DNA polymerase. This method consists of the following steps: (1) linearization of the plasmid with a nick by using a restriction enzyme and a nicking endonuclease, (2) formation of the hairpin-loop DNA at the end near the IDF of the linearized plasmid, (3) insertion of a nick at the other end of the IDF by a nicking endonuclease, (4) execution of the strand displacement reaction from the nick to synthesize IR DNA, and (5) self-ligation of the linear double-stranded DNA. The IR DNA containing expression plasmids constructed by this method effectively induced target-specific RNAi in a silkworm cell line. We further established a method to purify expression plasmids containing IR DNA. Our new methods provide techniques for the construction of long hairpin RNA (lhRNA) expression plasmids for silencing specific genes in silkworms and other organisms, and offer a fundamental methodology for constructing an lhRNA expression library from a cDNA plasmid library.  相似文献   

18.
19.
In the last decade, RNA interferences (RNAi) has proven to be an effective strategy to knock out homologous genes in a wide range of species. Based on its principle, a new generation of vectors containing an inverted target sequence separated by an intron as a loop, developing simplifications to the procedure of RNAi construction are required to improve the efficiency of gene inactivation techniques. Here, a novel polymerase chain reaction (PCR)—based RNAi vector pTCK303 with a maize ubiquitin promoter, 2 specific multiple enzyme sites, and a rice intron was constructed for monocot gene silencing. With this vector, only 1 PCR product amplified by a single pair of primers and 2 ligation reactions were needed to create an RNAi construct, which shortened the time span before being transformed into the plant. To test the efficiency of vector pTCK303, a rice geneOsGAS1 was used, and its RNAi construct was introduced into rice calli. Southern blot analysis of the transgenic rice confirmed the presence of theOsGAS1 RNAi structure. The decrease inOsGAS1 level in the transgenic rice was detected by Northern blot probed with anOsGAS1-specific sequence. Moreover, the rate of inhibition of the RNA expression level in RNAi transgenic rice was approximately 85% according to our real-time PCR. Therefore, the RNAi vector pTCK303 based on the homology-dependent gene-silencing mechanisms facilitated the inhibition of endogenous genes in a monocot and was proven to be a practical and efficient platform for silencing a rice gene. These authors contributed equally to this work.  相似文献   

20.
The effects of spacer sequences on silencing efficiency of plant RNAi vectors   总被引:11,自引:0,他引:11  
RNA interference (RNAi) has been used to suppress gene expression in various eukaryotic organisms. In plants, RNAi can be induced by introduction of an RNAi vector that transcribes a self-complementary hairpin RNA. Most basic RNAi constructs have an inverted repeat interrupted with a spacer sequence. To test silencing capability of RNAi constructs, we developed an in vivo assay that is based on the RNAi-mediated changes of the α-linolenic acid content in hairy roots. A tobacco endoplasmic reticulum ω-3 fatty acid desaturase (NtFAD3) is the main enzyme for production of α-linolenic acid of root membrane lipids. Tobacco hairy roots transformed with the RNAi vectors against the NtFAD3 gene showed a decrease in α-linolenic acid content. The frequency of RNA silencing was more affected by spacer sequence than by spacer length, at least between 100 and 1800 bp. Since significant amounts of hairpin RNA against the NtFAD3 gene remained in the transgenic plants displaying a weak silencing phenotype, low degree of silencing was attributed to low efficiency of hairpin RNA processing mediated by Dicer-like proteins. Our results show the possibility of producing a broad range of the RNAi-induced silencing phenotypes by replacing the spacer sequence of RNAi construct.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号