首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
2.
The small and isolated rainforest patches that are embedded in the predominantly savanna landscape of Australia’s monsoonal tropics support a highly distinctive and biogeographically significant ant fauna. This fauna features shade-tolerant taxa of Indo-Malayan origin, in contrast to the arid-adapted, endemic Australian taxa that dominate the surrounding savanna. The Tiwi Islands north of Darwin in the Northern Territory (NT) receive the highest mean annual rainfall (up to 2,000 mm) in monsoonal Australia, and have a particularly extensive rainforest estate that has been poorly surveyed for invertebrates. Here we describe results from intensive ant surveys at 17 sites representing the full range of Tiwi rainforest types, using subterranean traps, Winkler sacs, pitfall traps and arboreal traps, supplemented by opportunistic hand collections. Our surveys yielded a total of 87 species from 37 genera, with the richest genera being Pheidole (9 species collected), Polyrhachis (8), Camponotus (5), Rhytidoponera (5) and Strumigenys (5). The overall structure and diversity of the Tiwi rainforest fauna is comparable to that of rainforest ant faunas on the Australian mainland. However, the species have exceptional biogeographic significance. At least 21 species across 12 genera have apparently never previously been collected, three species from subcoastal northeastern Australia are recorded for the first time in the NT, and the genera Mesoponera and Onychomyrmex are documented for the first time in the NT. There was a very low incidence of exotic species, which further highlights the conservation values of this remarkable fauna.  相似文献   

3.
The remote and sparsely populated Kimberley region is a major centre of endemism in the Australian monsoonal tropics that is threatened by uncontrolled fire following the disruption of Aboriginal burning practices. A recent study of the ant fauna of the Mitchell Falls area of the northern Kimberley revealed that 44 % of the species are known only from the Kimberley region. The fauna appeared to be highly resilient in relation to fire. Levels of endemism in the Mitchell Falls region are likely to be particularly high because it occurs in a high rainfall zone (>1,200 mm per year) that is isolated from similar zones elsewhere in northern Australia. In contrast, the lower rainfall eastern and southern Kimberley form part of continuous climatic bands that extend right across northern Australia, and so species from these areas might be expected to be more widely distributed. Here we describe the ant fauna of Mirima National Park in the eastern Kimberley, in the context of a broader biogeographic analysis of the Kimberley ant fauna and an understanding of its response to wildfire. We specifically test two hypotheses: first, that the ant species of Mirima tend to be more widely distributed across northern Australia than those of Mitchell Falls; and, second, that Mirima ant communities are highly resilient in relation to fire, as revealed by a weak relationship with time-since-fire. Analysis of distributional ranges revealed that 24 % of Mirima ant species are known only from the Kimberley, which, as hypothesized, is substantially lower than at Mitchell Falls (44 %). Also as we hypothesized, the Mirima ant fauna shows little relationship with time since fire, with no systematic variation in ant species richness between sites with 1–4 years since fire, and no relationship between time since fire and site similarity based on overall ant species composition. Although our study indicates that levels of endemism in the ant fauna of the eastern Kimberley are lower than those in the northern Kimberley, they are still extremely high. It seems that at least a quarter of all Kimberley ant species are endemic to the region. This confirms the Kimberley as a highly significant region for ant biodiversity. We have also shown that the regional ant fauna is highly resilient in relation to the key threatening process in the region.  相似文献   

4.
Although it is common for ant surveys to uncover previously uncollected species, a recent study of subterranean ants in Amazonian Ecuador has indicated that an entire ant fauna may remain largely undiscovered. Here we report on the first systematic investigation of subterranean ants in northern Australia, in order to assess the extent to which the high abundance and diversity of subterranean ants in Amazonia is apparent in tropical Australia. We use a novel sampling technique that combines elements of an attractant bait and a pitfall trap, and allows many traps to be deployed simultaneously. Our main study was conducted at three closely approximated sites in Darwin, where the local ant fauna has been intensively surveyed using conventional (above-ground) sampling techniques. The 720 traps deployed resulted in 421 species records, representing 29 species from 17 genera. Sixteen of these species have cryptobiotic morphology, with four recorded here for the first time. Remarkably, one of these four (a blind species of Solenopsis) was the second most frequently caught species in subterranean traps, with 70 records. Ant abundance, species richness and composition varied markedly between sites, despite site similarity in soils and vegetation. Total ant records were greater in the middle compared with start of the wet season, declined with depth, and were greater after 4 days than one. Sampling at six sites in the Mitchell Falls area of the northern Kimberley region, 1,200 km southwest of Darwin, also revealed several cryptobiotic species new to science, including a new genus record (Pseudolasius) for Western Australia. Our underground sampling has therefore revealed an abundant and diverse subterranean ant fauna in northern Australia, containing many cryptobiotic species not previously collected. We use our results to provide methodological guidelines for most effectively sampling this fauna. Combined with the Amazonian study, our findings indicate that a specialist subterranean ant fauna, including numerous species remaining to be discovered, might be a feature of tropical landscapes throughout the world.  相似文献   

5.
Gove AD  Majer JD  Dunn RR 《Oecologia》2007,153(3):687-697
In order to understand the dynamics of co-evolution it is important to consider spatial variation in interaction dynamics. We examined the relative importance of ant activity, diversity and species identity in an ant seed dispersal mutualism at local, regional and continental scales. We also studied the determinants of seed dispersal rates and dispersal distances at eight sites in the Eneabba sandplain (29.63 S, 115.22 E), western Australia to understand local variation in seed dispersal rate and distance. To test the generality of the conclusions derived from the eight local sites, we established 16 sites along a 1650-km transect in western Australia, covering 11° of latitude and a six-fold increase in rainfall, at which we sampled the ant assemblage, estimated ant species richness and ant activity and observed the removal rate of myrmecochorous seeds. We also assessed the importance of ant species identity at a continental scale via a review of studies carried out throughout Australia which examined ant seed dispersal. Among the eight sandplain shrubland sites, ant species identity, in particular the presence of one genus, Rhytidoponera, was associated with the most dispersal and above average dispersal distances. At the landscape scale, Rhytidoponera presence was the most important determinant of seed removal rate, while seed removal rate was negatively correlated with ant species richness and latitude. Most ant seed removal studies carried out throughout Australia reinforce our observations that Rhytidoponera species were particularly important seed dispersers. It is suggested that superficially diffuse mutualisms may depend greatly on the identity of particular partners. Even at large biogeographic scales, temporal and spatial variation in what are considered to be diffuse mutualisms may often be linked to variation in the abundance of particular partners, and be only weakly – or negatively – associated with the diversity of partners.  相似文献   

6.
Taxonomic investigations of the Delias mysis (Fabricius, 1775) complex from northern Australia indicate two additional species in the Australian fauna: Delias aestiva Butler, 1897 stat. rev. and Delias lara (Boisduval, 1836). The latter species, which is illustrated from Australia for the first time, was until recently known under the name Delias mysis onca Fruhstorfer, 1910. Evidence from adult morphology (male genitalia), colour pattern of the adult and immature stages, behaviour, and ecology indicates substantial phenotypic divergence between D. aestiva and D. mysis. Within Australian limits, all three taxa are allopatric: D aestiva is endemic to the Top End, Northen Territory, D. mysis mysis is restricted to northern and north‐eastern Queensland, whereas Delias lara lara is known only from three specimens from the Torres Strait islands, Queensland. Delias aestiva is perhaps the most remarkable member of the complex and indeed the genus, breeding in tropical mangrove habitats in coastal estuarine areas where the larvae specialize on mature foliage of the tree Excoecaria ovalis Endl. (Euphorbiaceae). This host preference is novel given the general tendency of Delias to feed on hemiparasitic plants in the order Santalales (Loranthaceae, Santalaceae and Viscaceae). Under laboratory conditions, however, larvae successfully completed development on the mistletoe genera Amyema, Dendrophthoe and Decaisnina (all Loranthaceae) with no significant reduction in larval survival. These findings, together with phylogenetic hypotheses of the Aporiina and Delias, indicate a recent evolutionary host shift from Loranthaceae to Euphorbiaceae. The foliage of Excoecaria produces toxic latex, which is composed of a variety of secondary plant compounds, including diterpenoids, triterpenoids, alkaloids and phorbol esters. The mechanism of detoxification has not been established, although the larvae of D. aestiva are gregarious, regurgitate fluid as part of their chemical defence, and the adults are highly aposematic. Adults are seasonal, being chiefly on the wing during the cooler dry season; during the wet season, the larval food plant is seasonally deciduous and it is suspected that the butterfly undergoes pupal diapause. The cryptically coloured green pupa and tendency to pupate singly in concealed situations of D. aestiva are highly unusual traits among Delias and are hypothesized to be adaptive responses associated with pupal diapause during the wet season. The unique habitat association, novel food plant specialization, and restricted distribution of D. aestiva emphasizess the biogeographical peculiarities of northern Australia, especially patterns of historical (vicariant) differentiation between the Top End and Cape York Peninsula within the Australian Monsoon Tropics. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 107 , 697–720.  相似文献   

7.
In xeric ecosystems, ant diversity response to aridity varies with rainfall magnitude and gradient extension. At a local scale and with low precipitation regimes, increased aridity leads to a reduction of species richness and an increased relative abundance for some ant species. In order to test this pattern in tropical environments, ant richness and relative abundance variation were evaluated along 35 km of an aridity gradient in the Araya Peninsula, state of Sucre, Venezuela. Three sampling stations comprising five transects each were set up. Pitfall traps and direct collecting from vegetation were assessed per transect. Overall, 52 species, 23 genera, and 7 subfamilies of ants were recorded in the peninsula. The total number of species and genera recorded by both sampling stations and transects decreased linearly with increasing aridity. Total relative abundance was highest in the most arid portion of the peninsula, with Crematogaster rochai (Forel) and Camponotus conspicuus zonatus (Emery) (Hymenoptera: Formicidae) being the numerically dominant species. Spatial and multivariate analyses revealed significant changes in ant composition every 11 km of distance, and showed a decrease of ant diversity with the increase of harsh conditions in the gradient. Here, we discuss how local geographic and topographic features of Araya originate the aridity gradient and so affect the microhabitat conditions for the ant fauna.  相似文献   

8.
Aim To examine how current and historical environmental gradients affect patterns of millipede (Diplopoda) endemism and species turnover in a global hotspot of floristic diversity, and to identify regions of high endemism and taxonomic distinctness for conservation management. Location South‐western Australia. Methods Museum database records of millipedes (subclasses Pentazonia and Helminthomorpha), supplemented with extensive fieldwork, were used to map species richness, species turnover (β‐diversity), weighted endemism, average taxonomic distinctness and variation in taxonomic distinctness in half‐degree grid squares (c. 2500 km2). Generalized linear models were used to examine relationships between these parameters with rainfall (present day and historical), topography and human disturbance (clearing for agriculture and urbanization). Results Millipede species richness, particularly within the order Spirostreptida, and millipede endemism were positively associated with large within‐cell differences in elevation (mountainous regions). Large variation in taxonomic distinctness (unevenness in the taxonomic tree) in higher‐rainfall areas was mainly due to speciation within the Spirostreptida genus Atelomastix. Hotspots of millipede endemism and taxonomic distinctness were identified within three categories of importance: primary (Stirling Range East, Cape Le Grand, Cape Arid, Walpole, Porongurups), secondary (Mount Manypeaks, Bremer Bay, Stirling Range West, Duke of Orleans Bay, Ravensthorpe, Albany, Busselton) and tertiary (Nornalup). A species turnover boundary was positively associated with rainfall, broadly located in the transition zone of 300–600 mm year?1. Main conclusions The current lack of knowledge on the endemism of invertebrates hampers their incorporation into conservation planning. With this knowledge we can identify global biodiversity hotspots and, at a smaller scale, significant conservation areas within a region. Here we have shown that weighted endemism and taxonomic distinctness are useful tools in identifying centres of high endemism and speciation for millipedes within the south‐west Australian hotspot. Moreover, it is unlikely that either vertebrates or vascular plants will be useful surrogates for identifying significant areas for invertebrate conservation. While other workers have shown that vascular plants, mammals and frogs have different centres of endemism within south‐west Australia, our results show that centres of endemism for millipedes encompass all of these plus other areas.  相似文献   

9.
The recognition of areas of endemism (AEs) is important for conservation biology and biogeographical regionalization. Our objective was to quantitatively identify AEs and distributional congruence patterns of native rodents at the tropical/temperate transition in the central Andes. We analysed 6200 geo‐referenced distributional records of 80 species in north‐western Argentina using NDM/VNDM software. We found 20 AEs defined by 22 endemic species (27% of the total rodent fauna) and 34 patterns of distributional congruence in non‐endemic rodents. Geographical range congruence follows two main patterns running parallel along the Andes. One is related to the humid eastern slopes of the Andes (Argentinean Yungas forest) and the other to the high Andes (Argentinean Puna plateau). Endemism was mainly restricted to the southernmost part of the Yungas forest and adjacent dryer valleys (Monte desert). Species diversity was highest in the northern sector of the Argentinean Yungas forest, where several species reach their southern distributional range. This incongruence among hotspots of diversity and endemism has also been also noted in diversity studies at continental and global scales. Our results provide a starting point for conservation planning in the southernmost Central Andes, which combines the taper of tropical diversity and range‐restricted species endemic to the tropical–temperate transition. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 112 , 163–179.  相似文献   

10.
Multilocus phylogeography can uncover taxonomically unrecognized lineage diversity across complex biomes. The Australian monsoonal tropics include vast, ecologically intact savanna‐woodland plains interspersed with ancient sandstone uplands. Although recognized in general for its high species richness and endemism, the biodiversity of the region remains underexplored due to its remoteness. This is despite a high rate of ongoing species discovery, especially in wetter regions and for rock‐restricted taxa. To provide a baseline for ongoing comparative analyses, we tested for phylogeographic structure in an ecologically generalized and widespread taxon, the gecko Heteronotia binoei. We apply coalescent analyses to multilocus sequence data (mitochondrial DNA and eight nuclear DNA introns) from individuals sampled extensively and at fine scale across the region. The results demonstrate surprisingly deep and geographically nested lineage diversity. Several intra‐specific clades previously shown to be endemic to the region were themselves found to contain multiple, short‐range lineages. To infer landscapes with concentrations of unique phylogeographic diversity, we probabilistically estimate the ranges of lineages from point data and then, combining these estimates with the nDNA species tree, estimate phyloendemism across the region. Highest levels of phyloendemism occur in northern Top End, especially on islands, across the topographically complex Arnhem escarpment, and across the sandstone ranges of the western Gulf region. These results drive home that deep phylogeographic structure is prevalent in tropical low‐dispersal taxa, even ones that are ubiquitous across geography and habitats.  相似文献   

11.

Aim

Savanna biomes cover around 20% of land surfaces, yet the origins and processes that have shaped their biodiversity remain understudied. Here, we assess the timing of diversification and how patterns of genetic diversity vary along an aridity gradient in specialized saxicoline gecko clades (Oedura spp.) from the tropical savannas of northern Australia.

Location

Australian Monsoonal Tropics (AMT), Kimberley region (Western Australia).

Methods

We compiled mitochondrial and nuclear data for two Kimberley endemic lizard clades (Oedura filicipoda/murrumanu and O. gracilis), and allied non‐Kimberley taxa (O. marmorata complex). Species delimitation methods were used to identify evolutionary lineages, Maximum‐likelihood and Bayesian phylogenetic methods were employed to assess relationships and diversification timeframes, and rainfall data and range sizes were tested for correlations.

Results

Phylogenetic analyses of cryptic or recently discovered lineage diversity revealed late‐Miocene to early‐Pliocene crown ages. Microendemism and diversity were highest in high‐rainfall regions, while the most widespread lineages occurred in the central and south‐east Kimberley, and showed evidence of introgression with parapatric lineages.

Main conclusions

The initial diversification in both clades was broadly concordant with global climatic events linked to the expansion of savanna biomes in the lateMiocene. Higher endemism in mesic and refugial areas suggests long histories of localized persistence, while wider distributions and evidence of introgression suggest a dynamic history at the arid‐monsoonal interface.  相似文献   

12.
Seasonality is known to influence ant activity in many tropical rain forests in the world such as South America and Africa. We surveyed ant fauna in the leaf litter in the locality of Minko'o. The work aimed to evaluate the effect of seasonal variation on the diversity and composition of litter ants. Ants were sampled from November 2015 to June 2017, using four sampling methods: visual capture, bait, pitfall trap and extraction. Species richness, Shannon diversity index and analysis of similarities were used to characterise diversity of ant communities between seasons. We collected 306 ant species, shared out between 56 genera and 11 subfamilies. Subfamilies Myrmicinae, Ponerinae, Dolichoderinae, Formicinae, Dorylinae, Cerapachyinae and Pseudomyrmecinae occurred in all the seasons. Species richness was highest in major dry season with 243 species followed by minor rainy season with 188, major rainy season with 177 species and finally minor dry season that recorded the lowest with 155 species. Kruskal–Wallis test showed that ant species richness did not differ between seasons (p > 0.05). Species diversity index indicated that diversity was the highest during minor dry season (H′ = 4.24), followed by the major dry season (H′ = 4.23), minor rainy season (H′ = 4.21) and lowest during major rainy season (H′ = 4.06). Eight most frequents ants have been recorded: Axinidris sp.1, Camponotus flavomarginatus, Monomorium guineense, Myrmicaria opaciventris, Odontomachus troglodytes, Carebara perpusilla, Paltothyreus tarsatus and Pheidole megacephala. Assessment of the seasonal effect on diversity reveals that dry season is richer and more diverse than rainy season and the season significantly influence the diversity of litter ants.  相似文献   

13.
Northern Australia supports the world’s largest estate of undeveloped tropical savannas, but previous studies of ant diversity in the region have covered only a fraction of its land area and habitat diversity. We assess patterns of ant species and functional diversity, their environmental predictors, and biogeographic significance in the central North Kimberley region of Australia’s seasonal tropics. Pitfall traps were used to sample ants at 69 plots in representative savanna habitats, collecting a total of 158 species from 30 genera. Total richness was estimated to be as high as 237 species. At least 29 species across 12 genera appear to have been collected for the first time. Only a single invasive ant was recorded from the study area. Based on cluster analysis we identified six compositionally distinct ant communities, each associated with a combination of vegetation type and underlying geology. Species richness and functional diversity was highest in savanna woodlands and grasslands on sandstone-derived soils, with increasing richness also predicted by a lower mean daily temperature range, a more complex understorey, and lower precipitation seasonality. The abundance of nearly all commonly trapped species was related to temperature, moisture, and habitat variables, although these relationships were highly idiosyncratic. Nearly 40 % of the collected species are known only from the North Kimberley region. The high level of endemism, together with the lack of introduced ant species, identifies the North Kimberley ant fauna as having outstanding biodiversity value. Our identification of ant community types based on mappable soil and vegetation units provides a basis for predicting ant distribution throughout the broader region, and therefore contributing to regional conservation planning and management.  相似文献   

14.
Members of the genus Rhytidoponera and, to a lesser extent, certain Melophorus spp. are keystone mutualists for the dispersal of seeds in the southwest of Western Australia, with important ramifications for the ecology and speciation of plants in this biodiversity hotspot. For this reason, it is important to understand the autecology of the relevant ant species and the way in which they interact with plant seeds. This paper addresses key aspects of the ecology of three such ant species, Rhytidoponera violacea (Forel), R. inornata Crawley and Melophorus turneri perthensis Wheeler. Data are presented on their geographic distribution, seasonality of foraging, diurnal activity, response to fire, nest site preference, nest structure, colony size, feeding habits, foraging response to seed availability, and seedling emergence from nests. The role of all three species as seed dispersers is confirmed, and all three species have ecologies that are well-suited for dispersal and survival of native plant seeds. Preservation of this interaction is important for the conservation of plants, and it is fortuitous that all three species are able to survive disturbance and return to rehabilitated areas. However, the smaller R. inornata, and to a lesser extent, the larger R. violacea, are vulnerable to invasive ant [Pheidole megacephala (Fabricius)] incursions. M. turneri perthensis is able to coexist with the invasive ant unless this is at high densities, probably as a result of its ability to forage during high temperatures when the invasive species is inactive.  相似文献   

15.
Butterfly distributions on 26 tropical Pacific archipelagos were analysed to examine the effects of geography on diversity and endemism. The total butterfly fauna for each archipelago was divided into continental (found also on continental areas), Pacific (found within more than one archipelago but not outside of the study area), and endemic species (restricted to a single archipelago). Numbers and proportions of each species were related to eight geographic variables by stepwise multiple linear regression analysis. Total area of an archipelago and distance from other land masses were important predictors of the number of species within an archipelago. Proportions of butterfly species in each category were related differently to the geographic variables, with endemism being promoted by the number of large islands within an archipelago. Relative to birds, butterflies have been less successful in colonizing remote archipelagos and have much lower levels of endemism. Even if colonization is successful, butterfly speciation may be constrained by the mechanics of coevolution with available host plants.  相似文献   

16.
Grazing by domestic livestock is one of the most widespread forms of anthropogenic disturbance globally, and can have a major impact on biodiversity and therefore conservation values. Here we use ants to assess the extent to which livestock grazing is compatible with biodiversity conservation in a tropical savanna of northern Australia, where there is growing pressure to intensify pastoral production. We focus on the extent to which ant responses conform with four general patterns identified in a recent global review: (1) soil and vegetation type have a far bigger impact on ant community composition than does grazing; (2) grazing modifies ant species composition but often not species richness or total abundance; (3) a species’ response often varies among habitats; and (4) between 25–50% of the species that can be statistically analysed are responsive to grazing. We sampled ants using pitfall traps at 38 sites in two land systems, based on cross-fence comparisons of areas of different grazing intensities. A total of 130 ant species from 24 genera were recorded, with the fauna dominated by species of Iridomyrmex and Monomorium. Land system was the primary driver of variation in ant species richness and composition, and grazing intensity was related to neither species richness nor total abundance. Only 10% of common species appeared to be impacted by grazing. Overall, ant responses to grazing in our study region were generally consistent with the four global patterns, except that the local fauna seems to be particularly resilient. Such resilience indicates that current grazing management practices are compatible with the conservation of ant biodiversity.  相似文献   

17.
Throughout the tropics, agroforests are often the only remaining habitat with a considerable tree cover. Agroforestry systems can support high numbers of species and are therefore frequently heralded as the future for tropical biodiversity conservation. However, anthropogenic habitat modification can facilitate species invasions that may suppress native fauna. We compared the ant fauna of lower canopy trees in natural rainforest sites with that of cacao trees in agroforests in Central Sulawesi, Indonesia in order to assess the effects of agroforestry on occurrence of the Yellow Crazy Ant Anoplolepis gracilipes, a common invasive species in the area, and its effects on overall ant richness. The agroforests differed in the type of shade-tree composition, tree density, canopy cover, and distance to the village. On average, 43% of the species in agroforests also occurred in the lower canopy of nearby primary forest and the number of forest ant species that occurred on cacao trees was not related to agroforestry characteristics. However, A. gracilipes was the most common non-forest ant species, and forest ant richness decreased significantly with the presence of this species. Our results indicate that agroforestry may have promoted the occurrence of A. gracilipes, possibly because tree management in agroforests negatively affects ant species that depend on trees for nesting and foraging, whereas A. gracilipes is a generalist when it comes to nesting sites and food preference. Thus, agroforestry management that includes the thinning of tree stands can facilitate ant invasions, thereby threatening the potential of cultivated land for the conservation of tropical ant diversity.  相似文献   

18.
Alison Shapcott 《Biotropica》1999,31(4):579-590
Syzygium nervosum is a common monsoon rain forest tree. Its habitat in Australia consists of small rain forest patches that are scattered through a savanna matrix. It is a mast flowering canopy species that produces large quantities of fruits fed on by mobile frugivores such as birds and fruit bats. The genetic diversity of this species was investigated, especially in relation to rain forest patch size, geographic isolation, and geographic distribution. Syzygium nervosum was found to have high levels of genetic diversity within populations (He= 0.307). Diversity among populations, however, was relatively low (Fsr = 0.118), and was not spatially structured across its geographic range in Australia. This is thought to have been caused by relatively frequent gene flow among populations (Nm= 1.67), mediated primarily by mobile frugivores. Genetic diversity was not correlated with patch size or isolation. It is thought that seed dispersal by frugivores has acted to expand the effective population size of this species beyond the individual rain forest patch, and thus has prevented the substantial loss of genetic diversity that otherwise would have been observed. Thus this species is dependent upon these frugivores for the maintenance of its genetic diversity and hence its long-term viability. These results lend support to theories of post-Holocene expansion of rain forest by vagile species in northern Australia.  相似文献   

19.
The Cladocera of Sri Lanka (Ceylon), with remarks on some species   总被引:5,自引:4,他引:1  
The freshwater Cladocera of Sri Lanka has been revised based on the study of over 700 zooplankton samples collected from all habitat types during 1965–1980. The cladoceran fauna is represented by six families; members of the families Polyphemidae, Leptodoridae and Holopedidae are absent. The common temperate genus Daphnia is rare.Sixty-two species have been recorded from Sri Lanka. Of these, five are new records. Remarks on a few species are given with illustrations. The distribution of Cladocera in different types of habitats is discussed. The greatest species diversity was found in ponds. The Sri Lankan fauna is numerically and in species diversity typical of tropical cladoceran fauna. It resembles the southern Indian fauna very closely except for the absence in Sri Lanka of the genera Acroperus and Camptocercus.  相似文献   

20.
The ant fauna of Nam Cat Tien in the southern part of the Cat Tien Biosphere Reserve (Dong Nai Prov., Southern Vietnam) was studied in 2007–2008. The zonal type of vegetation under study is closed deciduous tropical forests dominated by Lagerstroemia spp. in association with Dipterocarpaceae and Fabaceae. The local ant fauna comprises 272 species from 68 genera and 12 subfamilies. The maximum number of species was found in the genera Polyrhachis (31), Camponotus (21), Pheidole (21), Leptogenys (17), and Crematogaster (13). Seven ant genera (Echinopla F. Sm., Indomyrma Brown, Liomyrmex Mayr, Paratopula Wheeler, Proatta For., Protanilla Taylor, and Rotastruma Bolton) are reported from Vietnam for the first time. The ecological pattern of the ant fauna in the main forest biotopes of the study area is considered. In the dipterocarp forests in the central part of the reserve, the complex of stratobiont species was the most diverse. In the bamboo forests, the stratobiont complex is less diverse but the fraction of dendrobionts is greater. The forests with similar layer structure occurring on sand and loamy soils were shown to differ in the species composition of ant assemblages. Repeated population inventories of ants were carried out in 8 model plots of 100 m2 each during the dry and rainy season. The specificity of revealing species of different biomorphs is discussed in the seasonal aspect. The structure of the ant fauna of Nam Cat Tien is compared to that in other territories of the Oriental Region. The zoogeographic unity of the study area and some localities of the Indo-Malayan Subregion (Borneo, Java) is demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号