首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The oriental mole cricket Gryllotalpa orientalis exhibits variation in wing dimorphism. In an Okinawa population, no short‐winged individuals were observed, and wing dimorphism has not been detected. Flight behavior of G. orientalis was observed from April to October in Okinawa. In contrast, a Hyogo population exhibited seasonal wing dimorphism and long‐winged individuals appear from June to September. The flight period of the long‐winged morph coincided with this period. Short‐winged individuals appeared from September to the following June and they never fly. Both populations showed univoltine life cycles. Considering the possible flight period, wing pattern and life cycle of mole crickets in these two areas, it is presumed that flightlessness is expected to arise when adults can not experience suitable temperatures for flight activity.  相似文献   

2.
A life‐history trade‐off exists between flight capability and reproduction in many wing dimorphic insects: a long‐winged morph is flight‐capable at the expense of reproduction, while a short‐winged morph cannot fly, is less mobile, but has greater reproductive output. Using meta‐analyses, I investigated specific questions regarding this trade‐off. The trade‐off in females was expressed primarily as a later onset of egg production and lower fecundity in long‐winged females relative to short‐winged females. Although considerably less work has been done with males, the trade‐off exists for males among traits primarily related to mate acquisition. The trade‐off can potentially be mitigated in males, as long‐winged individuals possess an advantage in traits that can offset the costs of flight capability such as a shorter development time. The strength and direction of trends differed significantly among insect orders, and there was a relationship between the strength and direction of trends with the relative flight capabilities between the morphs. I discuss how the trade‐off might be both under‐ and overestimated in the literature, especially in light of work that has examined two relevant aspects of wing dimorphic species: (1) the effect of flight‐muscle histolysis on reproductive investment; and (2) the performance of actual flight by flight‐capable individuals.  相似文献   

3.
A short‐winged morph was recently discovered in the migratory locust, Locusta migratoria. It is different from the normal, long‐winged morph not only in forewing length but also in hind femur length, displaying a dimorphism. To understand the significance of this dimorphism, other morphological characters were compared between the two morphs, and the time of differentiation of wing‐pad length was investigated. Wing weights were heavier in the long‐winged morph than in the short‐winged morph. This result showed that the short‐winged morph is not formed by a failure of wing expansion. No obvious morph‐specific differences were observed in wing venation, but wing allometry studies indicated that the distal areas of the fore‐ and hindwings were disproportionally reduced in the short‐winged morph compared to the long‐winged morph. The morphological differentiation of the wing pad between the two morphs was observed at the penultimate nymphal stage. The flight muscle was well developed in the two morphs, and no sign of flight muscle histolysis was detected in either morph after adult emergence. An analysis of adult body dimensions suggested that the density‐dependent phase shifts known for the long‐winged morph of this locust were also exhibited by the short‐winged morph, demonstrating that these shifts are not specific to the migratory long‐winged morph.  相似文献   

4.
Morphology, flight muscles, and reproductive development were compared between long‐winged (LW) and short‐winged (SW) morphs of the cricket Velarifictorus ornatus (Shiraki) (Orthoptera: Gryllidae). There was no difference in body weight and pre‐oviposition between the two morphs, but LW individuals had better‐developed flight muscles than SW individuals during and after emergence of the adult. The flight muscles at adult emergence represented 11.9% of the total body weight in the LW female and 4.9% in the SW female. In addition, the weight of the flight muscle of LW females increased by 50% during the first 5 days, whereas the flight muscle of the SW variant increased only slightly after adult emergence. The process of oviposition in LW, SW, and de‐alated females varied: SW females produced more eggs at the early stage than LW females, but de‐alation could shorten the time until the peak of egg laying and caused histolysis of flight muscles of LW females. There was no significant difference in total egg production between the above three groups. In the male, unlike the female, the accessory glands of the two wing morphs enlarged continuously at the same rate. There was no difference between the two wing morphs in the mass of the testes during the first 7 days after adult emergence.  相似文献   

5.
The wing dimorphic water strider Gerris lacustris L. (Heteroptera: Gerridae) switches to a bivoltine life cycle under favorable climatic conditions. The switch in voltinism is accompanied by a reduction of wing development in the directly reproducing midsummer generation, while the diapausing generation has a high fraction of long‐winged individuals. We investigated whether the thermal energy (degree‐days) available in natural habitats constrains the combination of developmental pathway and wing morph. Offspring of G. lacustris were reared under quasi‐natural conditions at two temperature regimes to determine the thermal constant k required to complete adult development in either wing morph. The thermal constant for egg‐to‐adult development of the short‐winged morph was about 20% lower than of the long‐winged morph. Based on the results from the outdoor laboratory experiment, we calculated the total degree‐days necessary to complete the possible combinations of wing morph pattern and voltinism. Comparison of these estimates with the thermal energy actually available during the reproductive season of 2004 for various natural habitats (sun‐exposed field ponds and shaded forest ponds) suggests that voltinism as well as wing morph pattern is strongly limited by the number of degree‐days available in these habitats. On forest ponds, only univoltine life cycles were possible, whereas on field ponds temperature allowed bivoltine life cycles. However, only the eggs laid at the very beginning of the season had the potential to accumulate enough degree‐days to complete a bivoltine life cycle with both generations long‐winged. We conclude that thermal energy is the main environmental constraint limiting voltinism of populations in the two habitat types. Furthermore, the available thermal energy also seems to influence the determination of the seasonal wing pattern in G. lacustris.  相似文献   

6.
1. Trade‐offs play a fundamental role in the evolution of many traits. 2. In wing‐polymorphic field crickets, the long‐winged morph can disperse from unfavourable environments, but has lower reproductive success than the short‐winged morph, because of costs associated with flight capability. 3. However, long‐winged individuals may minimise costs in favourable environments by histolysing their flight muscles and becoming flightless. 4. Few studies have examined how flight‐muscle histolysis affects male signalling and mate attraction. 5. We examined differences in singing activity and song characteristics among the flightless (short‐winged and histolysed long‐winged) and the flight‐capable male morphs, and female preferences for male song, in the sand field cricket. 6. We found: (i) both flightless morphs sang more than the flight‐capable morph, (ii) song characteristics varied among the three morphs, and (iii) females preferred songs characteristic of the long‐winged morphs. 7. Histolysis should increase mating success of long‐winged males because it increases singing activity. 8. Histolysed long‐winged males may have higher mating success than short‐winged males as they sing as frequently but produce more attractive songs. 9. Therefore, plasticity within the long‐winged morph may reduce costs of maturing in environments from which dispersal is not advantageous; non‐flying morphs may be pursuing different reproductive tactics.  相似文献   

7.
In wing‐polymorphic insects, wing morphs differ not only in dispersal capability but also in life history traits because of trade‐offs between flight capability and reproduction. When the fitness benefits and costs of producing wings differ between males and females, sex‐specific trade‐offs can result in sex differences in the frequency of long‐winged individuals. Furthermore, the social environment during development affects sex differences in wing development, but few empirical tests of this phenomenon have been performed to date. Here, I used the wing‐dimorphic water strider Tenagogerris euphrosyne to test how rearing density and sex ratio affect the sex‐specific development of long‐winged dispersing morphs (i.e., sex‐specific macroptery). I also used a full‐sib, split‐family breeding design to assess genetic effects on density‐dependent, sex‐specific macroptery. I reared water strider nymphs at either high or low densities and measured their wing development. I found that long‐winged morphs developed more frequently in males than in females when individuals were reared in a high‐density environment. However, the frequency of long‐winged morphs was not biased according to sex when individuals were reared in a low‐density environment. In addition, full‐sib males and females showed similar macroptery incidence rates at low nymphal density, whereas the macroptery incidence rates differed between full‐sib males and females at high nymphal density. Thus complex gene‐by‐environment‐by‐sex interactions may explain the density‐specific levels of sex bias in macroptery, although this interpretation should be treated with some caution. Overall, my study provides empirical evidence for density‐specific, sex‐biased wing development. My findings suggest that social factors as well as abiotic factors can be important in determining sex‐biased wing development in insects.  相似文献   

8.
Wing dimorphism, where some macropterous long‐winged (LW) individuals can fly whereas micropterous short‐winged (SW) individuals cannot, is common in insects and believed to be maintained in part by trade‐offs between flight capability and reproductive traits. In this paper we examine differences in whole‐organism respiration rate between wing morphs of the sand cricket Gryllus firmus. We hypothesized that maintenance of the flight apparatus would result in elevated CO2 respired because of the high metabolic cost of these tissues, which, in turn, constrain resources available for egg production in females. As the trade‐off involves calling behaviour in males, we predicted no equivalent constraint on organ development in this sex. We found female macropters (particularly older crickets) had significantly higher residual respiration rates than micropters. In males, we found only marginal differences between wing morphs. In both sexes there was a highly significant effect of flight muscles status on residual respiration rate, individuals with functional muscles having higher respiration rates. Both female and male macropters had significantly smaller gonads than micropters. Whole‐organism residual respiration rate was negatively correlated with fecundity: macropterous females with high respiration rates had smaller gonads compared with macropterous females with lower respiration rates.  相似文献   

9.
Wing polymorphism in insects provides a good model system for investigating evolutionary dynamics and population divergence in dispersal‐enhancing traits. This study investigates the contribution of divergent selection, trade‐offs, behaviour and spatial sorting to the evolutionary dynamics of wing polymorphism in the pygmy grasshopper Tetrix subulata (Tetrigidae: Orthoptera). We use data for > 2800 wild‐caught individuals from 13 populations and demonstrate that the incidence of the long‐winged (macropterous) morph is higher and changes faster between years in disturbed habitats characterized by succession than in stable habitats. Common garden and mother‐offspring resemblance studies indicate that variation among populations and families is genetically determined and not influenced to any important degree by developmental plasticity in response to maternal condition, rearing density or individual growth rate. Performance trials show that only the macropterous morph is capable of flight and that propensity to fly differs according to environment. Mark–recapture data reveal no difference in the distance moved between free‐ranging long‐ and short‐winged individuals. There is no consistent difference across populations and years in number of hatchlings produced by long‐ and shorter‐winged females. Our findings suggest that the variable frequency of the long‐winged morph among and within pygmy grasshopper populations may reflect evolutionary modifications driven by spatial sorting due to phenotype‐ and habitat type–dependent emigration and immigration.  相似文献   

10.
Winter geometrid moths exhibit sexual dimorphism in wing length and female‐specific flightlessness. Female‐specific flightlessness in insects is an interesting phenomenon in terms of sexual dimorphism and reproductive biology. In the winter geometrid moth, Protalcis concinnata (Wileman), adult females have short wings and adult males have fully developed wings. Although the developmental process for wing reduction in Lepidoptera is well studied, little is known about the morphology and the developmental pattern of short‐winged flightless morphs in Lepidoptera. To clarify the precise mechanisms and developmental processes that produce short‐winged morphs, we performed morphological and histological investigations of adult and pupal wing development in the winter geometrid moth P. concinnata. Our findings showed that (a) wing development in both sexes is similar until larval‐pupal metamorphosis, (b) the shape of the sexually dimorphic wings is determined by the position of the bordering lacuna (BL), (c) the BL is positioned farther inward in females than in males, and (d) after the short pupal diapause period, the female pupal wing epithelium degenerates to approximately two‐thirds its original size due to cell death. We propose that this developmental pattern is a previously unrecognized process among flightless Lepidoptera.  相似文献   

11.
Among the Orthoptera, wing dimorphism, where one morph is long‐winged and flight capable while the other is short‐winged and flight incapable, is common and believed to be maintained in populations due to trade‐offs to flight capability. In males, macropterous individuals call less than micropterous individuals and as a consequence obtain fewer matings. This trade‐off is hypothesized to be mediated by the energetic costs of calling. In this paper we report results for a path analysis examining lipid weight and DLM (dorso longitudinal muscle) condition of male Gryllus firmus. We found that as DLM condition changes from a nonfunctional to a functional state, call duration decreases, and as lipid weight increases, call duration increases. The most important linked path was wing morph → DLM condition → call duration. This model is consistent with the prediction that the trade‐off between wing morph and call duration is mediated via DLM and lipid stores.  相似文献   

12.
The pattern of locomotor (walking) activity was studied in adult males and females of short‐winged (brachypterous) and long‐winged (macropterous) morph of the flightless bug Pyrrhocoris apterus (Linnaeus) (Heteroptera: Pyrrhocoridae) under constant laboratory conditions. Walking activity was measured with a computerized video system and analysed with respect to sex, physiological status (reproduction, diapause and reproductive arrest of non‐diapause type) and wing dimorphism of the bugs. The largest duration was observed in the macropterous females with reproductive arrest of non‐diapause type (average 6 h per day) and the shortest duration in diapausing brachypterous females and males (average less than 2 h per day). This was reflected also in the overall time spent by walking during the first 14 days after imaginal ecdysis. The time spent by walking significantly increased in the macropterous morph as the bugs aged, whereas in diapausing brachypters the time spent by walking decreased with age. No linear relationship between walking activity and age was found in reproductive brachypterous morph. The bugs of all experimental groups moved mostly during the photophase and were almost inactive during the scotophase. Thus, walking activity in P. apterus is diurnal, irrespective of the wing morph, physiological status, sex and age. Contrary to the macropterous morph, where the locomotor activity of females during photophase was significantly higher than in males, no significant differences were found between the locomotor activities of brachypterous males and females. The observed differences in locomotor activity are discussed in relation to different roles of two wing morphs in the life history of this heteropteran.  相似文献   

13.
Sisodia S  Singh BN 《Genetica》2004,121(2):207-217
Mate choice based on body size is widespread and can have numerous consequences. We present data, which show the effect of male and female body size on sexual selection in Drosophila ananassae. The relationships between wing size, locomotor activity, mating latency, courtship pattern, fertility and mating success were studied. Mating latency was negatively correlated with wing length and with locomotor activity, while wing length and locomotor activity was positively correlated in males as well as in females. In female- and male-choice, we found that mate choice influenced size-assortative mating by: (1) large and small males preferring to mate with large females, (2) large males successfully competing for large females, leaving small males to mate with small females. Males increased their reproductive success by mating with large and more fecund females. In addition, in pairs of long/short winged flies, long winged flies courted and mated more successfully than short winged flies and they also have longer duration of copulation and more progeny than short winged flies. We found sterile mating in pairs of small winged males and females.  相似文献   

14.
15.
麦长管蚜虫龄鉴别特征   总被引:1,自引:0,他引:1  
【目的】为明确麦长管蚜Sitobion avenae (Fabricius)虫龄鉴别特征, 达到快速鉴别的目的。【方法】在成像观察的基础上, 测定无翅型和有翅型个体不同虫龄的体长、 体宽、 头壳宽、 触角长、 腹管长和后足胫节长6项指标。【结果】麦长管蚜不同翅型个体的体长、 体宽、 头壳宽、 触角长、 腹管长和后足胫节长在虫龄间均存在显著差异, 其中体长、 体宽、 头壳宽和触角长在相邻虫龄之间重叠程度大, 后足胫节长的重叠百分比极小或无重叠; 除有翅型个体4龄若蚜和成蚜之间存在13.93%的重叠外, 腹管长在不同翅型的其他相邻虫龄之间重叠百分比均极小或无重叠, 说明后足胫节长和腹管长可作为虫龄鉴定的主要特征。翅、 触角和尾片的其他外部形态特征在虫龄间也存在一定差异: 3-4龄有翅型若蚜和成蚜虫个体前胸的膨大程度及其翅的长度明显大于同一龄期的无翅型个体, 可用于蚜虫翅型的分辨以及3-4龄有翅若蚜和成蚜的鉴别; 麦长管蚜1和2龄若蚜触角均为5节, 3-4龄若蚜和成蚜的触角均为6节; 同时, 除了成蚜具有完整的尾片外, 1-4龄若蚜尾片均不发达, 说明触角的节数和尾片的发达程度可作为麦长管蚜不同龄期形态鉴别的辅助特征。【结论】以腹管和后足胫节作为麦长管蚜虫龄鉴别的主要特征, 配合其他辅助特征, 如翅的大小、 触角的节数以及尾片的发达程度等, 可达到快速鉴别不同翅型不同龄期蚜虫的目的。  相似文献   

16.
Tuberculatus quercicola (Matsumura) feeds on Quercus dentata Thunberg, and has mutualistic interactions with ants. Tuberculatus quercicola has two winged morphs in its life cycle, winged females appear in summer and sexual males appear in autumn. Previous studies have shown that wing loading (ratio of body volume to wing area) is higher for the winged females, because of ant attendance, resulting in extremely low dispersal. It is known that the nutritional quality of host plants is high in spring and autumn, when leaves are growing or senescent, and low in summer when leaves are mature. This study examined the effects of seasonal plant deterioration on the development of flight apparatus (wing size and flight muscle) of winged females and males. Moreover, field intercept traps were used to examine the extent of dispersal of males. The results showed that seasonal plant deterioration affected development of the flight apparatus of winged females, particularly flight muscle. Flight muscle development was significantly higher in winged males in autumn than in winged females. However, winged males were not caught in any of the traps. The different resource allocation to the flight apparatus of winged females and males is discussed.  相似文献   

17.
A review of data on the background of wing dimorphism in carabid beetles (Coleoptera: Carabidae) and especially of the closely relatedCalathus cinctus andC. melanocephalus is given. In bothCalathus species wing dimorphism is inherited in a simple Mendelian fashion with the brachypterous condition dominant, but inC. melanocephalus the expression of the long winged genotype is under environmental control as well. The development of long winged phenotypes in the latter species is favoured by relatively favourable environmental conditions, such as high temperatures and a high food-supply. The higher fecundity of the larger and heavier long winged females of both species may compensate for losses of long winged phenotypes by flight activities. The evolutionary significance of both types of inheritance is discussed in relation to dispersal. The ‘fixed type’ as found inC. cinctus is considered an opportunistic short term ‘between sites strategy’, whereas the ‘dynamic type’ ofC. melanocephalus represents a flexible long term ‘within sites strategy’.  相似文献   

18.
Velarifictorus ornatus (Shiraki) (Orthoptera: Gryllidae) display distinct wing variation, and a physiological trade‐off between reproduction and flight muscles has been observed in long‐winged (LW) and short‐winged (SW) females. To understand the physiological basis of this trade‐off, we investigated the difference in the food digestion capability and digestive enzyme activity between LW and SW females. We found that the efficiency of conversion of digested food into body matter of SW females was significantly higher than that of the LW females, although there was no difference in the approximate digestibility between LW and SW females during the first 12 days after the adult emergence. Similarly, growth and relative growth were significantly higher in SW females. The food consumption of SW females was significantly higher than that of the LW females only in the first 6 days after the adult emergence, suggesting enhanced ovary development in SW females is probably because of the elevated efficiency of conversion of digested food into body matter coupled with greater consumption in the early stage after the adult emergence. Trypsin‐like activity was higher in SW females than in LW females, whereas no differences in the fresh weight of the midguts (including content) were observed between LW and SW females at 1, 3, or 5 h after refeeding after starvation for 18 h. In contrast, amylase activity varied significantly depending on time lapse after refeeding, being significantly higher in LW females than in SW females at 1 h after refeeding, but significantly lower in LW females than in SW females at 3 and 5 h after refeeding. The lipase activity displayed a similar trend in both LW and SW females after refeeding, with an initial decline followed by a slight increase; and no difference was observed between LW and SW females at any stage after refeeding.  相似文献   

19.
In many insect taxa, there is a well‐established trade‐off between flight capability and reproduction. The wing types of Acridoidea exhibit extremely variability from full length to complete loss in many groups, thus, provide a good model for studying the trade‐off between flight and reproduction. In this study, we completed the sampling of 63 Acridoidea species, measured the body length, wing length, body weight, flight muscle weight, testis and ovary weight, and the relative wing length (RWL), relative flight muscle weight (RFW), and gonadosomatic index (GSI) of different species were statistically analyzed. The results showed that there were significant differences in RWL, RFW, and GSI among Acridoidea species with different wing types. RFW of long‐winged species was significantly higher than that of short‐winged and wingless species (p < .01), while GSI of wingless species was higher than that of long‐winged and short‐winged species. The RWL and RFW had a strong positive correlation in species with different wing types (correlation coefficient r = .8344 for male and .7269 for female, and p < .05), while RFW was strong negatively correlated with GSI (r = −.2649 for male and −.5024 for female, and p < .05). For Acridoidea species with wing dimorphism, males with relatively long wings had higher RFW than that of females with relatively short wings, while females had higher GSI. Phylogenetic comparative analysis showed that RWL, RFW, and GSI all had phylogenetic signals and phylogenetic dependence. These results revealed that long‐winged individuals are flight capable at the expense of reproduction, while short‐winged and wingless individuals cannot fly, but has greater reproductive output. The results support the trade‐off between flight and reproduction in Acridoidea.  相似文献   

20.
【目的】前期研究发现麦长管蚜Sitobion avenae孤雌蚜有翅和无翅个体中存在很多差异表达的微小RNA(microRNA, miRNA),本研究旨在进一步明确这些miRNA在豌豆蚜Acyrthosiphon pisum中发挥作用的发育阶段,探索miRNA调控孤雌蚜翅两型性分化的机制。【方法】选择在麦长管蚜有翅蚜和无翅蚜中显著差异表达,且靶基因为蜕皮激素、胰岛素信号通路及翅型发育关键基因的5个miRNA(Let-7,miR-92a, miR-92b, miR-92a-1-p5和miR-277),利用qPCR检测这些miRNA及其靶标基因在豌豆蚜3-4龄若蚜和成虫有翅和无翅个体中的表达谱;同时利用双荧光素酶活性检测法对上述miRNA的靶基因进行验证。【结果】表达谱分析发现,这5个miRNA在豌豆蚜成虫中表达量均高于其在若蚜中的表达量,而其预测的靶基因在4龄若蚜中的表达量均高于其在成虫中的表达量,表明miRNA对其靶基因的调控作用可能集中在成虫阶段。分析豌豆蚜有翅和无翅个体中5个miRNA的表达情况发现,在成虫有翅个体中5个miRNA的表达量均高于无翅个体中的,其中miR-277表达差异最显著,成虫有翅个体中的表达量是无翅个体中表达量的7.5倍;其次为Let-7,表达差异达3倍。而Let-7在3龄有翅若蚜和无翅若蚜中表达差异最显著,有翅个体中的表达量是无翅个体中的37.8倍;其次为miR-277,表达差异达7.6倍。比较5个miRNA与其靶基因在豌豆蚜3-4龄若蚜及成虫有翅和无翅个体中的表达发现,miRNA Let-7和miR-92b的表达趋势分别与其靶基因abrupt和Foxo的基本相反。荧光素酶活性检测结果显示,Let-7的真实靶标为abrupt,共转染Let-7模拟物后与对照相比,荧光素酶活性下降53%,达极显著水平。其他miRNA与靶标基因的互作不显著。【结论】首次发现miRNA对豌豆蚜孤雌蚜翅型分化相关基因的调控可能发生在成虫阶段。Let-7可能通过调控abrupt基因参与孤雌蚜翅型分化。该研究为进一步探索miRNA参与孤雌蚜翅两型性分化的机制奠定了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号