首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Non-homologous end joining (NHEJ) is an important DNA repair pathway for DNA double-strand breaks. Several proteins, including Ku, DNA-PKcs, Artemis, XRCC4/Ligase IV and XLF, are involved in the NHEJ for the DNA damage detection, DNA free end processing and ligation. The classical model of NHEJ is a sequential model in which DNA-PKcs is first recruited by the Ku bound DNA prior to any other repair proteins. Recent experimental study ( [McElhinny et al., 2000], [Costantini et al., 2007], [17] and [Yano and Chen, 2008]) suggested that the recruitment ordering is not crucial. In this work, by proposing a mathematical model in terms of biochemical reaction network and performing stability and related analysis, we demonstrate theoretically that if DSB repair pathway independent of DNA-PKcs exists, then the classical sequential model and new two-phase model are essentially indistinguishable in the sense that DSB can be repaired thoroughly in both models when the repair proteins are sufficient.  相似文献   

2.
Velma V  Carrero ZI  Cosman AM  Hebert MD 《FEBS letters》2010,584(23):4735-4739
Coilin is a nuclear protein that plays a role in Cajal body formation. The function of nucleoplasmic coilin is unknown. Here we report that coilin interacts with Ku70 and Ku80, which are major players in the DNA repair process. Ku proteins compete with SMN and SmB′ proteins for coilin interaction sites. The binding domain on coilin for Ku proteins cannot be localized to one discrete region, and only full-length coilin is capable of inhibiting in vitro non-homologous DNA end joining (NHEJ). Since Ku proteins do not accumulate in CBs, these findings suggest that nucleoplasmic coilin participates in the regulation of DNA repair.

Structured summary

MINT-8052983:coilin (uniprotkb:P38432) physically interacts (MI:0915) with SmB′ (uniprotkb:P14678) by pull down (MI:0096)MINT-8052941:coilin (uniprotkb:P38432) physically interacts (MI:0915) with Ku70 (uniprotkb:P12956) by competition binding (MI:0405)MINT-8052765:coilin (uniprotkb:P38432) physically interacts (MI:0915) with Ku80 (uniprotkb:P13010) by pull down (MI:0096)MINT-8052971:coilin (uniprotkb:P38432) physically interacts (MI:0915) with SMN (uniprotkb:Q16637) by pull down (MI:0096)MINT-8052957:coilin (uniprotkb:P38432) physically interacts (MI:0915) with Ku80 (uniprotkb:P13010) by competition binding (MI:0405)MINT-8052894, MINT-8052908:coilin (uniprotkb:P38432) binds (MI:0407) to Ku80 (uniprotkb:P13010) by pull down (MI:0096)MINT-8052804:coilin (uniprotkb:P38432) physically interacts (MI:0915) with Ku80 (uniprotkb:P13010) by anti bait coimmunoprecipitation (MI:0006)MINT-8052925:coilin (uniprotkb:P38432) binds (MI:0407) to Ku70 (uniprotkb:P12956) by pull down (MI:0096)MINT-8052786:Ku80 (uniprotkb:P13010) physically interacts (MI:0914) with coilin (uniprotkb:P38432) and Ku70 (uniprotkb:P12956) by anti bait coimmunoprecipitation (MI:0006)MINT-8052776:coilin (uniprotkb:P38432) physically interacts (MI:0915) with Ku70 (uniprotkb:P12956) by pull down (MI:0096)  相似文献   

3.
The repair of DNA double-strand breaks (DSB) is central to the maintenance of genomic integrity. In tumor cells, the ability to repair DSBs predicts response to radiation and many cytotoxic anti-cancer drugs. DSB repair pathways include homologous recombination and non-homologous end joining (NHEJ). NHEJ is a template-independent mechanism, yet many NHEJ repair products carry limited genetic changes, which suggests that NHEJ includes mechanisms to minimize error. Proteins required for mammalian NHEJ include Ku70/80, the DNA-dependent protein kinase (DNA-PKcs), XLF/Cernunnos and the XRCC4:DNA ligase IV complex. NHEJ also utilizes accessory proteins that include DNA polymerases, nucleases, and other end-processing factors. In yeast, mutations of tyrosyl-DNA phosphodiesterase (TDP1) reduced NHEJ fidelity. TDP1 plays an important role in repair of topoisomerase-mediated DNA damage and 3′-blocking DNA lesions, and mutation of the human TDP1 gene results in an inherited human neuropathy termed SCAN1. We found that human TDP1 stimulated DNA binding by XLF and physically interacted with XLF to form TDP1:XLF:DNA complexes. TDP1:XLF interactions preferentially stimulated TDP1 activity on dsDNA as compared to ssDNA. TDP1 also promoted DNA binding by Ku70/80 and stimulated DNA-PK activity. Because Ku70/80 and XLF are the first factors recruited to the DSB at the onset of NHEJ, our data suggest a role for TDP1 during the early stages of mammalian NHEJ.  相似文献   

4.
  相似文献   

5.
Although cadmium still represents a public health problem and despite the fact that it has been classified as an IARC Group-I carcinogen, the molecular and cellular mechanisms responsible for the toxicity and the carcinogenicity of cadmium compounds are poorly known. Since unrepaired DNA double-strand breaks (DSBs) are considered to be key-lesions in cell lethality, and because misrepaired DSBs are a source of genomic instability leading to cancer proneness, the activity of the major DSB-repair pathways, i.e. non-homologous end-joining (NHEJ) and recombination, has been evaluated in human endothelial cells exposed to cadmium chloride and cadmium diacetate. Exposure to cadmium results in the production of DSBs a few hours after incubation. These breaks trigger the phosphorylation of H2AX proteins, which was used as an indirect measure of DSB in this study. The presence of cadmium in cells decreases the repair rate of X-ray-induced DSBs, suggesting an impact of cadmium upon the reparability of DSBs. Such an interpretation was consolidated by the finding that the DNA-PK kinase activity, essential for NHEJ, is affected by the presence of cadmium. These results suggest that the toxicity of cadmium compounds may be explained by the propagation of persistent DSBs. In parallel, the presence of cadmium was also associated with an over-activation of the MRE11-dependent repair pathway that may favour genomic instability. Altogether, our data provide a first example of the impact of cadmium upon DSB repair and signalling.  相似文献   

6.
Tyrosyl-DNA phosphodiesterase 1 (TDP1) can remove a wide variety of 3′ and 5′ terminal DNA adducts. Genetic studies in yeast identified TDP1 as a regulator of non-homologous end joining (NHEJ) fidelity in the repair of double-strand breaks (DSBs) lacking terminal adducts. In this communication, we show that TDP1 plays an important role in joining cohesive DSBs in human cells. To investigate the role of TDP1 in NHEJ in live human cells we used CRISPR/cas9 to produce TDP1-knockout (TDP1-KO) HEK-293 cells. As expected, human TDP1-KO cells were highly sensitive to topoisomerase poisons and ionizing radiation. Using a chromosomally-integrated NHEJ reporter substrate to compare end joining between wild type and TDP1-KO cells, we found that TDP1-KO cells have a 5-fold reduced ability to repair I-SceI-generated DSBs. Extracts prepared from TDP1-KO cells had reduced NHEJ activity in vitro, as compared to extracts from wild type cells. Analysis of end-joining junctions showed that TDP1 deficiency reduced end-joining fidelity, with a significant increase in insertion events, similar to previous observations in yeast. It has been reported that phosphorylation of TDP1 serine 81 (TDP1-S81) by ATM and DNA-PK stabilizes TDP1 and recruits TDP1 to sites of DNA damage. We found that end joining in TDP1-KO cells was partially restored by the non-phosphorylatable mutant TDP1-S81A, but not by the phosphomimetic TDP1-S81E. We previously reported that TDP1 physically interacted with XLF. In this study, we found that XLF binding by TDP1 was reduced 2-fold by the S81A mutation, and 10-fold by the S81E phosphomimetic mutation. Our results demonstrate a novel role for TDP1 in NHEJ in human cells. We hypothesize that TDP1 participation in human NHEJ is mediated by interaction with XLF, and that TDP1-XLF interactions and subsequent NHEJ events are regulated by phosphorylation of TDP1-S81.  相似文献   

7.
Z Xia  X Zheng  H Zheng  X Liu  Z Yang  X Wang 《FEBS letters》2012,586(19):3299-3308
Cold-inducible RNA-binding protein (CIRP) is an RNA-binding protein that is expressed in normal testis and down-regulated after heat stress. Recent studies suggest that CIRP contributes to male fertility problems but the mechanisms are unclear. The purpose of this study was to identify the likely mechanism of CIRP in reproduction. Based on the RNA-Binding Protein Immunoprecipitation-Microarray (Chip) Profiling (RIP-Chip) and biotin pull-down assays, we found that the mRNAs binding with CIRP in testis were mostly associated with translation regulator activity, antioxidant activity, envelope and reproduction, including important mRNAs related to male infertility. We also discovered that (Un)(n ? 2) was the possible core recognition sequence, and the binding mRNAs increased their stabilization. Our results improve our understanding of the mechanism by which heat stress causes male infertility.  相似文献   

8.
DNA damage activates the cell cycle checkpoint to regulate cell cycle progression. The checkpoint clamp (Rad9-Hus1-Rad1 complex) is recruited to damage sites, and is required for checkpoint activation. While functions of the checkpoint clamp in checkpoint activation have been well studied, its functions in DNA repair regulation remain elusive. Here we show that Rad9 is required for efficient homologous recombination (HR), and facilitates DNA-end resection. The role of Rad9 in homologous recombination is independent of its function in checkpoint activation, and this function is important for preventing alternative non-homologous end joining (altNHEJ). These findings reveal novel function of the checkpoint clamp in HR.  相似文献   

9.
NME1 (also known as NM23-H1) was the first identified tumor metastasis suppressor, which has been reported to link with genomic stability maintenance and cancer. However its underlying mechanisms are still not fully understood. Here we find that NME1 is required for non-homologous end joining (NHEJ) of DNA double-strand breaks (DSBs). Mechanistically, NME1 re-localizes to DNA damage sites in a Ku-XRCC4-dependent manner, and regulates downstream LIG4 recruitment and end joining efficiency. Furthermore, we show that the 3′-5′ exonuclease activity of NME1 is critical for its function in NHEJ. Taken together, our findings identify NME1 as a novel NHEJ factor, and reveal how this metastasis suppressor promotes genome stability.  相似文献   

10.
《Molecular cell》2023,83(5):698-714.e4
  1. Download : Download high-res image (183KB)
  2. Download : Download full-size image
  相似文献   

11.
Posttranslational modifications (PTMs) such as phosphorylation of RNA-binding proteins (RBPs) regulate several critical steps in RNA metabolism, including spliceosome assembly, alternative splicing, and mRNA export. Notably, serine-/arginine- (SR)-rich RBPs are densely phosphorylated compared with the remainder of the proteome. Previously, we showed that dephosphorylation of the splicing factor SRSF2 regulated increased interactions with similar arginine-rich RBPs U1-70K and LUC7L3. However, the large-scale functional and structural impact of these modifications on RBPs remains unclear. In this work, we dephosphorylated nuclear extracts using phosphatase in vitro and analyzed equal amounts of detergent-soluble and -insoluble fractions by mass-spectrometry-based proteomics. Correlation network analysis resolved 27 distinct modules of differentially soluble nucleoplasm proteins. We found classes of arginine-rich RBPs that decrease in solubility following dephosphorylation and enrich the insoluble pelleted fraction, including the SR protein family and the SR-like LUC7L RBP family. Importantly, increased insolubility was not observed across broad classes of RBPs. We determined that phosphorylation regulated SRSF2 structure, as dephosphorylated SRSF2 formed high-molecular-weight oligomeric species in vitro. Reciprocally, phosphorylation of SRSF2 by serine/arginine protein kinase 2 (SRPK2) in vitro decreased high-molecular-weight SRSF2 species formation. Furthermore, upon pharmacological inhibition of SRPKs in mammalian cells, we observed SRSF2 cytoplasmic mislocalization and increased formation of cytoplasmic granules as well as cytoplasmic tubular structures that associated with microtubules by immunocytochemical staining. Collectively, these findings demonstrate that phosphorylation may be a critical modification that prevents arginine-rich RBP insolubility and oligomerization.  相似文献   

12.
《Molecular cell》2023,83(12):2003-2019.e6
  1. Download : Download high-res image (171KB)
  2. Download : Download full-size image
  相似文献   

13.
14.
15.
16.
HutP is an RNA-binding protein and regulates the expression of the histidine utilization (hut) operon in Bacillus subtilis by binding to cis-acting regulatory sequences on hut mRNA. HutP and its mutant, which has increased affinity for the regulatory sequences, were purified and crystallized by the hanging-drop vapor diffusion method. The space group was P2(1)3 with unit cell dimensions a=b=c=95.6A for HutP and a=b=c=96.8A for the mutant. Complete data sets of 3.0-A resolution for wild-type HutP and of 2.70-A resolution for the mutant HutP were collected.  相似文献   

17.
《Molecular cell》2023,83(14):2595-2611.e11
  1. Download : Download high-res image (193KB)
  2. Download : Download full-size image
  相似文献   

18.
The maize RNA-binding protein MA16 is a non-ribosomal nucleolar protein widely distributed in different maize tissues. We have previously shown that the MA16 protein binds preferentially to guanosine-and uridine-rich sequences. As a step towards the identification of specific targets with which MA16 interacts within the cell, we investigated the RNA-binding affinities and several other aspects of the protein by using binding assays and immunochemistry. The MA16 protein showed a wide spectrum of RNA-binding activities with lower affinities to several RNAs that was salt and heparin-sensitive indicative of electrostatic interactions, and higher affinities to particular RNAs including rRNA and translatable mRNA sequences. Among the RNAs found associated with MA16 protein was that encoding MA16 itself. This observation raises the possibility that MA16 gene expression could be self-regulated. Immunoprecipitation studies showed that in vivo MA16 was phosphorylated and that MA16 interacts with RNAs through complex association with several proteins. These results suggest that both phosphorylation and interaction with other proteins may be involved in determining RNA-binding specificities of MA16 in the cell.  相似文献   

19.
《Cell reports》2023,42(1):111917
  1. Download : Download high-res image (123KB)
  2. Download : Download full-size image
  相似文献   

20.
This study focused on concatemer formation and integration pattern of transgenes in zebrafish embryos. A reporter plasmid based on enhanced green fluorescent protein (eGFP) driven by Cytomegalovirus (CMV) promoter, pCMV-pax6in-eGFP, was constructed to reflect transgene behavior in the host environment. After removal of the insertion fragment by double digestion with various combinations of restriction enzymes, linearized pCMV-pax6in-eGFP vectors were generated with different combinations of 5'-protruding, 3'-protruding, and blunt ends that were microinjected into zebrafish embryos. Repair of double-strand breaks (DSBs) was monitored by GFP expression following religation of the reporter gene. One-hundred-and-ninety-seven DNA fragments were amplified from GFP-positive embryos and sequenced to analyze the repair characteristics of different DSB end combinations. DSBs involving blunt and asymmetric protruding ends were repaired efficiently by direct ligation of blunt ends, ligation after blunting and fill-in, or removed by cutting. Repair of DSBs with symmetric 3'-3' protrusions was less efficient and utilized template-directed repair. The results suggest that non-homologous end joining (NHEJ) was the principal mechanism of exogenous gene concatemer formation and integration of transgenes into the genome of transgenic zebrafish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号