首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Various types of stem cells reside in the skin, including keratinocyte progenitor cells, melanocyte progenitor cells, skin-derived precursors (SKPs), and nestin-expressing hair follicle-associated-pluripotent (HAP) stem cells. HAP stem cells, located in the bulge area of the hair follicle, have been shown to differentiate to nerve cells, glial cells, keratinocytes, smooth muscle cells, cardiac muscle cells, and melanocytes. HAP stem cells are positive for the stem-cell marker CD34, as well as K15-negative, suggesting their relatively undifferentiated state. Therefore, HAP stem cells may be the most primitive stem cells in the skin. Moreover, HAP stem cells can regenerate the epidermis and at least parts of the hair follicle. These results suggest that HAP stem cells may be the origin of other stem cells in the skin. Transplanted HAP stem cells promote the recovery of peripheral-nerve and spinal-cord injuries and have the potential for heart regeneration as well. HAP stem cells are readily accessible from everyone, do not form tumors, and can be cryopreserved without loss of differentiation potential. These results suggest that HAP stem cells may have greater potential than iPS or ES cells for regenerative medicine.  相似文献   

2.
We previously showed that the stem cell marker nestin is expressed in hair follicle stem cells which suggested their pluripotency. We subsequently showed that the nestin‐expressing hair‐follicle pluripotent stem (hfPS) cells can differentiate in culture to neurons, glial cells, keratinocytes, and other cell types and can promote regeneration of peripheral nerve and spinal cord injuries upon injection to the injured nerve or spinal cord. The location of the hfPS cells has been termed the hfPS cell area (hfPSCA). Previously, hfPS cells were cultured for 1–2 months before transplantation to the injured nerve or spinal cord which would not be optimal for clinical application of these cells for nerve or spinal cord repair, since the patient should be treated soon after injury. In the present study, we addressed this issue by directly using the upper part of the hair follicle containing the hfPSCA, without culture, for injection into the severed sciatic nerve in mice. After injection of hfPSCA, the implanted hfPS cells grew and promoted joining of the severed nerve. The transplanted hfPS cells differentiated mostly to glial cells forming myelin sheaths, which promoted axonal growth and functional recovery of the severed nerve. These results suggest that the direct transplantation of the uncultured upper part of the hair follicle containing the hfPSA is an important method to promote the recovery of peripheral nerve injuries and has significant clinical potential. J. Cell. Biochem. 110: 272–277, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

3.
The mouse hair follicle is an easily accessible source of actively growing, pluripotent adult stem cells. C57BL transgenic mice, labeled with the fluorescent protein GFP, afforded follicle stem cells whose fate could be followed when transferred to recipient animals. These cells appear to be relatively undifferentiated since they are positive for the stem cell markers nestin and CD34 but negative for the keratinocyte marker keratin 15. These hair follicle stem cells can differentiate into neurons, glia, keratinocytes, smooth muscle cells, and melanocytes in vitro. Implanting hair follicle stem cells into the gap region of severed sciatic or tibial nerves greatly enhanced the rate of nerve regeneration and restoration of nerve function. The transplanted follicle cells transdifferentiated mostly into Schwann cells, which are known to support neuron regrowth. The treated mice regained the ability to walk essentially normally. In the present study, we severed the thoracic spinal chord of C57BL/6 immunocompetent mice and transplanted GFP-expressing hair follicle stem cells to the injury site. Most of the transplanted cells also differentiated into Schwann cells that apparently facilitated repair of the severed spinal cord. The rejoined spinal cord reestablished extensive hind-limb locomotor performance. These results suggest that hair follicle stem cells can promote the recovery of spinal cord injury. Thus, hair follicle stem cells provide an effective accessible, autologous source of stem cells for the promising treatment of peripheral nerve and spinal cord injury.  相似文献   

4.
The optimal source of stem cells for regenerative medicine is a major question. Embryonic stem (ES) cells have shown promise for pluripotency but have ethical issues and potential to form teratomas. Pluripotent stem cells have been produced from skin cells by either viral‐, plasmid‐ or transposon‐mediated gene transfer. These stem cells have been termed induced pluripotent stem cells or iPS cells. iPS cells may also have malignant potential and are inefficiently produced. Embryonic stem cells may not be suited for individualized therapy, since they can undergo immunologic rejection. To address these fundamental problems, our group is developing hair follicle pluripotent stem (hfPS) cells. Our previous studies have shown that mouse hfPS cells can differentiate to neurons, glial cells in vitro, and other cell types, and can promote nerve and spinal cord regeneration in vivo. hfPS cells are located above the hair follicle bulge in what we have termed the hfPS cell area (hfPSA) and are nestin positive and keratin 15 (K‐15) negative. Human hfPS cells can also differentiate into neurons, glia, keratinocytes, smooth muscle cells, and melanocytes in vitro. In the present study, human hfPS cells were transplanted in the severed sciatic nerve of the mouse where they differentiated into glial fibrillary‐acidic‐protein (GFAP)‐positive Schwann cells and promoted the recovery of pre‐existing axons, leading to nerve generation. The regenerated nerve recovered function and, upon electrical stimulation, contracted the gastrocnemius muscle. The hfPS cells can be readily isolated from the human scalp, thereby providing an accessible, autologous and safe source of stem cells for regenerative medicine that have important advantages over ES or iPS cells. J. Cell. Biochem. 107: 1016–1020, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

5.
We have previously demonstrated that nestin-expressing hair follicle-associated-pluripotent (HAP) stem cells are located in the bulge area. HAP stem cells have been previously shown to differentiate to neurons, glial cells, keratinocytes, smooth-muscle cells, melanocytes and cardiac-muscle cells in vitro. Subsequently, we demonstrated that HAP stem cells could effect nerve and spinal cord regeneration in mouse models, differentiating to Schwann cells and neurons. In previous studies, we established an efficient protocol for the differentiation of cardiac-muscle cells from mouse HAP stem cells. In the present study, we isolated the upper part of human hair follicles containing human HAP (hHAP) stem cells. The upper parts of human hair follicles were suspended in DMEM containing 10% FBS where they differentiated to cardiac-muscle cells as well as neurons, glial cells, keratinocytes and smooth-muscle cells. This method is appropriate for future use with human hair follicles to produce hHAP stem cells in sufficient quantities for future heart, nerve and spinal cord regeneration in the clinic.  相似文献   

6.
We have previously demonstrated that the neural stem-cell marker nestin is expressed in hair follicle stem cells. Nestin-expressing cells were initially identified in the hair follicle bulge area (BA) using a transgenic mouse model in which the nestin promoter drives the green fluorescent protein (ND-GFP). The hair-follicle ND-GFP-expressing cells are keratin 15-negative and CD34-positive and could differentiate to neurons, glia, keratinocytes, smooth muscle cells and melanocytes in vitro. Subsequently, we showed that the nestin-expressing stem cells could affect nerve and spinal cord regeneration after injection in mouse models. In the present study, we separated the mouse vibrissa hair follicle into three parts (upper, middle and lower). Each part of the follicle was cultured separately in DMEM-F12 containing B-27 and 1% methylcellulose supplemented with basic FGF. After 2 mo, the nestin-expressing cells from each of the separated parts of the hair follicle proliferated and formed spheres. Upon transfer of the spheres to RPMI 1640 medium containing 10% FBS, the nestin-expressing cells in the spheres differentiated to neurons, as well as glia, keratinocytes, smooth muscle cells and melanocytes. The differentiated cells were produced by spheres which formed from nestin-expressing cells from all segments of the hair follicle. However, the differentiation potential is greatest in the upper part of the follicle. This result is consistent with trafficking of nestin-expressing cells throughout the hair follicle from the bulge area to the dermal papilla that we previously observed. The nestin-expressing cells from the upper part of the follicle produced spheres in very large amounts, which in turn differentiated to neurons and other cell types. The results of the present study demonstrate that multipotent, nestin-expressing stem cells are present throughout the hair follicle and that the upper part of the follicle can produce the stem cells in large amounts that could be used for nerve and spinal cord repair.  相似文献   

7.
We have previously demonstrated that the neural stem-cell marker nestin is expressed in hair follicle stem cells. Nestin-expressing cells were initially identified in the hair follicle bulge area (BA) using a transgenic mouse model in which the nestin promoter drives the green fluorescent protein (ND-GFP). The hair-follicle ND-GFP-expressing cells are keratin 15-negative and CD34-positive and could differentiate to neurons, glia, keratinocytes, smooth muscle cells and melanocytes in vitro. Subsequently, we showed that the nestin-expressing stem cells could affect nerve and spinal cord regeneration after injection in mouse models. In the present study, we separated the mouse vibrissa hair follicle into three parts (upper, middle and lower). Each part of the follicle was cultured separately in DMEM-F12 containing B-27 and 1% methylcellulose supplemented with basic FGF. After 2 mo, the nestin-expressing cells from each of the separated parts of the hair follicle proliferated and formed spheres. Upon transfer of the spheres to RPMI 1640 medium containing 10% FBS, the nestin-expressing cells in the spheres differentiated to neurons, as well as glia, keratinocytes, smooth muscle cells and melanocytes. The differentiated cells were produced by spheres which formed from nestin-expressing cells from all segments of the hair follicle. However, the differentiation potential is greatest in the upper part of the follicle. This result is consistent with trafficking of nestin-expressing cells throughout the hair follicle from the bulge area to the dermal papilla that we previously observed. The nestin-expressing cells from the upper part of the follicle produced spheres in very large amounts, which in turn differentiated to neurons and other cell types. The results of the present study demonstrate that multipotent, nestin-expressing stem cells are present throughout the hair follicle and that the upper part of the follicle can produce the stem cells in large amounts that could be used for nerve and spinal cord repair.  相似文献   

8.
We have previously discovered nestin-expressing hair-follicle-associated pluripotent (HAP) stem cells and have shown that they can differentiate to neurons, glia, and many other cell types. HAP stem cells can be used for nerve and spinal cord repair. We have recently shown the HAP stem cells can differentiate to beating heart-muscle cells and tissue sheets of beating heart-muscle cells. In the present study, we determined the efficiency of HAP stem cells from mouse vibrissa hair follicles of various ages to differentiate to beating heart-muscle cells. We observed that the whiskers located near the ear were more efficient to differentiate to cardiac-muscle cells compared to whiskers located near the nose. Differentiation to cardiac-muscle cells from HAP stem cells in cultured whiskers in 4-week-old mice was significantly greater than in 10-, 20-, and 40-week-old mice. There was a strong decrease in differentiation potential of HAP stem cells to cardiac-muscle cells by 10 weeks of age. In contrast, the differentiation potential of HAP stem cells to other cell types did not decrease with age. The possibility of rejuvenation of HAP stem cells to differentiate at high efficiency to cardiac-muscle cells is discussed.  相似文献   

9.
We have previously demonstrated that nestin-expressing multipotent hair follicle stem cells are located above the hair follicle bulge and can differentiate into neurons and other cell types in vitro. The nestin-expressing hair follicle stem cells promoted the recovery of pre-existing axons when they were transplanted to the severed sciatic nerve or injured spinal cord. We have also previously demonstrated that the whisker hair follicle contains nestin-expressing stem cells in the dermal papilla (DP) as well as in the bulge area (BA), but that their origin is in the BA. In the present study, we established the technique of long-term Gelfoam? histoculture of whiskers isolated from transgenic mice in which nestin drives green fluorescent protein (ND-GFP). Confocal imaging was used to monitor ND-GFP-expressing stem cells trafficking in real time between the BA and DP to determine the fate of the stem cells. It was observed over a 2-week period that the stem cells trafficked from the BA toward the DP area and extensively grew out onto Gelfoam? forming nerve-like structures. This new method of long-term histoculture of whiskers from ND-GFP mice will enable the extensive study of the behavior of nestin-expressing multipotent stem cells of the hair follicle.  相似文献   

10.
Nestin-expressing hair-follicle-associated pluripotent (HAP) stem cells are located in the bulge area of the follicle. Previous studies have shown that HAP stem cells can differentiate to neurons, glia, keratinocytes, smooth muscle cells, and melanocytes in vitro. HAP stem cells effected nerve and spinal cord regeneration in mouse models. Recently, we demonstrated that HAP stem cells differentiated to beating cardiac muscle cells. The differentiation potential to cardiac muscle cells was greatest in the upper part of the follicle. The beat rate of the cardiac muscle cells was stimulated by isoproterenol. In the present study, we observed that isoproterenol directs HAP stem cells to differentiate to cardiac muscle cells in large numbers in culture compared to HAP stem cells not supplemented with isoproterenol. The addition of activin A, bone morphogenetic protein 4, and basic fibroblast growth factor, along with isoproternal, induced the cardiac muscle cells to form tissue sheets of beating heart muscle cells. These results demonstrate that HAP stem cells have great potential to form beating cardiac muscle cells in tissue sheets.  相似文献   

11.
Hair-follicle-associated pluripotent (HAP) stem cells can differentiate into many cell types, including neurons and heart muscle cells, and have been shown to repair peripheral nerves and the spinal cord in mice. HAP stem cells can be obtained from each individual patient for regenerative medicine which overcomes problems with immune rejection. Previously, we have demonstrated that genetically-encoded protein markers such as GFP in transgenic mice can be used to visualize HAP stem cells in vivo by multiphoton tomography. Detection and visualization of stem cells in vivo without exogenous labels such as GFP would be important for human application. In the present report, we demonstrate label-free visualization of hair follicle stem cells in mouse whiskers by multiphoton tomography due to the intrinsic fluorophores such as NAD(P)H/flavins. We compared multiphoton tomography of GFP-labeled HAP stem cells and unlabeled stem cells in isolated mouse whiskers. We show that observation of HAP stem cells by label-free multiphoton tomography is comparable to detection using GFP-labeled stem cells. The results described here have important implications for detection and isolation of human HAP stem cells for regenerative medicine.  相似文献   

12.
We have previously reported that hair follicles contain multipotent stem cells which express nestin. The nestin-expressing cells form the hair follicle sensory nerve. In vitro, the nestin-expressing hair follicle cells can differentiate into neurons, Schwann cells, and other cell types. In the present study, the sciatic nerve was excised from transgenic mice in which the nestin promoter drives green fluorescent protein (ND-GFP mice). The ND-GFP cells of the sciatic nerve were also found to be multipotent as the ND-GFP cells in the hair follicle. When the ND-GFP cells in the mouse sciatic nerve cultured on Gelfoam® and were imaged by confocal microscopy, they were observed forming fibers extending the nerve. The fibers consisted of ND-GFP-expressing spindle cells, which co-expressed the neuron marker β-III tubulin, the immature Schwann-cell marker p75NTR and TrkB which is associated with neurons. The fibers also contain nestin-negative spherical cells expressing GFAP, a Schwann-cell marker. The β-III tubulin-positive fibers had growth cones on their tips expressing F-actin, indicating they are growing axons. When the sciatic nerve from mice ubiquitously expressing red fluorescent protein (RFP) was co-cultured on Gelfoam® with the sciatic nerve from ND-GFP transgenic mice, the interaction of nerves was observed. Proliferating nestin-expressing cells in the injured sciatic nerve were also observed in vivo. Nestin-expressing cells were also observed in posterior nerves but not in the spinal cord itself, when placed in 3-D Gelfoam® culture. The results of the present report suggest a critical function of nestin-expressing cells in peripheral nerve growth and regeneration.  相似文献   

13.
Here, we demonstrated the differentiation potential of murine muscle-derived stem/progenitor cells (MDSPCs) toward myogenic, neuronal, and glial lineages. MDSPCs, following transplantation into a critical-sized sciatic nerve defect in mice, showed full regeneration with complete functional recovery of the injured peripheral nerve at 6 weeks post-implantation. However, several weeks after regeneration of the sciatic nerve, neoplastic growths were observed. The resulting tumors were malignant peripheral nerve sheath tumors (MPNSTs) with rhabdomyoblastic differentiation, expressing myogenic, neurogenic, and glial markers, common markers of human malignant triton tumors (MTTs). No signs of tumorigenesis were observed 17 weeks post-implantation of MDSPCs into the gastrocnemius muscles of dystrophic/mdx mice, or 1 year following subcutaneous or intravenous injection. While MDSPCs were not oncogenic in nature, the neoplasias were composed almost entirely of donor cells. Furthermore, cells isolated from the tumors were serially transplantable, generating tumors when reimplanted into mice. However, this transformation could be abrogated by differentiation of the cells toward the neurogenic lineage prior to implantation. These results establish that MDSPCs participated in the regeneration of the injured peripheral nerve but transformed in a microenvironment- and time-dependent manner, when they likely received concomitant neurogenic and myogenic differentiation signals. This microenvironment-specific transformation provides a useful mouse model for human MTTs and potentially some insight into the origins of this disease.  相似文献   

14.
We demonstrate in the present study that young host mice rejuvenate aged hair follicles after transplantation. Young mice promote the hair shaft growth of transplanted old hair follicles, as well as young follicles, in contrast to old host mice, which did not support hair-shaft growth from transplanted old or young follicles. Nestin-expressing hair follicle-associated pluripotent (HAP) stem cells of transplanted old and young hair follicles remained active in young host nude mice. In contrast, the nestin-expressing HAP stem cells in young and old hair follicles transplanted to old nude mice were not as active as in young nude host mice. The present study shows that transplanted old hair follicles were rejuvenated by young host mice, suggesting that aging may be reversible.  相似文献   

15.
We previously demonstrated that whole hair follicles could be cryopreserved to maintain their stem-cells differentation potential. In the present study, we demonstrated that cryopreserved mouse whisker hair follicles maintain their hair growth potential. DMSO better cryopreserved mouse whisker follicles compared to glycerol. Cryopreserved hair follicles also maintained the hair follicle-associated-pluripotent (HAP) stem cells, evidenced by P75NTR expression. Subcutaneous transplantation of DMSO-cryopreserved hair follicles in nude mice resulted in extensive hair fiber growth over 8 weeks, indicating the functional recovery of hair shaft growth of cryopreserved hair follicles.  相似文献   

16.
We have previously reported that nestin‐expressing hair follicle stem cells can differentiate into neurons, Schwann cells, and other cell types. In the present study, vibrissa hair follicles, including their sensory nerve stump, were excised from transgenic mice in which the nestin promoter drives green fluorescent protein (ND‐GFP mice), and were placed in 3D histoculture supported by Gelfoam®. β‐III tubulin‐positive fibers, consisting of ND‐GFP‐expressing cells, extended up to 500 µm from the whisker nerve stump in histoculture. The growing fibers had growth cones on their tips expressing F‐actin. These findings indicate that β‐III tubulin‐positive fibers elongating from the whisker follicle sensory nerve stump were growing axons. The growing whisker sensory nerve was highly enriched in ND‐GFP cells which appeared to play a major role in its elongation and interaction with other nerves in 3D culture, including the sciatic nerve, the trigeminal nerve, and the trigeminal nerve ganglion. The results of the present report suggest a major function of the nestin‐expressing stem cells in the hair follicle is for growth of the follicle sensory nerve. J. Cell. Biochem. 114: 1674–1684, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

17.
Human adipose-derived stem cells (ASCs) have a potential for the treatment of peripheral nerve injury. Recent studies demonstrated that stem cells can mediate therapeutic effect by secreting exosomes. We aimed to investigate the effect of human ASCs derived exosomes (ASC-Exos) on peripheral nerve regeneration in vitro and in vivo. Our results showed after being internalized by Schwann cells (SCs), ASC-Exos significantly promoted SC proliferation, migration, myelination, and secretion of neurotrophic factors by upregulating corresponding genes in vitro. We next evaluated the efficacy of ASC-Exo therapy in a rat sciatic nerve transection model with a 10-mm gap. Axon regeneration, myelination, and restoration of denervation muscle atrophy in ASC-Exos treated group was significantly improved compared to vehicle control. This study demonstrates that ASC-Exos effectively promote peripheral nerve regeneration via optimizing SC function and thereby represent a novel therapeutic strategy for regenerative medicine and nerve tissue engineering.  相似文献   

18.
Peripheral axotomy of motoneurons triggers Wallerian degeneration of injured axons distal to the lesion, followed by axon regeneration. Centrally, axotomy induces loss of synapses (synaptic stripping) from the surface of lesioned motoneurons in the spinal cord. At the lesion site, reactive Schwann cells provide trophic support and guidance for outgrowing axons. The mechanisms of synaptic stripping remain elusive, but reactive astrocytes and microglia appear to be important in this process. We studied axonal regeneration and synaptic stripping of motoneurons after a sciatic nerve lesion in mice lacking the intermediate filament (nanofilament) proteins glial fibrillary acidic protein (GFAP) and vimentin, which are upregulated in reactive astrocytes and Schwann cells. Seven days after sciatic nerve transection, ultrastructural analysis of synaptic density on the somata of injured motoneurons revealed more remaining boutons covering injured somata in GFAP–/–Vim–/– mice. After sciatic nerve crush in GFAP–/–Vim–/– mice, the fraction of reinnervated motor endplates on muscle fibers of the gastrocnemius muscle was reduced 13 days after the injury, and axonal regeneration and functional recovery were delayed but complete. Thus, the absence of GFAP and vimentin in glial cells does not seem to affect the outcome after peripheral motoneuron injury but may have an important effect on the response dynamics.  相似文献   

19.
毛囊来源的神经嵴干细胞(Epidermal Neural Crest Stem Cell,EPI-NCSC)由于取材方便,具有多种分化潜能,是一种具有良好应用前景的组织工程种子细胞。目前,在神经损伤修复领域中,EPI-NCSC主要被应用于脊髓损伤的修复。为了探讨EPI-NCSC对周围神经缺损的修复作用,对原代培养的GFP-SD大鼠来源的EPI-NCSC的体外性质进行了考察,并以其为种子细胞,将其等量与细胞外基质(Extracellular matrix,ECM)混合后,预置入聚乳酸-聚羟基乙酸共聚物(Poly lactic acid co glycolic acid copolymer,PLGA)导管中,同时,以等量的达尔伯克(氏)改良伊格尔(氏)培养基(Dulbecco's Modified Eagle's medium,DMEM)代替EPI-NCSC作为对照,以用于修复大鼠坐骨神经10 mm距离的缺失。噻唑蓝(Methyl thiazolyl tetrazolium,MTT)比色分析结果显示,EPI-NCSC在PLGA膜上的初期粘附率为89.7%。在第1、3、5、7天细胞相对增殖率分别为89.3%、87.6%、85.6%和96.6%。细胞周期与DNA倍体分析表明,与PLGA共培养的EPI-NCSC与单独培养的EPI-NCSC相比较,二者的细胞周期变化趋势相同,增殖指数变化趋势也相同。在神经导管移植4周,术部实现了组织学水平的修复。大鼠手术一侧后肢感觉功能有所恢复,坐骨神经指数有所提高。研究结果表明,在PLGA导管中预置EPI-NCSC,有望实现较好的周围神经缺损的修复效果。  相似文献   

20.
Regeneration and functional recovery after peripheral nerve damage still remain a significant clinical problem. In this study, alginate/chitosan (alg/chit) hydrogel was used for the transplantation of olfactory ectomesenchymal stem cells (OE-MSCs) to promote peripheral nerve regeneration. The OE-MSCs were isolated from olfactory mucosa biopsies and evaluated by different cell surface markers and differentiation capacity. After creating sciatic nerve injury in a rat model, OE-MSCs were transplanted to the injured area with alg/chit hydrogel which was prepared and well-characterized. The prepared hydrogel had the porosity of 91.3 ± 1.27%, the swelling ratio of 379% after 240 min, weight loss percentages of 80 ± 5.56% after 14 days, and good blood compatibility. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, 4′,6-diamidino-2-phenylindole, and LIVE/DEAD staining were done to assay the behavior of OE-MSCs on alg/chit hydrogel and the results confirmed that the hydrogel can provide a suitable substrate for cell survival. For functional analysis, alg/chit hydrogel with and without OE- MSCs was injected into a 3-mm sciatic nerve defect of Wistar rats. The results of the sciatic functional index, hot plate latency, electrophysiological assessment, weight-loss percentage of wet gastrocnemius muscle, and histopathological examination using hematoxylin–eosin and Luxol fast blue staining showed that utilizing alg/chit hydrogel with OE-MSCs to the sciatic nerve defect enhance regeneration compared to the control group and hydrogel without cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号