首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
In their active hypophosphorylated state, members of the retinoblastoma family of pocket proteins negatively regulate cell cycle progression at least in part by repressing expression of E2F-dependent genes. Mitogen-dependent activation of G1 and G1/S Cyclin Dependent Kinases (CDKs) results in coordinated hyperphosphorylation and inactivation of these proteins, which no longer bind and repress E2Fs. S and G2/M CDKs maintain pocket protein hyperphosphorylated through the end of mitosis. The inactivating action of inducible CDKs is opposed by the Ser/Thr protein phosphatases PP2A and PP1. Various trimeric PP2A holoenzymes have been implicated in dephosphorylation of pocket proteins in response to specific cellular signals and stresses or as part of an equilibrium with CDKs throughout the cell cycle. PP1 has specifically been implicated in dephosphorylation of pRB in late mitosis and early G1. This review is particularly focused on the emerging role of PP2A as a major hub for integration of growth suppressor signals that require rapid inactivation of pocket proteins. Of note, activation of particular PP2A holoenzymes triggers differential activation of pocket proteins in the presence of active CDKs.  相似文献   

7.
8.
Kinetic resistance plays a major role in the failure of chemotherapy towards many solid tumors. Kinetic resistance to cytotoxic drugs can be reproduced in vitro by growing the cells as multicellular spheroids (Multicellular Resistance) or as hyperconfluent cultures (Confluence-Dependent Resistance). Recent findings on the cell cycle regulation have permitted a better understanding why cancer cells which arrest in long quiescent phases are poorly sensitive to cell-cycle specific anticancer drugs. Two cyclin-dependent kinase inhibitors (CDKI) seem particularly involved in the cell cycle arrest at the G1 to S transition checkpoint: the p53-dependent p21cip1 protein which is activated by DNA damage and the p27kip1 which is a mediator of the contact inhibition signal. Cell quiescence could alter drug-induced apoptosis which is partly dependent on an active progression in the cell cycle and which is facilitated by overexpression of oncogenes such as c-Myc or cyclins. Investigations are yet necessary to determine the influence of the cell cycle on the balance between antagonizing (bcl-2, bcl-XL...) or stimulating (Bax, Bcl-XS, Fas...) factors in chemotherapy-induced apoptosis. Quiescent cells could also be protected from toxic agents by an enhanced expression of stress proteins, such as HSP27 which is induced by confluence. New strategies are required to circumvent kinetic resistance of solid tumors: adequate choice of anticancer agents whose activity is not altered by quiescence (radiation, cisplatin), recruitment from G1 to S/G2 phases by cell pretreatment with alkylating drugs or attenuation of CDKI activity by specific inhibitors. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

9.
10.
In this study, we identified the most deleterious nsSNP in RB1 gene through structural and functional properties of its protein (pRB) and investigated its binding affinity with E2F-2. Out of 956 SNPs, we investigated 12 nsSNPs in coding region in which three of them (SNPids rs3092895, rs3092903 and rs3092905) are commonly found to be damaged by I-Mutant 2.0, SIFT and PolyPhen programs. With this effort, we modeled the mutant pRB proteins based on these deleterious nsSNPs. From a comparison of total energy, stabilizing residues and RMSD of these three mutant proteins with native pRB protein, we identified that the major mutation is from Glutamic acid to Glycine at the residue position of 746 of pRB. Further, we compared the binding efficiency of both native and mutant pRB (E746G) with E2F-2. We found that mutant pRB has less binding affinity with E2F-2 as compared to native type. This is due to sixteen hydrogen bonding and two salt bridges that exist between native type and E2F-2, whereas mutant type makes only thirteen hydrogen bonds and one salt bridge with E2F-2. Based on our investigation, we propose that the SNP with an id rs3092905 could be the most deleterious nsSNP in RB1 gene causing retinoblastoma.  相似文献   

11.
In their active hypophosphorylated state, members of the retinoblastoma family of pocket proteins negatively regulate cell cycle progression at least in part by repressing expression of E2F-dependent genes. Mitogen-dependent activation of G1 and G1/S Cyclin Dependent Kinases (CDKs) results in coordinated hyperphosphorylation and inactivation of these proteins, which no longer bind and repress E2Fs. S and G2/M CDKs maintain pocket protein hyperphosphorylated through the end of mitosis. The inactivating action of inducible CDKs is opposed by the Ser/Thr protein phosphatases PP2A and PP1. Various trimeric PP2A holoenzymes have been implicated in dephosphorylation of pocket proteins in response to specific cellular signals and stresses or as part of an equilibrium with CDKs throughout the cell cycle. PP1 has specifically been implicated in dephosphorylation of pRB in late mitosis and early G1. This review is particularly focused on the emerging role of PP2A as a major hub for integration of growth suppressor signals that require rapid inactivation of pocket proteins. Of note, activation of particular PP2A holoenzymes triggers differential activation of pocket proteins in the presence of active CDKs.  相似文献   

12.
13.
14.
15.
16.
17.
18.
Long non‐coding RNAs (lncRNAs) have been illustrated to function as important regulators in carcinogenesis and cancer progression. However, the roles of lncRNA NNT‐AS1 in gastric cancer remain unclear. In the present study, we investigate the biological role of NNT‐AS1 in gastric cancer tumorigenesis. Results revealed that NNT‐AS1 expression level was significantly up‐regulated in GC tissue and cell lines compared with adjacent normal tissue and normal cell lines. The ectopic overexpression of NNT‐AS1 indicated the poor prognosis of GC patients. In vitro experiments validated that NNT‐AS1 knockdown suppressed the proliferation and invasion ability and induced the GC cell cycle progression arrest at G0/G1 phase. In vivo xenograft assay, NNT‐AS1 silencing decreased the tumour growth of GC cells. Bioinformatics online program predicted that miR‐424 targeted the 3′‐UTR of NNT‐AS1. Luciferase reporter assay, RNA‐immunoprecipitation (RIP) and RNA pull‐down assay validated the molecular binding within NNT‐AS1 and miR‐424, therefore jointly forming the RNA‐induced silencing complex (RISC). Moreover, E2F1 was verified to act as the target gene of NNT‐AS1/miR‐424, indicating the NNT‐AS1/miR‐424/E2F1 axis. In conclusion, our study indicates that NNT‐AS1 sponges miR‐424/E2F1 to facilitate GC tumorigenesis and cycle progress, revealing the oncogenic role of NNT‐AS1 for GC.  相似文献   

19.
20.
ABSTRACT

Lamellipodia and ruffles are veil-shaped cell protrusions composed of a highly branched actin filament meshwork assembled by the Arp2/3 complex. These structures not only hallmark the leading edge of cells adopting the adhesion-based mesenchymal mode of migration but are also thought to drive cell movement.

Although regarded as textbook knowledge, the mechanism of formation of lamellipodia and ruffles has been revisited in the last years leveraging new technologies. Furthermore, recent observations have also challenged our current view of the function of lamellipodia and ruffles in mesenchymal cell migration.

Here, I review this literature and compare it with older studies to highlight the controversies and the outstanding open issues in the field. Moreover, I outline simple and plausible explanations to reconcile conflicting results and conclusions. Finally, I integrate the mechanisms regulating actin-based protrusion in a unifying model that accounts for random and ballistic mesenchymal cell migration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号