首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
microRNAs (miRNAs) and circular RNAs (circRNAs) are important for endometrial receptivity establishment and embryo implantation in mammals. miR-34a and miR-34c are highly expressed in caprine receptive endometrium (RE). Herein, the functions and mechanisms of miR-34a/c in caprine endometrial epithelial cell (CEEC) apoptosis and RE establishment were investigated. miR-34a/c downregulated the expression level of centrosomal protein 55 (CEP55) and were sponged by circRNA8073 (circ-8073), thereby exhibiting a negative interaction in CEEC. miR-34a/c induced CEEC apoptosis by targeting circ-8073/CEP55 through the regulation of the RAS/RAF/MEK/ERK and phosphoitide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathways. Positive and negative feedback loops and cross-talk were documented between the RAS/RAF/MEK/ERK and PI3K/AKT/mTOR pathways. miR-34a/c regulated the levels of RE marker genes, including forkhead box M1, vascular endothelial growth factor, and osteopontin (OPN). These results suggest that miR-34a/c not only induce CEEC apoptosis by binding to circ-8073 and CEP55 via the RAS/RAF/MEK/ERK and PI3K/AKT/mTOR pathways, but may also regulate RE establishment in dairy goats.  相似文献   

2.
3.
冉茂良  董莲花  翁波  曹蓉  彭馥芝  高虎  罗荟  陈斌 《遗传》2018,40(7):572-584
睾丸组织中未成熟支持细胞的增殖能力决定成熟支持细胞的数量,进而制约成年雄性动物的精子生成能力。研究表明microRNA (miRNA)参与调控猪未成熟支持细胞的增殖和凋亡,但大部分鉴定出的miRNA功能仍不明确。本文基于前期RNA-seq数据筛选结果,研究了miR-362对猪未成熟支持细胞增殖和凋亡的调控作用。首先利用生物信息学方法预测miR-362的靶基因,通过qRT-PCR技术检测miR-362和ZNF644基因在不同发育阶段的猪睾丸组织中的表达水平以及在猪未成熟支持细胞中过表达或抑制表达miR-362后ZNF644基因的表达水平,采用双荧光素酶报告基因系统验证miR-362与ZNF644基因之间的靶向关系。结果显示,miR-362与ZNF644基因3′UTR具有一个潜在的结合位点,miR-362和ZNF644基因在猪睾丸组织中的mRNA表达水平显著负相关(r=-0.723, P<0.01),miR-362和psiCHECK2-ZNF644-WT 3′UTR共转染组的双荧光活性显著降低,且miR-362显著调节ZNF644基因的表达水平,表明miR-362靶向ZNF644基因并抑制其表达水平。为进一步检测过表达miR-362或抑制表达ZNF644基因对猪未成熟支持细胞增殖和凋亡的影响,通过流式细胞术检测细胞周期,CCK8和EdU试剂盒检测细胞增殖情况,Annexin V-FITC/PI方法和qRT-PCR技术检测细胞凋亡情况及凋亡相关基因的表达水平。结果表明,过表达miR-362后,猪未成熟支持细胞周期被阻滞在G1期,抑制表达ZNF644基因后,猪未成熟支持细胞被阻滞在G2期,细胞增殖能力显著减弱,细胞凋亡率显著提高,细胞凋亡相关基因呈促进凋亡的差异表达。本研究结果证实miR-362靶向ZNF644基因抑制猪未成熟支持细胞的增殖而促进其凋亡,为深入研究miR-362在猪精子生成过程中的生物学功能提供了理论基础。  相似文献   

4.
5.
Cervical cancer is common cancer among women with high morbidity. MicroRNAs (miRs) are involved in the progression and development of cervical cancer. This study aimed to explore the effect of miR-99b-5p (miR-99b) on invasion and migration in cervical cancer through the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mechanistic target of rapamycin (mTOR) signaling pathway. The microarray-based analysis was used to screen out differentially expressed miRNAs. Expression of miR-99b, PI3K, AKT, mTOR, and ribosomal protein S6 kinase (p70S6K) was determined in both cervical cancer tissues and paracancerous tissues. Next, alteration of miR-99b expression in cervical cancer was conducted to evaluate levels of PI3K, AKT, mTOR, p70S6K matrix metallopeptidase 2, epithelial cell adhesion molecule, and intercellular adhesion molecule 1, as well as the effect of miR-99b on cell proliferation, invasion, migration, cell cycle distribution, and apoptosis. The results demonstrated that miR-99b expression was decreased and levels of PI3K, AKT, mTOR, and p70S6K were elevated in cervical cancer tissues. More important, overexpressed miR-99b repressed the PI3K/AKT/mTOR signaling pathway, inhibited cell proliferation, invasion, and migration, blocked cell cycle entry, and promoted apoptosis in cervical cancer. These results indicate that miR-99b attenuates the migration and invasion of human cervical cancer cells through downregulation of the PI3K/AKT/mTOR signaling pathway, which provides a therapeutic approach for cervical cancer treatment.  相似文献   

6.
Gastric cancer (GC) is a common heterogeneous disease. The critical roles of microRNA-340 (miR-340) in the development and progression of GC were emphasized in accumulating studies. This study aims to examine the regulatory mechanism of miR-340 in GC cellular processes. Initially, microarray technology was used to identify differentially expressed genes and regulatory miRs in GC. After that, the potential role of miR-340 in GC was determined via ectopic expression, depletion, and reporter assay experiments. Expression of secreted phosphoprotein 1 (SPP1), miR-340, phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) pathway, and epithelial–mesenchymal transition (EMT)-related genes was measured. Moreover, to further explore the function of miR-340 in vivo and in vitro, proliferation, apoptosis, migration, invasion, and tumorigenic capacity were evaluated. SPP1 was a target gene of miR-340 which could then mediate the PI3K/AKT signaling pathway by targeting SPP1 in GC. Furthermore, miR-340 levels were reduced and SPP1 was enriched in GC tissues and cells, with the PI3K/AKT signaling pathway being activated. Inhibitory effects of upregulated miR-340 on SPP1 and the PI3K/AKT signaling pathway were confirmed in vivo and in vitro. Overexpression of miR-340 or the silencing of SPP1 inhibited GC cell proliferation, invasion, migration, and EMT process, but promoted apoptosis of GC cells. Typically, targeting of SPP1 by miR-340 may contribute to the inhibition of proliferation, migration, invasion, and EMT of GC cells via suppression of PI3K/AKT signaling pathway.  相似文献   

7.
为了探讨臭椿酮(ailanthone,AIL)对急性骨髓性白血病(acute myelogenous leukemia,AML)细胞恶性生物学行为的影响,用不同浓度(0.2、0.4、0.8、1.6、3.2μmol·L-1)的AIL处理对数生长期的HL-60细胞,将miR-449a mimic质粒、mimic对照质粒、miR-449a inhibitor质粒、inhibitor对照质粒分别转染至未经任何处理的HL-60细胞,并用1.0μmol·L-1浓度的AIL处理细胞24 h。采用CCK-8法检测细胞增殖水平,细胞划痕实验检测细胞迁移水平,Transwell小室法检测细胞侵袭水平,Annexin V-FITC/PI双染法检测细胞凋亡水平,qRT-PCR法检测miR-449a mRNA表达水平,Western blot法检测磷脂酰肌醇3-激酶(PI3K)、磷酸化PI3K(p-PI3K)、蛋白激酶B(AKT)、磷酸化AKT(p-AKT)蛋白表达水平。结果显示,AIL干预后HL-60细胞增殖抑制率、凋亡率升高,细胞迁移率及细胞侵袭数降低(P<...  相似文献   

8.
Abstract

To investigate the effect of microRNA 21 (miR-21) on hepatic stellate cells (HSCs) proliferation and apoptosis, and further to study its potential mechanisms. LX-2 cells were divided into miR-21 mimic group (Mimic), miR-21 mimic negative control group (NM), miR-21 inhibitor group (Inhibitor), miR-21 inhibitor negative control group (NC), and blank control group (Control). The cell proliferation was detected by CCK-8 assay and the cell migration and invasion were detected by scratch and transwell assay. Cell cycle and apoptosis were detected by flow cytometry. The levels of interleukin (IL)-6, tumor necrosis factor (TNF)-α, and transforming growth factor (TGF)-β1 were detected by enzyme-linked immunosorbent assay (ELISA). Proliferation, apoptosis, and phosphatase and tensin homolog (PTEN)/phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway related genes and proteins were detected by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot, respectively. The cells proliferation, migration, and invasion were promoted in Mimic group. The levels of IL-6, TNF-α, and TGF-β1 were increased after miR-21 administration. The expression of α-smooth muscle actin (SMA) and collagen 1 (Colla1) were increased, while Bax/B-cell lymphoma (Bcl)-2 ratio and programed cell death 4 (PDCD4) were reduced after miR?21 treatment. Meanwhile, the mRNA and protein expression of PTEN were reduced and PI3K/AKT pathway been promoted. Our study demonstrated that miR-21 could promote proliferation and inhibit apoptosis of HSCs, and its mechanism may be related to PTEN/PI3K/AKT pathway.  相似文献   

9.
Glioblastoma multiform (GBM) is a type of aggressive brain cancer with limited success in standard treatment. MicroRNAs are one of the most beneficial tools for diagnosis, prognosis, and treatment of cancer. This study aimed to investigate the effect of miR-579 on cellular behaviors and expression of PI3K/AKT signaling pathway in GBM cell lines. In the present study, miR-579 was overexpressed in U251 and A-172 cell lines by using lentil vector, and its effect on cellular behavior such as proliferation and migration was investigated by the cell cycle, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), Annexin V, colony formation, Transwell and wound healing assays. MiR-579 predicted target genes (AKT1, Rheb, PDK1, and a few others) were also evaluated by real-time polymerase chain reaction or luciferase assay and Western blot analysis. Our results represented that overexpression of miR-579 could inhibit proliferation, migration, cell cycle and also promoted the apoptosis of GBM cell lines. The luciferase reporter assay showed miR-579 directly targets the 3 UTR of mTOR, Rheb, and PDK1 and repressed their expressions. Furthermore, the Western blot analysis showed that miR-579 could downregulate the AKT1 and Rheb protein expression. Overall, our findings propose that miR-579 functions as a novel tumor suppressor gene in GBM by regulating the PI3K/AKT signaling pathway and may serve as a therapeutic target for clinical therapy of glioblastoma multiform.  相似文献   

10.
11.
During glucose deprivation (GD)-induced cellular stress, the molecular chaperone glucose-regulated protein 75 (Grp75)/Mortalin/PBP74/mtHSP70 (hereafter termed “Grp75”) plays an important role in the suppression of apoptosis by inhibiting the Bax conformational change that delays the release of cytochrome c. The molecular pathways by which it carries out these functions are still unclear. We hypothesize that the anti-apoptotic effect by the overexpression of Grp75 was through the signal of AKT activated by classic phosphoinositide 3-kinase (PI3K) and also involved PI3K-independent pathways. Using the PC12 cell GD model, we demonstrated a novel mechanism of Grp75 activating AKT, which may be PI3K independent and associated with Raf/MEK (mitogen-activated protein kinase/ERK kinase)/ERK signaling. The PI3K inhibitor LY294002 did not influence the activation of AKT by the Grp75 overexpression under GD; however, the MEK inhibitor U0126 dramatically inhibited AKT phosphorylation in the same assay. In addition to the PI3K/AKT signal pathway, Grp75 overexpression also inhibited the Bax conformational change through the Raf/MEK/ERK signal pathway. In conclusion, Grp75 overexpression in activating AKT can be PI3K independent and associated with Raf/MEK/ERK signaling under GD. At the same time, PI3K may also crosstalk with Raf-1, in which the prosurvival signal of PI3K maintains the expression of Raf-1. The activated AKT and extracellular signal-regulated protein kinases 1 and 2 by Grp75 inhibited the Bax conformational change and subsequent apoptosis.  相似文献   

12.
13.
14.
Background: The research of G protein-coupled receptors (GPCRs) is a promising strategy for drug discovery. In cancer therapy, there is a need to discover novel agents that can inhibit proliferation and induce apoptosis in cancer cells. JTC-801 is a novel GPCR antagonist with the function of reversing pain and anxiety symptoms. This study aims to investigate the antitumor effects of JTC-801 on human osteosarcoma cells (U2OS) and elucidate the underlying mechanism.

Materials and methods: The Cell Counting Kit-8 assay was used to detect the viability of U2OS cells treated with JTC-801 in vitro. The cell apoptosis was evaluated using a flow cytometry assay with Annexin V-FITC/PI double staining. The inhibitory effect of JTC-801 on invasion and migration of U2OS cells were determined by the Transwell assays. Western blot assay was performed to measure the levels of proteins related to cell apoptosis and its mechanism.

Results: The JTC-801 significantly decreased the viability of U2OS cells (p?p?p?Conclusions: JTC-801 may exert osteosarcoma cell growth inhibition by promoting cell apoptosis, through PI3K/AKT signaling pathway participation.  相似文献   

15.
Many novel non-coding RNAs, such as microRNAs (miRNAs) and circular RNAs (circRNAs), are involved in various physiological and pathological processes. The PI3K/AKT signaling pathway is important for its role in regulating skeletal muscle development. In this study, molecular and biochemical assays were used to confirm the role of miRNA-145 (miR-145) in myoblast proliferation and apoptosis. Based on sequencing data and bioinformatics analysis, we identified a new circRILPL1, which acts as a sponge for miR-145. The interactions between circRILPL1 and miR-145 were examined by bioinformatics, a luciferase assay, and RNA immunoprecipitation. Mechanistically, knockdown or exogenous expression of circRILPL1 in the primary myoblasts was performed to prove the functional significance of circRILPL1. We investigated the inhibitory effect of miR-145 on myoblast proliferation by targeting IGF1R to regulate the PI3K/AKT signaling pathway. A novel circRILPL1 was identified that could sponge miR-145 and is related to AKT activation. In addition, circRILPL1 was positively correlated with muscle proliferation and differentiation in vitro and could inhibit cell apoptosis. The newly identified circRILPL1 functions as a miR-145 sponge to regulate the IGF1R gene and rescue the inhibitory effect of miR-145 on the PI3K/AKT signaling pathway, thereby promoting myoblast growth.Subject terms: Cell growth, Cell proliferation  相似文献   

16.
17.
Notoginsenoside R1 (NG-R1) is a major component of Panax notoginseng, which has been used clinically for the treatment of diabetic nephropathy for centuries in China. This study aimed to reveal the functional impacts and the underlying mechanisms of NG-R1 on oxygen-glucose deprivation (OGD)-injured cardiomyocytes. Rat cardiomyocyte line H9c2 and primary cardiomyocytes were subjected to OGD with or without NG-R1 treatment. The expression levels of miR-21 and phosphatase and tensin homolog (PTEN) in the cell were altered by microRNA, vector or short-hairpin RNA transfections. Thereafter, changes in cell viability, apoptosis, and PI3K/AKT signaling were monitored. NG-R1 with low concentrations had no impact on H9c2 cells viability, but 80 μM of NG-R1 significantly reduced cell viability. NG-R1 (20 μM) protected H9c2 cells and primary cardiomyocytes against OGD-induced cell damage, as cell viability was increased, apoptotic cell rate was reduced, and Bax, cleaved caspase-3 and -9 were downregulated by addition of NG-R1. MiR-21 was low expressed in response to OGD exposure, while was highly expressed by NG-R1 treatment. PTEN was a direct target of miR-21. More interestingly, OGD-induced cell damage could be recovered by miR-21 overexpression or PTEN silence. Furthermore, PTEN silence recovered OGD-blocked PI3K/AKT signaling pathway. To conclude, this study demonstrated that NG-R1 exerted remarkable benefits in reduction of OGD-induced cardiomyocyte loss. The cardioprotective actions of NG-R1 possibly via upregulation of miR-21, repressing the expression of miR-21's target PTEN and thereby preventing the blockage of PI3K/AKT signaling pathway.  相似文献   

18.
本研究检测了40例食管癌组织和40例癌旁组织中的miR-21、PTEN、PI3K和AKT表达,并通过转染miR-21抑制剂来敲低人食管癌细胞系EC9706的miR-21表达,考察了miR-21对食管癌细胞生长的影响。研究发现,食管癌组织中PTEN蛋白的阳性染色评分低于癌旁组织(p<0.05),而PI3K和AKT蛋白的阳性染色评分高于癌旁组织(p<0.05)。miR-21在人食管癌组织中被上调(3.56 vs 1.21,p<0.05)。转染miR-21抑制剂导致PTEN蛋白表达升高,而PI3K和AKT蛋白表达降低(p<0.05)。转染miR-21抑制剂抑制了EC9706细胞的增殖和迁移,但促进了细胞凋亡(p<0.05)。miR-21的上调可通过激活PTEN/PI3K/AKT信号通路来促进食道癌细胞的增殖和迁移,并抑制细胞凋亡。  相似文献   

19.
The importance of long noncoding RNAs (lncRNAs) has been certified in malignant melanoma. Nonetheless, the functions of lncRNA paternally expressed gene 10 (PEG10) in malignant melanoma remain uninvestigated. This research discloses the influence of PEG10 in the biological actions of malignant melanoma cells. The sh-PEG10 plasmid was transfected into A375 cells; meanwhile, the effects of declined PEG10 on cell viability, apoptosis, migration, invasion, and the correlative protein levels were probed. The miR-33a expression in sh-PEG10-transfected cells was examined, and the above biological processes were studied again in miR-33a inhibitor-transfected A375 cells. Phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) and mechanistic target of rapamycin (mTOR) pathways were delved via Western blot. We found that the enhancement of PEG10 was discovered in melanoma tissues compared to related nonmelanoma tissues. Declination of PEG10 frustrated cell viability, repressed cyclinD1 and CDK4 expression, and triggered apoptosis, as well as suppressed migration and invasion in A375 cells. A negative correction between PEG10 and miR-33a was confirmed, and repressed miR-33a inverted the functions of PEG10 repression in A375 cells. In addition, PEG10 repression discouraged the activation of PI3K/AKT and mTOR pathways via elevation of miR-33a. These results indicated that declination of PEG10 restrained A375 cell growth, migration, and invasion via adjusting miR-33a and PI3K/AKT and mTOR pathways.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号