首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The induction of the naturally occurring phenomenon of RNA interference (RNAi) to study gene function in insects is now common practice. With appropriately chosen targets, the RNAi pathway has also been exploited for insect control, typically through oral delivery of dsRNA. Adapting current methods to deliver foreign compounds, such as amino acids and pesticides, to mosquitoes through sucrose solutions, we tested whether such an approach could be used in the yellow fever mosquito, Aedes aegypti. Using a non‐specific dsRNA construct, we found that adult Ae. aegypti ingested dsRNA through this method and that the ingested dsRNA can be recovered from the mosquitoes post‐feeding. Through the feeding of a species‐specific dsRNA construct against vacuolar ATPase, subunit A, we found that significant gene knockdown could be achieved at 12, 24 and 48 h post‐feeding.  相似文献   

2.
Mosquitoes transmit a diverse group of human flaviviruses including West Nile, dengue, yellow fever, and Zika viruses. Mosquitoes are also naturally infected with insect‐specific flaviviruses (ISFs), a subgroup of the family not capable of infecting vertebrates. Although ISFs are not medically important, they are capable of altering the mosquito's susceptibility to flaviviruses and may alter host fitness. Wolbachia is an endosymbiotic bacterium of insects that when present in mosquitoes limits the replication of co‐infecting pathogens, including flaviviruses. Artificially created Wolbachia‐infected Aedes aegypti mosquitoes are being released into the wild in a series of trials around the globe with the hope of interrupting dengue and Zika virus transmission from mosquitoes to humans. Our work investigated the effect of Wolbachia on ISF infection in wild‐caught Ae. aegypti mosquitoes from field release zones. All field mosquitoes were screened for the presence of ISFs using general degenerate flavivirus primers and their PCR amplicons sequenced. ISFs were found to be common and widely distributed in Ae. aegypti populations. Field mosquitoes consistently had higher ISF infection rates and viral loads compared to laboratory colony material indicating that environmental conditions may modulate ISF infection in Ae. aegypti. Surprisingly, higher ISF infection rates and loads were found in Wolbachia‐infected mosquitoes compared to the Wolbachia‐free mosquitoes. Our findings demonstrate that the symbiont is capable of manipulating the mosquito virome and that Wolbachia‐mediated viral inhibition is not universal for flaviviruses. This may have implications for the Wolbachia‐based DENV control strategy if ISFs confer fitness effects or alter mosquito susceptibility to other flaviviruses.  相似文献   

3.
A number of studies have shown that both innate and adaptive immune defense mechanisms greatly influence the course of human dengue virus (DENV) infections, but little is known about the innate immune response of the mosquito vector Aedes aegypti to arbovirus infection. We present evidence here that a major component of the mosquito innate immune response, RNA interference (RNAi), is an important modulator of mosquito infections. The RNAi response is triggered by double-stranded RNA (dsRNA), which occurs in the cytoplasm as a result of positive-sense RNA virus infection, leading to production of small interfering RNAs (siRNAs). These siRNAs are instrumental in degradation of viral mRNA with sequence homology to the dsRNA trigger and thereby inhibition of virus replication. We show that although dengue virus type 2 (DENV2) infection of Ae. aegypti cultured cells and oral infection of adult mosquitoes generated dsRNA and production of DENV2-specific siRNAs, virus replication and release of infectious virus persisted, suggesting viral circumvention of RNAi. We also show that DENV2 does not completely evade RNAi, since impairing the pathway by silencing expression of dcr2, r2d2, or ago2, genes encoding important sensor and effector proteins in the RNAi pathway, increased virus replication in the vector and decreased the extrinsic incubation period required for virus transmission. Our findings indicate a major role for RNAi as a determinant of DENV transmission by Ae. aegypti.  相似文献   

4.
Double‐stranded RNA interference (dsRNAi) represents a primary means of anti‐viral defense in plants, worms, and insects, yet appears mostly supplanted by the protein‐based interferon (IFN) response in vertebrates such as mammals. The degree to which dsRNAi is anti‐viral in mammals has been contentious. Maillard et al ( 2016 ) find that dsRNAi retains sequence‐specific silencing in mammalian cells incapable of triggering an IFN response, suggesting that dsRNAi is inhibited by the action of interferon‐stimulated genes. Importantly, they observe that while dsRNA can “vaccinate” against the incoming cognate virus though dsRNAi silencing, no dsRNAi is observed with viral infection alone, suggesting that this evolutionarily conserved anti‐viral pathway is present but functionally elusive in the cell types studied thus far.  相似文献   

5.
6.
Mosquitoes rely on their gut microbiota for development   总被引:1,自引:0,他引:1  
Field studies indicate adult mosquitoes (Culicidae) host low diversity communities of bacteria that vary greatly among individuals and species. In contrast, it remains unclear how adult mosquitoes acquire their microbiome, what influences community structure, and whether the microbiome is important for survival. Here, we used pyrosequencing of 16S rRNA to characterize the bacterial communities of three mosquito species reared under identical conditions. Two of these species, Aedes aegypti and Anopheles gambiae, are anautogenous and must blood‐feed to produce eggs, while one, Georgecraigius atropalpus, is autogenous and produces eggs without blood feeding. Each mosquito species contained a low diversity community comprised primarily of aerobic bacteria acquired from the aquatic habitat in which larvae developed. Our results suggested that the communities in Ae. aegypti and An. gambiae larvae share more similarities with one another than with G. atropalpus. Studies with Ae. aegypti also strongly suggested that adults transstadially acquired several members of the larval bacterial community, but only four genera of bacteria present in blood fed females were detected on eggs. Functional assays showed that axenic larvae of each species failed to develop beyond the first instar. Experiments with Ae. aegypti indicated several members of the microbial community and Escherichia coli successfully colonized axenic larvae and rescued development. Overall, our results provide new insights about the acquisition and structure of bacterial communities in mosquitoes. They also indicate that three mosquito species spanning the breadth of the Culicidae depend on their gut microbiome for development.  相似文献   

7.
Each of the four serotypes of mosquito‐borne dengue virus (DENV‐1‐4) comprises multiple, genetically distinct strains. Competitive displacement between strains within a serotype is a common feature of DENV epidemiology and can trigger outbreaks of dengue disease. We investigated the mechanisms underlying two sequential displacements by DENV‐3 strains in Sri Lanka that each coincided with abrupt increases in dengue haemorrhagic fever (DHF) incidence. First, the post‐DHF strain displaced the pre‐DHF strain in the 1980s. We have previously shown that post‐DHF is more infectious than pre‐DHF for the major DENV vector, Aedes aegypti. Then, the ultra‐DHF strain evolved in situ from post‐DHF and displaced its ancestor in the 2000s. We predicted that ultra‐DHF would be more infectious for Ae. aegypti than post‐DHF but found that ultra‐DHF infected a significantly lower percentage of mosquitoes than post‐DHF. We therefore hypothesized that ultra‐DHF had effected displacement by disseminating in Ae. aegypti more rapidly than post‐DHF, but this was not borne out by a time course of mosquito infection. To elucidate the mechanisms that shape these virus–vector interactions, we tested the impact of RNA interference (RNAi), the principal mosquito defence against DENV, on replication of each of the three DENV strains. Replication of all strains was similar in mosquito cells with dysfunctional RNAi, but in cells with functional RNAi, replication of pre‐DHF was significantly suppressed relative to the other two strains. Thus, differences in susceptibility to RNAi may account for the differences in mosquito infectivity between pre‐DHF and post‐DHF, but other mechanisms underlie the difference between post‐DHF and ultra‐DHF.  相似文献   

8.
Mosquito‐borne diseases resulting from the expansion of two key vectors, Aedes aegypti and Aedes albopictus (Diptera: Culicidae), continue to challenge whole regions and continents around the globe. In recent years there have been human cases of disease associated with Chikungunya, dengue and Zika viruses. In Europe, the expansion of Ae. albopictus has resulted in local transmission of Chikungunya and dengue viruses. This paper considers the risk that Ae. aegypti and Ae. albopictus represent for the U.K. and details the results of mosquito surveillance activities. Surveillance was conducted at 34 points of entry, 12 sites serving vehicular traffic and two sites of used tyre importers. The most common native mosquito recorded was Culex pipiens s.l. (Diptera: Culicidae). The invasive mosquito Ae. albopictus was detected on three occasions in southern England (September 2016, July 2017 and July 2018) and subsequent control strategies were conducted. These latest surveillance results demonstrate ongoing incursions of Ae. albopictus into the U.K. via ground vehicular traffic, which can be expected to continue and increase as populations in nearby countries expand, particularly in France, which is the main source of ex‐continental traffic.  相似文献   

9.
The genome sequence of the hemibiotrophic fungus Moniliophthora perniciosa revealed genes possibly participating in the RNAi machinery. Therefore, studies were performed in order to investigate the efficiency of gene silencing by dsRNA. We showed that the reporter gfp gene stably introduced into the fungus genome can be silenced by transfection of in vitro synthesized gfpdsRNA. In addition, successful dsRNA-induced silencing of endogenous genes coding for hydrophobins and a peroxiredoxin were also achieved. All genes showed a silencing efficiency ranging from 18% to 98% when compared to controls even 28 d after dsRNA treatment, suggesting systemic silencing. Reduction of GFP fluorescence, peroxidase activity levels and survival responses to H2O2 were consistent with the reduction of GFP and peroxidase mRNA levels, respectively. dsRNA transformation of M. perniciosa is shown here to efficiently promote genetic knockdown and can thus be used to assess gene function in this pathogen.  相似文献   

10.
Dengue virus (DENV) is a mosquito-borne flavivirus that causes serious human disease and mortality worldwide. There is no specific antiviral therapy or vaccine for DENV infection. Alterations in gene expression during DENV infection of the mosquito and the impact of these changes on virus infection are important events to investigate in hopes of creating new treatments and vaccines. We previously identified 203 genes that were ≥5-fold differentially upregulated during flavivirus infection of the mosquito. Here, we examined the impact of silencing 100 of the most highly upregulated gene targets on DENV infection in its mosquito vector. We identified 20 genes that reduced DENV infection by at least 60% when silenced. We focused on one gene, a putative cysteine rich venom protein (SeqID AAEL000379; CRVP379), whose silencing significantly reduced DENV infection in Aedes aegypti cells. Here, we examine the requirement for CRVP379 during DENV infection of the mosquito and investigate the mechanisms surrounding this phenomenon. We also show that blocking CRVP379 protein with either RNAi or specific antisera inhibits DENV infection in Aedes aegypti. This work identifies a novel mosquito gene target for controlling DENV infection in mosquitoes that may also be used to develop broad preventative and therapeutic measures for multiple flaviviruses.  相似文献   

11.
During the dry season in February, 2010 and the wet season in September, 2011 we sampled mosquito larvae and eggs from treeholes of seven native hardwood species and the husks of Saba senegalensis in 18 sites in the PK‐10 forest in southeastern Senegal. Larvae were reared to adults for species identification. In the dry season, we recovered 408 Aedes mosquitoes belonging to seven species. Aedes aegypti s.l. comprised 42.4% of the collection, followed by Ae. unilineatus (39%). In contrast to reports from East Africa, both Ae. aegypti aegypti and Ae. aegypti formosus were recovered, suggesting that both subspecies survive the dry season in natural larval habitats in West Africa. In the wet season, 455 mosquitoes were collected but 310 (68.1%) were the facultatively predaceous mosquito Eretmapodites chrysogaster. The remaining 145 mosquitoes consisted of ten Aedes species. Aedes aegypti s.l. comprised 55.1% of these, followed by Ae. apicoargenteus (15.2%) and Ae. cozi (11.7%). Similar to East Africa, most (90%) of Ae. aegypti s.l. in the wet season were subspecies formosus.  相似文献   

12.
The mosquitoes Aedes aegypti (L.) and Ae. albopictus Skuse are the major vectors of dengue, Zika, yellow fever, and chikungunya viruses worldwide. Wolbachia, an endosymbiotic bacterium present in many insects, is being utilized in novel vector control strategies to manipulate mosquito life history and vector competence to curb virus transmission. Earlier studies have found that Wolbachia is commonly detected in Ae. albopictus but rarely detected in Ae. aegypti. In this study, we used a two‐step PCR assay to detect Wolbachia in wild‐collected samples of Ae. aegypti. The PCR products were sequenced to validate amplicons and identify Wolbachia strains. A loop‐mediated isothermal amplification (LAMP) assay was developed and used for detecting Wolbachia in selected mosquito specimens as well. We found Wolbachia in 85/148 (57.4%) wild Ae. aegypti specimens from various cities in New Mexico, and in 2/46 (4.3%) from St. Augustine, Florida. Wolbachia was not detected in 94 samples of Ae. aegypti from Deer Park, Harris County, Texas. Wolbachia detected in Ae. aegypti from both New Mexico and Florida was the wAlbB strain of Wolbachia pipientis. A Wolbachia‐positive colony of Ae. aegypti was established from pupae collected in Las Cruces, New Mexico, in 2018. The infected females of this strain transmitted Wolbachia to their progeny when crossed with males of Rockefeller strain of Ae. aegypti, which does not carry Wolbachia. In contrast, none of the progeny of Las Cruces males mated to Rockefeller females were infected with Wolbachia.  相似文献   

13.
Plant virus‐based gene‐silencing vectors have been extensively and successfully used to elucidate functional genomics in plants. However, only limited virus‐induced gene‐silencing (VIGS) vectors can be used in both monocot and dicot plants. Here, we established a dual gene‐silencing vector system based on Bamboo mosaic virus (BaMV) and its satellite RNA (satBaMV). Both BaMV and satBaMV vectors could effectively silence endogenous genes in Nicotiana benthamiana and Brachypodium distachyon. The satBaMV vector could also silence the green fluorescent protein (GFP) transgene in GFP transgenic N. benthamiana. GFP transgenic plants co‐agro‐inoculated with BaMV and satBaMV vectors carrying sulphur and GFP genes, respectively, could simultaneously silence both genes. Moreover, the silenced plants could still survive with the silencing of genes essential for plant development such as heat‐shock protein 90 (Hsp90) and Hsp70. In addition, the satBaMV‐ but not BaMV‐based vector could enhance gene‐silencing efficiency in newly emerging leaves of N. benthamiana deficient in RNA‐dependant RNA polymerase 6. The dual gene‐silencing vector system of BaMV and satBaMV provides a novel tool for comparative functional studies in monocot and dicot plants.  相似文献   

14.
Aedes aegypti is among the best‐studied mosquitoes due to its critical role as a vector of human pathogens and ease of laboratory rearing. Until now, this species was thought to have originated in continental Africa, and subsequently colonized much of the world following the establishment of global trade routes. However, populations of this mosquito on the islands in the southwestern Indian Ocean (SWIO), where the species occurs with its nearest relatives referred to as the Aegypti Group, have received little study. We re‐evaluated the evolutionary history of Ae. aegypti and these relatives, using three data sets: nucleotide sequence data, 18,489 SNPs and 12 microsatellites. We found that: (a) the Aegypti Group diverged 16 MYA (95% HPD: 7–28 MYA) from its nearest African/Asian ancestor; (b) SWIO populations of Ae. aegypti are basal to continental African populations; (c) after diverging 7 MYA (95% HPD: 4–15 MYA) from its nearest formally described relative (Ae. mascarensis), Ae. aegypti moved to continental Africa less than 85,000 years ago, where it recently (<1,000 years ago) split into two recognized subspecies Ae. aegypti formosus and a human commensal, Ae. aegypti aegypti; (d) the Madagascar samples form a clade more distant from all other Ae. aegypti than the named species Ae. mascarensis, implying that Madagascar may harbour a new cryptic species; and (e) there is evidence of introgression between Ae. mascarensis and Ae. aegypti on Réunion, and between the two subspecies elsewhere in the SWIO, a likely consequence of recent introductions of domestic Ae. aegypti aegypti from Asia.  相似文献   

15.

Background  

The RNA interference (RNAi) pathway acts as an innate antiviral immune response in Aedes aegypti, modulating arbovirus infection of mosquitoes. Sindbis virus (SINV; family: Togaviridae, genus: Alphavirus) is an arbovirus that infects Ae. aegypti in the laboratory. SINV strain TR339 encounters a midgut escape barrier (MEB) during infection of Ae. aegypti. The nature of this barrier is not well understood. To investigate the role of the midgut as the central organ determining vector competence for arboviruses, we generated transgenic mosquitoes in which the RNAi pathway was impaired in midgut tissue of bloodfed females. We used these mosquitoes to reveal effects of RNAi impairment in the midgut on SINV replication, midgut infection and dissemination efficiencies, and mosquito longevity.  相似文献   

16.
17.
Chikungunya virus (CHIKV) is primarily transmitted by Aedes spp. mosquitoes. The present study investigated vector competence for CHIKV in Aedes aegypti and Aedes albopictus mosquitoes found in Madurai, South India. The role of receptor proteins on midguts contributing to permissiveness of CHIKV to Aedes spp. mosquitoes was also undertaken. Mosquitoes were orally infected with CHIKV DRDE‐06. Infection of midguts and dissemination to heads was confirmed by immunofluorescence assay at different time points. A plaque assay was performed from mosquito homogenates at different time points to study CHIKV replication. Presence of putative CHIKV receptor proteins on mosquito midgut epithelial cells was detected by virus overlay protein binding assay (VOPBA). The identity of these proteins was established using mass spectrometry. CHIKV infection of Ae. aegypti and Ae. albopictus midguts and dissemination to heads was observed to be similar. A plaque assay performed with infected mosquito homogenates revealed that CHIKV replication dynamics was similar in Aedes sp. mosquitoes until 28 days post infection. VOPBA performed with mosquito midgut membrane proteins revealed that prohibitin could serve as a putative CHIKV receptor on Aedes mosquito midguts, whereas an absence of CHIKV binding protein/s on Culex quinquefasciatus midguts can partially explain the non‐permissiveness of these mosquitoes to infection.  相似文献   

18.
In East Africa, significant morbidity and mortality are caused by infections spread by Culex quinquefasciatus and Aedes aegypti. Sticky traps have been shown to be effective tools for sampling populations of Aedes mosquitoes and have been found to catch Cx. quinquefasciatus. Thus, they could potentially be used to sample populations of this species. This study compared Sticky ovitraps (SO) and MosquiTraps (MQT) with the CDC Gravid trap (CDC‐GT) for collection of Culex and Aedes mosquito populations in Tanzania. A follow‐up experiment was carried out using traps set for a 24‐h period to accommodate the oviposition habits of Aedes aegypti and Ae. simpsoni s.l. mosquitoes. The results showed that the CDC‐GT caught significantly more Cx. quinquefasciatus and Ae. aegypti than the SO or MQT, but there was no significant difference in the number of mosquitoes caught between the two sticky traps or of Ae. simpsoni s.l. caught among the three trap types. The results suggest that CDC‐GTs are the most appropriate in sampling of Cx. quinquefasciatus. Although CDC‐GTs collected more Ae. aegypti than the sticky traps, the simplicity and cost benefit of sticky traps facilitates large scale studies. All three trap types should be considered for monitoring Aedes mosquitoes.  相似文献   

19.
It is generally assumed that the daily probability of survival of mosquitoes is independent of age. To test this assumption we have conducted a three‐year experimental fieldwork study (2005–2007) at Fortaleza‐CE in Brazil, determining daily survival rates of the dengue vector Aedes aegypti (L.). Survival rates of adult Ae. aegypti may be age‐dependent and the statistical analysis is a sensitive approach for comparing patterns of mosquito survival. The mosquito survival data were better fit by a Weibull survival function than by the more traditionally used Gompertz or logistic survival functions. Gompertz, Weibull, or logistic survival functions often fit the survival, and the tails of the survival curves usually appear to fall between the values predicted by the three functions. We corroborate that the mortality of Ae. aegypti in semi‐natural conditions may no more be considered as a constant phenomenon during the life of adult mosquitoes but varies according to the age and environmental conditions under a tropical climate. This study estimates the variability in the survival rate of Ae. aegypti and environmental factors that are related to such variability. The statistical analysis shows that the fitting ability, concerning the hazard function, was in decreasing order: Seasonal Cox, the three‐parameter Gompertz, and the three‐parameter Weibull, that was similar to the three‐parameter logistic. The advantage of using the Cox model is that it is convenient for exploring the relationship between survival and several explanatory variables. The Cox model has the advantage of preserving the variable in its original quantitative form and of using a maximum of information. The survival analyses indicate that mosquito mortality is both age‐ and environment‐dependent.  相似文献   

20.
Abstract Larval competition is common in container‐breeding mosquitoes. The impact of competition on larval growth has been thoroughly examined and findings that larval competition can lead to density‐dependent effects on adult body size have been documented. The effects of larval competition on adult longevity have been less well explored. The effects of intraspecific larval densities on the longevity of adults maintained under relatively harsh environmental conditions were tested in the laboratory by measuring the longevity of adult Aedes aegypti (L.) and Aedes albopictus (Skuse) (Diptera: Culicidae) that had been reared under a range of larval densities and subsequently maintained in high‐ or low‐humidity regimes (85% or 35% relative humidity [RH], respectively) as adults. We found significant negative effects of competition on adult longevity in Ae. aegypti, but not in Ae. albopictus. Multivariate analysis of variance suggested that the negative effect of the larval environment on the longevity of Ae. aegypti adults was most strongly associated with increased development time and decreased wing length as adults. Understanding how larval competition affects adult longevity under a range of environmental conditions is important in establishing the relationship between models of mosquito population regulation and epidemiological models of vector‐borne disease transmission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号