首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Interferon-beta (IFN-β) is a cytokine with anti-viral, anti-proliferative, and immunomodulatory effects. In this study, we investigated the effects of IFN-β on the induction of autophagy and the relationships among autophagy, growth inhibition, and apoptosis induced by IFN-β in human glioma cells. We found that IFN-β induced autophagosome formation and conversion of microtubule associated protein 1 light chain 3 (LC3) protein, whereas it inhibited cell growth through caspase-dependent cell apoptosis. The Akt/mTOR signaling pathway was involved in autophagy induced by IFN-β. A dose- and time-dependent increase of p-ERK 1/2 expression was also observed in human glioma cells treated with IFN-β. Autophagy induced by IFN-β was suppressed when p-ERK1/2 was impaired by treatment with U0126. We also demonstrated that suppression of autophagy significantly enhanced growth inhibition and cell apoptosis induced by IFN-β, whereas inhibition of caspase-dependent cell apoptosis impaired autophagy induced by IFN-β. Collectively, these findings indicated that autophagy induced by IFN-β was associated with the Akt/mTOR and ERK 1/2 signaling pathways, and inhibition of autophagy could enhance the growth inhibitory effects of IFN-β and increase apoptosis in human glioma cells. Together, these findings support the possibility that autophagy inhibitors may improve IFN-β therapy for gliomas.  相似文献   

2.
3.
4.
《Autophagy》2013,9(2):166-173
Minocycline has been shown to alleviate several neurological disorders. Unexpectedly, we found that minocycline had opposite effects on glioma cells: minocycline induced nonapoptotic cell death in glioma cells. The glioma cell death was associated with the presence of autophagic vacuoles in the cytoplasm. Minocycline induced autophagy was confirmed by acridine orange, monodansylcadaverine (MDC) stainings of vesicle formation and the conversion of microtubule-associated proteins light chain 3 (LC3-I) to LC3-II. Pretreatment with autophagy inhibitor 3-methyladenine (3-MA) suppressed the induction of acidic vesicular organelles and the accumulation of LC3-II to the autophagosome membrane in glioma cells treated with minocycline. Despite the pretreatment of 3-MA, minocycline induced cell death which could result from the activation of caspase-3. Minocycline effectively inhibited tumor growth and induced autophagy in the xenograft tumor model of C6 glioma cells. These results suggest that minocycline may kill glioma cells by inducing autophagic cell death. When autophagy was inhibited, minocycline still induced cell death through the activation of caspase-3. Thus, minocycline is a promising agent in the treatment of malignant gliomas.  相似文献   

5.
Liu WT  Lin CH  Hsiao M  Gean PW 《Autophagy》2011,7(2):166-175
Minocycline has been shown to alleviate several neurological disorders. Unexpectedly, we found that minocycline had opposite effects on glioma cells: minocycline induced nonapoptotic cell death in glioma cells. The glioma cell death was associated with the presence of autophagic vacuoles in the cytoplasm. Minocycline induced autophagy was confirmed by acridine orange, monodansylcadaverine (MDC) stainings of vesicle formation and the conversion of microtubule-associated proteins light chain 3 (LC3-I) to LC3-II. Pretreatment with autophagy inhibitor 3-methyladenine (3-MA) suppressed the induction of acidic vesicular organelles and the accumulation of LC3-II to the autophagosome membrane in glioma cells treated with minocycline. Despite the pretreatment of 3-MA, minocycline induced cell death which could result from the activation of caspase-3. Minocycline effectively inhibited tumor growth and induced autophagy in the xenograft tumor model of C6 glioma cells. These results suggest that minocycline may kill glioma cells by inducing autophagic cell death. When autophagy was inhibited, minocycline still induced cell death through the activation of caspase-3. Thus, minocycline is a promising agent in the treatment of malignant gliomas.  相似文献   

6.
7.
We have previously reported that the in vivo anti-glioma efficacy of the anti-angiogenic receptor tyrosine kinase inhibitor cediranib is substantially enhanced via combination with the late-stage autophagy inhibitor quinacrine. The current study investigates the role of hypoxia and autophagy in combined cediranib/quinacrine efficacy. EF5 immunostaining revealed a prevalence of hypoxia in mouse intracranial 4C8 glioma, consistent with high-grade glioma. MTS cell viability assays using 4C8 glioma cells revealed that hypoxia potentiated the efficacy of combined cediranib/quinacrine: cell viability reductions induced by 1 µM cediranib +2.5 µM quinacrine were 78±7% (hypoxia) vs. 31±3% (normoxia), p<0.05. Apoptosis was markedly increased for cediranib/quinacrine/hypoxia versus all other groups. Autophagic vacuole biomarker LC3-II increased robustly in response to cediranib, quinacrine, or hypoxia. Combined cediranib/quinacrine increased LC3-II further, with the largest increases occurring with combined cediranib/quinacrine/hypoxia. Early stage autophagy inhibitor 3-MA prevented LC3-II accumulation with combined cediranib/quinacrine/hypoxia and substantially attenuated the associated reduction in cell viability. Combined efficacy of cediranib with bafilomycin A1, another late-stage autophagy inhibitor, was additive but lacked substantial potentiation by hypoxia. Substantially lower LC3-II accumulation was observed with bafilomycin A1 in comparison to quinacrine. Cediranib and quinacrine each strongly inhibited Akt phosphoryation, while bafilomycin A1 had no effect. Our results provide compelling evidence that autophagic vacuole accumulation plays a causal role in the anti-glioma cytotoxic efficacy of combined cediranib/quinacrine. Such accumulation is likely related to stimulation of autophagosome induction by hypoxia, which is prevalent in the glioma tumor microenvironment, as well as Akt signaling inhibition from both cediranib and quinacrine. Quinacrine''s unique ability to inhibit both Akt and autophagic vacuole degradation may enhance its ability to drive cytotoxic autophagic vacuole accumulation. These findings provide a rationale for a clinical evaluation of combined cediranib/quinacrine therapy for malignant glioma.  相似文献   

8.
Our previous study showed that RalA-binding protein 1 (RLIP76) is overexpressed in gliomas and is associated with higher tumour grade and decreased patient survival. Furthermore, RLIP76 downregulation increases chemosensitivity of glioma cells to temozolomide by inducing apoptosis. However, other mechanisms underlying RLIP76-associated chemoresistance are unknown. In this study, we investigated the effect of RLIP76 depletion on autophagy. RLIP76 was knocked down in U251 glioma cells using shRNA and autophagy-related proteins, and PI3K/Akt signalling components were evaluated. RLIP76 depletion significantly increased cell autophagy as demonstrated by a significant increase in LC3 II, autophagy protein 5 (ATG-5), and Beclin1, and a decrease in p62 expression levels. Furthermore, RLIP76 knockdown increased autophagic flux in U251 cells as autolysosome numbers increased relative to autophagosome numbers. Autophagy induced by RLIP76 knockdown resulted in increased apoptosis that was independent of temozolomide treatment. Moreover, RLIP76 knockdown decreased PI3K and Akt activation. RLIP76 depletion also resulted in decreased levels of the anti-apoptotic protein Bcl2. LY294002, a PI3K/Akt pathway inhibitor, led to increased autophagy and apoptosis in U251 RLIP76-depleted cells. Therefore, RLIP76 knockdown increased autophagic flux and apoptosis in U251 glioma cells, possibly through inhibition of the PI3K/Akt pathway. Thus, this study provides a novel mechanism for the role of RLIP76 in glioma pathogenesis and chemoresistance.  相似文献   

9.
In central nervous system, glioma is the most common primary brain tumour. The diffuse migration and rapid proliferation are main obstacles for successful treatment. Gartanin, a natural xanthone of mangosteen, suppressed proliferation, migration and colony formation in a time‐ and concentration‐dependent manner in T98G glioma cells but not in mouse normal neuronal HT22 cells. Gartanin, at low micromole, led to cell cycle arrest in G1 phase accompanied by inhibited expression level of G1 cell cycle regulatory proteins cyclin D1, while increased expression level of cyclin‐dependent kinase inhibitor p27Kip1. In addition, the secretion and activity of matrix metalloproteinases 2/9 (MMP‐2/‐9) were significantly suppressed in T98G cells treated with gartanin, and it might result from modulating mitogen‐activated protein kinases (MAPK) signalling pathway in T98G glioma cells. Moreover, gartanin significantly induced autophagy in T98G cells and increased GFP‐LC3 punctate fluorescence accompanied by the increased expression level of Beclin 1 and LC3‐II, while suppressed expression level of p62. Gartanin treatment resulted in obvious inhibition of PI3K/Akt/mTOR signalling pathway, which is important in modulating autophagy. Notably, gartanin‐mediated anti‐viability was significantly abrogated by autophagy inhibitors including 3‐methyladenine (3‐MA) and chloroquine (CQ). These results indicate that anti‐proliferation effect of gartanin in T98G cells is most likely via cell cycle arrest modulated by autophagy, which is regulated by PI3K/Akt/mTOR signalling pathway, while anti‐migration effect is most likely via suppression of MMP‐2/‐9 activity which is involved in MAPK signalling pathway.  相似文献   

10.
研究人巨细胞病毒(HCMV)感染对神经胶质瘤U87细胞自噬的影响。通过观察微管相关蛋白1轻链3(LC3)、自噬相关基因Beclin1及其蛋白表达的变化,从而探讨HCMV与神经胶质瘤发生、发展的关系及意义。用HCMV AD169(MOI=5)感染神经胶质瘤U87细胞,同时将未感染HCMV的U87细胞作为对照组。分别在6、12、24、48 h用RT-PCR检测Beclin1的表达,Western-blot和免疫荧光检测Beclin1和LC3编码蛋白的表达,最后用CCK-8检测细胞的增殖活性。结果显示,HCMV感染的U87细胞LC3-II蛋白表达水平逐渐下降(P<0.05);同时,HCMV感染的U87细胞Beclin1基因及蛋白的表达水平也逐渐下降(P<0.01),且HCMV感染U87细胞增殖显著(P<0.01)。以上结果表明,HCMV感染抑制胶质瘤U87细胞自噬,并会引起Beclin1表达水平下调,进而导致胶质瘤细胞增殖。  相似文献   

11.
Epidermal growth factor receptor tyrosine kinase inhibitors, including gefitinib, have been evaluated in patients with malignant gliomas. However, the molecular mechanisms involved in gefitinib-mediated anticancer effects against glioma are incompletely understood. In the present study, the cytostatic potential of gefitinib was demonstrated by the inhibition of glioma cell growth, long-term clonogenic survival, and xenograft tumor growth. The cytostatic consequences were accompanied by autophagy, as evidenced by monodansylcadaverine staining of acidic vesicle formation, conversion of microtubule-associated protein-1 light chain 3-II (LC3-II), degradation of p62, punctate pattern of GFP-LC3, and conversion of GFP-LC3 to cleaved-GFP. Autophagy inhibitor 3-methyladenosine and chloroquine and genetic silencing of LC3 or Beclin 1 attenuated gefitinib-induced growth inhibition. Gefitinib-induced autophagy was not accompanied by the disruption of the Akt/mammalian target of rapamycin signaling. Instead, the activation of liver kinase-B1/AMP-activated protein kinase (AMPK) signaling correlated well with the induction of autophagy and growth inhibition caused by gefitinib. Silencing of AMPK suppressed gefitinib-induced autophagy and growth inhibition. The crucial role of AMPK activation in inducing glioma autophagy and growth inhibition was further supported by the actions of AMP mimetic AICAR. Gefitinib was shown to be capable of reducing the proliferation of glioma cells, presumably by autophagic mechanisms involving AMPK activation.  相似文献   

12.
Adenosine is a promising cytotoxic reagent for tumors, long noncoding RNA (lncRNA) maternally expressed gene 3 (MEG3) has been indicated to play critical roles in tumorigenesis, ILF3 has been recognized as a MEG3-binding protein, however, the roles of adenosine and MEG3 on hepatoma are still ambiguous. To clarify the effects of MEG3 on the adenosine-induced cytotoxicity in hepatoma, MEG3 and ILF3 lentivirus were transduced into human hepatoma HepG2 cells to stimulate overexpression of MEG3 (OE MEG3) and overexpression of ILF3 (OE ILF3), furthermore, ILF3 small interfering RNA (siRNA) was also applied to downregulate the expression of ILF3. In this study, autophagy was markedly inhibited by low concentration of adenosine, which present by not only inhibited transformation from LC3-I to LC3-II and autophagosomes formation, but also the elevation of mTOR and reduction of beclin-1 proteins. Furthermore, low concentration of adenosine also exerted marked cytotoxicity representing induced cell apoptosis together with reductions of cell viability and migration, which were also markedly enhanced by OE MEG3. Novelly and excitingly, adenosine markedly stimulated MEG3 expression, OE MEG3 markedly decreased the ILF3 expression in HepG2 cells, and the adenosine-induced autophagy inhibition, together with the ratio of p-PI3K/PI3K, p-AKT/AKT, and p-mTOR/mTOR were also boosted by OE MEG3. More interestingly, OE ILF3 increased autophagy, whereas downregulated ILF3, especially in the case of adenosine, led to marked autophagy inhibition by decreasing beclin-1. The present study demonstrates autophagy inhibition is involved in the adenosine-induced cytotoxicity in HepG2 cells, the cytotoxicity can be synergized by OE MEG3 via downregulated ILF3 to activate PI3K/Akt/mTOR and inactivate the beclin-1 signaling pathway. In conclusion, MEG3 and inhibition of autophagy might be potential targets for augmenting adenosine-induced cytotoxicity in hepatoma.  相似文献   

13.
Glioma is the most common primary malignant brain tumour, and survival is poor. Hirudin has anticancer pharmacological effects through suppression of glioma cell progression, but the molecular target and mechanism are poorly understood. In this study, we observed that hirudin dose- and time-dependently inhibited glioma invasion, migration and proliferation. Mechanistically, hirudin activated LC3-II but not Caspase-3 to induce the autophagic death of glioma cells by decreasing the phosphorylation of mTOR and its downstream substrates ULK1, P70S6K and 4EBP1. Furthermore, hirudin inhibited glioma growth and induced changes in autophagy in cell-derived xenograft (CDX) nude mice, with a decrease in mTOR activity and activation of LC3-II. Collectively, our results highlight a new anticancer mechanism of hirudin in which hirudin-induced inhibition of glioma progression through autophagy activation is likely achieved by inhibition of the mTOR signalling pathway, thus providing a molecular basis for hirudin as a potential and effective clinical drug for glioma therapy.  相似文献   

14.
目的:探讨自噬在血卟啉单甲醚(Hematoporphyrin monomethyl ether,HMME)介导的声动力疗法(Sonodynamic therapy,SDT)抑制C6胶质瘤细胞增殖中的作用。方法:选取对数期生长的C6胶质瘤细胞并随机分为四组:对照组(未予处理)、超声组(单独超声照射)、HMME组(单独加入HMME)、SDT组(超声照射+HMME)。透射电镜观察SDT处理的C6胶质瘤细胞中自噬体数量的改变。应用qRT-PCR和免疫印迹分析SDT处理对C6胶质瘤细胞中的LC3、Beclin1、Bcl-2 m RNA及蛋白表达水平的影响。MTT检测C6胶质瘤细胞的活力变化。结果:透射电子显微镜显示SDT组自噬体数量较对照组明显增多。SDT组C6胶质瘤细胞中微管相关蛋白1轻链3 (Microtubule associated protein 1 light chain 3, LC3)、Beclin1 m RNA和蛋白水平高于对照组,B细胞淋巴瘤-2(B cell lymphoma-2, Bcl-2) m RNA和蛋白水平低于对照组。与对照组相比,SDT组C6胶质瘤细胞存活率从0 h至6 h逐渐下降,从12 h至72 h逐渐升高。3-甲基腺嘌呤(3-Methyladenine,3-MA)+SDT、氯喹(Chloroquine,CQ)+SDT处理后C6胶质瘤细胞存活率较SDT组明显降低。结论:SDT可能通过诱导自噬抑制C6胶质瘤细胞增殖。  相似文献   

15.
Glioma is the most common cancer in human brain system and seriously threatens human health. miRNA-320 has been demonstrated to be closely correlated with the development of glioma. However, its effect and molecular mechanism underlying radioresistance have not been fully elucidated in glioma. Here, RT-qPCR assay was used to assess the expressions of miR-320 and forkhead box protein M1 (FoxM1) mRNA in glioma tumor tissues and cells. The effects of miR-320, FoxM1 and sirtuin type 1 (Sirt1) on radiosensitivity in glioma cells were evaluated by clone formation assay, apoptosis assay, histone H2AX phosphorylation level (γH2AX) detection and caspase 3 activity analysis, respectively. The direct interaction between miR-320 and FoxM1 was detected by luciferase assay. The protein levels of FoxM1, Sirt1 and γH2AX were measured by western blot assay. We found that miR-320 expression was down-regulated and FoxM1 expression was up-regulated in radioresistant glioma tissues and IR-treated glioma cells. miR-320 overexpression dramatically enhanced radiosensitivity, promoted apoptosis, and improved γH2AX expression and caspase 3 activity in glioma cells. Luciferase reporter assay and western blot assay further validated that miR-320 suppressed FoxM1 expression by directly targeting 3’ UTR region of FoxM1. Moreover, miR-320 inhibited Sirt1 expression via targeting FoxM1 in glioma cells. Furthermore, overexpression of FoxM1 and Sirt1 strikingly attenuated miR-320-induced increase of radiosensitivity, apoptosis and γH2AX expression in glioma cells. In conclusion, miR-320 enhanced radiosensitivity of glioma cells through down-regulation of Sirt1 by directly targeting FoxM1.  相似文献   

16.
We investigated the role of autophagy, a process of controlled self-digestion, in the in vitro anticancer action of the inosine monophosphate dehydrogenase (IMPDH) inhibitor ribavirin. Ribavirin-triggered oxidative stress, caspase activation, and apoptotic death in U251 human glioma cells were associated with the induction of autophagy, as confirmed by intracellular acidification, appearance of autophagic vesicles, conversion of microtubule associated protein 1 light chain 3 (LC3)-I to autophagosome-associated LC3-II, and degradation of autophagic target p62/sequestosome 1. Ribavirin downregulated the activity of autophagy-inhibiting mammalian target of rapamycin complex 1 (mTORC1), as indicated by a decrease in phosphorylation of the mTORC1 substrate ribosomal p70S6 kinase and reduction of the mTORC1-activating Src/Akt signaling. Guanosine supplementation inhibited, while IMPDH inhibitor tiazofurin mimicked ribavirin-mediated autophagy induction, suggesting the involvement of IMPDH blockade in the observed effect. Autophagy suppression by ammonium chloride, bafilomycin A1, or RNA interference-mediated knockdown of LC3 sensitized glioma cells to ribavirin-induced apoptosis. Ribavirin also induced cytoprotective autophagy associated with Akt/mTORC1 inhibition in C6 rat glioma cells. Our data demonstrate that ribavirin-triggered Akt/mTORC1-dependent autophagy counteracts apoptotic death of glioma cells, indicating autophagy suppression as a plausible therapeutic strategy for sensitization of cancer cells to IMPDH inhibition.  相似文献   

17.
Long noncoding RNA urothelial carcinoma associated 1 (UCA1) has been implicated in the growth and metastasis of colorectal cancer (CRC), and autophagy contributes to tumorigenesis and cancer cell survival. However, the regulatory role of UCA1 in CRC cell viability by modulating autophagy remains unclear. In the present study, a significant positive correlation was observed between UCA1 and microtubule-associated protein 1 light chain 3 (LC3) levels, and the elevated UCA1 was negatively correlated with the PKB/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling pathway in 293T cells. Downregulation of UCA1 inhibited autophagy activation and cell proliferation, whereas the apoptosis was increased and the cell cycle was arrested in G2 stage. The next results showed that UCA1 was markedly upregulated in Caco-2 cells. Knockdown of UCA1 significantly decreased the LC3-II and autophagy-related gene 5 (ATG5) protein levels and resulted in an increase in p62 expression. Conversely, the autophagy activator rapamycin (RAPA) reversed the effects. Furthermore, downregulated UCA1 decreased Caco-2 cells population in the G1 phase and increased the cells number in G2 phage. The cell proliferation was inhibited, and apoptosis rate was promoted. More important, RAPA could also abrogate the changes induced by knockdown of UCA1. Collectively, these data demonstrated that downregulated UCA1 induced autophagy inhibition, resulting in suppressing cell proliferation and promoting apoptosis, which suggested that UCA1 might serve as a potential new oncogene to regulate CRC cells viability by modulating autophagy.  相似文献   

18.
19.
泛素偶联酶2C与多种肿瘤细胞的增殖密切相关,但其与肺癌发生和发展的关系尚不明确。 本研究以肺癌A549细胞为材料,通过RT-PCR、Western印迹、免疫荧光、SA-β-Gal细胞衰老染色、细胞划痕和Trans-well实验,阐明UBE2C与肺癌细胞的增殖、衰老和迁移能力的关系。结果显示,UBE2C在肺癌细胞中的表达明显高于正常细胞。利用基因修饰技术瞬时过表达或靶向沉默UBE2C后,在肺癌A549细胞中,UBE2C的mRNA和蛋白质水平显著增加3.5倍或减少0.5倍,显著促进或抑制细胞增殖,进而减少或增加细胞的凋亡率。过表达UBE2C后,显著抑制细胞衰老;但沉默UBE2C后,则增加细胞衰老。此外,过表达UBE2C后,下调转移相关基因E-钙黏着蛋白的mRNA和蛋白质表达水平,且上调波形蛋白基因的表达水平,进而促进肺癌细胞的迁移。但靶向敲除UBE2C后,上调E-钙黏着蛋白,同时下调波形蛋白表达水平,进而抑制肺癌细胞的迁移。本研究的开展将明确UBE2C在肺癌中的作用及其机制,为以UBE2C为靶点,提高病人生存期提供了理论基础。  相似文献   

20.
Panaxydol is a naturally occurring non-peptidyl small molecule isolated from the lipophilic fractions of Panax notoginseng, a well-known Chinese traditional medicine. Previous studies have shown that panaxydol inhibited the growth of various kinds of malignant cell lines. To date, there has been no report concerning the effect of panaxydol on cell growth inhibition in glioma cells. In this paper, we examined panaxydol's antiproliferation and proapoptotic effects on rat C6 glioma cells and investigated its mechanism. Cell growth inhibition of panaxydol was determined by MTT reduction assay. Apoptosis of cells was measured by both Hoechst 33258 staining and Annexin V analysis. It was found that panaxydol markedly inhibited proliferation of C6 cells in a dose-dependent manner with ID(50) of 40 microM. The cell apoptosis was observed at 48 h in the presence of panaxydol. In concert with these findings, Western blot analysis showed a decreased expression of bcl-2 and increased levels of Bax and caspase-3 in C6 cells treated by panaxydol. In conclusion, panaxydol has profound effects on growth and apoptosis of C6 cells, suggesting that panaxydol may be a potential candidate for the treatment of malignant gliomas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号