首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Eukaryotic translation initiation factor 4E (eIF4E)-binding protein 1 (4E-BP1) is a member of a family of translation repressor proteins, and a well-known substrate of mechanistic target of rapamycin (mTOR) signaling pathway. Phosphorylation of 4E-BP1 causes its release from eIF4E to allow cap-dependent translation to proceed. Recently, 4E-BP1 was shown to be phosphorylated by other kinases besides mTOR, and overexpression of 4E-BP1 was found in different human carcinomas. In this review, we summarize the novel findings on mTOR independent 4E-BP1 phosphorylation in carcinomas. The implications of overexpression and possible multi-function of 4E-BP1 are also discussed.  相似文献   

2.
PKB/AKT is involved in resumption of meiosis in mouse oocytes   总被引:4,自引:0,他引:4  
BACKGROUND INFORMATION: In fully grown mouse oocytes, a decrease in cAMP concentration precedes and is linked to CDK1 (cyclin-dependent kinase 1) activation. The molecular mechanism for this coupling, however, is not defined. PKB (protein kinase B, also called AKT) is implicated in CDK1 activation in lower species. During resumption of meiosis in starfish oocytes, MYT1, a negative regulator of CDK1, is phosphorylated by PKB in an inhibitory manner. It can imply that PKB is also involved in CDK1 activation in mammalian oocytes. RESULTS: We monitored activation of PKB and CDK1 during maturation of mouse oocytes. PKB phosphorylation and activation preceded GVBD (germinal vesicle breakdown) in oocytes maturing either in vitro or in vivo. Activation was transient and PKB activity was markedly reduced when virtually all of the oocytes had undergone GVBD. PKB activation was independent of CDK1 activity, because although butyrolactone I prevented CDK1 activation and GVBD, PKB was nevertheless transiently phosphorylated and activated. LY-294002, an inhibitor of phosphoinositide 3-kinase-PKB signalling, suppressed activation of PKB and CDK1 as well as resumption of meiosis. OA (okadaic acid)-sensitive phosphatases are involved in PKB-activity regulation, because OA induced PKB hyperphosphorylation. During resumption of meiosis, PKB phosphorylated on Ser(473) is associated with nuclear membrane and centrosome, whereas PKB phosphorylated on Thr(308) is localized on centrosome only. CONCLUSIONS: The results of the present paper indicate that PKB is involved in CDK1 activation and resumption of meiosis in mouse oocytes. The presence of phosphorylated PKB on centrosome at the time of GVBD suggests its important role for an initial CDK1 activation.  相似文献   

3.
CDK1 is a pivotal regulator of resumption of meiosis and meiotic maturation of oocytes. CDC25A/B/C are dual-specificity phosphatases and activate cyclin-dependent kinases (CDKs). Although CDC25C is not essential for either mitotic or meiotic cell cycle regulation, CDC25B is essential for CDK1 activation during resumption of meiosis. Cdc25a −/− mice are embryonic lethal and therefore a role for CDC25A in meiosis is unknown. We report that activation of CDK1 results in a maturation-associated decrease in the amount of CDC25A protein, but not Cdc25a mRNA, such that little CDC25A is present by metaphase I. In addition, expression of exogenous CDC25A overcomes cAMP-mediated maintenance of meiotic arrest. Microinjection of Gfp-Cdc25a and Gpf-Cdc25b mRNAs constructs reveals that CDC25A is exclusively localized to the nucleus prior to nuclear envelope breakdown (NEBD). In contrast, CDC25B localizes to cytoplasm in GV-intact oocytes and translocates to the nucleus shortly before NEBD. Over-expressing GFP-CDC25A, which compensates for the normal maturation-associated decrease in CDC25A, blocks meiotic maturation at MI. This MI block is characterized by defects in chromosome congression and spindle formation and a transient reduction in both CDK1 and MAPK activities. Lastly, RNAi-mediated reduction of CDC25A results in fewer oocytes resuming meiosis and reaching MII. These data demonstrate that CDC25A behaves differently during female meiosis than during mitosis, and moreover, that CDC25A has a function in resumption of meiosis, MI spindle formation and the MI-MII transition. Thus, both CDC25A and CDC25B are critical for meiotic maturation of oocytes.  相似文献   

4.
5.
Insulin-like growth factor-1 (IGF-1) both promotes survival and activates protein synthesis in neurons. In the present paper, we investigate the effect of IGF-1 treatment on cap-dependent translation in primary cultured neuronal cells. IGF-1 treatment increased the phosphorylation of eukaryotic initiation factor (eIF)-4E-binding protein 1 (4E-BP1), exclusively at Thr-36 and Thr-45 residues, and eIF-4G phosphorylation at Ser-1108. In contrast, a significant eIF-4E dephosphorylation was found. In parallel, increased eIF-4E/4G assembly and protein synthesis activation in response to IGF-1 treatment were observed. The phosphatidylinositol 3-kinase (PI3-K) inhibitor wortmannin and the mammalian target of rapamycin (mTOR) inhibitor rapamycin, but not the mitogen-activated protein kinase (MAPK)-activating kinase (MEK) inhibitor PD98059, reversed the IGF-1-induced effects observed on eIF-4E/4G assembly and phosphorylation status of 4E-BP1, eIF-4E, and eIF-4G. Therefore, our findings show that the IGF-1-induced regulation of cap-dependent translation is largely dependent on the PI-3K and mTOR pathway in neuronal cells.  相似文献   

6.
Oogenesis in the urochordate, Oikopleura dioica, occurs in a large coenocyst in which vitellogenesis precedes oocyte selection in order to adapt oocyte production to nutrient conditions. The animal has expanded Cyclin-Dependant Kinase 1 (CDK1) and Cyclin B paralog complements, with several expressed during oogenesis. Here, we addressed functional redundancy and specialization of CDK1 and cyclin B paralogs during oogenesis and early embryogenesis through spatiotemporal analyses and knockdown assays. CDK1a translocated from organizing centres (OCs) to selected meiotic nuclei at the beginning of the P4 phase of oogenesis, and its knockdown impaired vitellogenesis, nurse nuclear dumping, and entry of nurse nuclei into apoptosis. CDK1d-Cyclin Ba translocated from OCs to selected meiotic nuclei in P4, drove meiosis resumption and promoted nuclear envelope breakdown (NEBD). CDK1d-Cyclin Ba was also involved in histone H3S28 phosphorylation on centromeres and meiotic spindle assembly through regulating Aurora B localization to centromeres during prometaphase I. In other studied species, Cyclin B3 commonly promotes anaphase entry, but we found O. dioica Cyclin B3a to be non-essential for anaphase entry during oogenic meiosis. Instead, Cyclin B3a contributed to meiotic spindle assembly though its loss could be compensated by Cyclin Ba.  相似文献   

7.
Hormones and growth factors induce protein translation in part by phosphorylation of the eukaryotic initiation factor 4E (eIF4E) binding protein 1 (4E-BP1). The rapamycin and FK506-binding protein (FKBP)-target 1 (RAFT1, also known as FRAP) is a mammalian homolog of the Saccharomyces cerevisiae target of rapamycin proteins (mTOR) that regulates 4E-BP1. However, the molecular mechanisms involved in growth factor-initiated phosphorylation of 4E-BP1 are not well understood. Here we demonstrate that protein kinase Cdelta (PKCdelta) associates with RAFT1 and that PKCdelta is required for the phosphorylation and inactivation of 4E-BP1. PKCdelta-mediated phosphorylation of 4E-BP1 is wortmannin resistant but rapamycin sensitive. As shown for serum, phosphorylation of 4E-BP1 by PKCdelta inhibits the interaction between 4E-BP1 and eIF4E and stimulates cap-dependent translation. Moreover, a dominant-negative mutant of PKCdelta inhibits serum-induced phosphorylation of 4E-BP1. These findings demonstrate that PKCdelta associates with RAFT1 and thereby regulates phosphorylation of 4E-BP1 and cap-dependent initiation of protein translation.  相似文献   

8.
目的:多倍性是物种形成的重要机制,决定一些重要器官细胞产生的数量和功能,而且与某些病理过程(如恶性肿瘤)的发生有密切关系。我们通过建立相对同步化的多倍体细胞模型,已经证实mTOR/S6K1参与多倍体细胞周期的调控。本课题主要研究roTOR下游的另一个重要信号分子4E-BP1是否也参与细胞的倍体化调控。方法:诺考达唑诱导Dami细胞建立相对同步化的多倍体细胞模型,Western-blot分析多倍体细胞模型中mTOR/4E—BP1通路信号分子表达和磷酸化修饰位点的变化,流式细胞仪双荧光分析4E—BP1不同结构域磷酸化位点修饰与细胞周期各时相的关系。结果:诺考达唑诱导的Dami细胞可作为相对同步化的多倍体细胞周期模型,在二倍体和多倍体细胞周期中,mTOR表达增加及第2448位丝氨酸位点磷酸化发生在G1期进入S期,4E—BP1的第37,46位苏氨酸和第65位丝氨酸位点磷酸化发生在G2/M期。结论:mTOR/4E-BP1通路参与多倍体细胞周期的调控。  相似文献   

9.
Previously we demonstrated that secondary products of plant mevalonate metabolism called isoprenoids attenuate 3-hydroxy-3-methylglutaryl coenzyme A reductase mRNA translational efficiency and cause tumor cell death. Here we compared effects of "pure" isoprenoids (perillyl alcohol and gamma-tocotrienol) and a "mixed" isoprenoid-genistein-on the PKB/Akt/mTOR pathway that controls mRNA translation and m(7)GpppX eIF4F cap binding complex formation. Effects were cell- and isoprenoid-specific. Perillyl alcohol and genistein suppressed 4E-BP1(Ser65) phosphorylation in prostate tumor cell lines, DU145 and PC-3, and in Caco2 adenocarcinoma cells. Suppressive effects were similar to or greater than that observed with a PI3 kinase inhibitor or rapamycin, an mTOR inhibitor. 4E-BP1(Thr37) phosphorylation was reduced by perillyl alcohol and genistein in DU145, but not in PC-3. Conversely, perillyl alcohol but not genistein decreased 4E-BP1(Thr37) phosphorylation in Caco2. PKB/Akt activation via Ser473 phosphorylation was enhanced in DU145 by perillyl alcohol and in PC-3 by gamma-tocotrienol, but was suppressed by genistein. Importantly, perillyl alcohol disrupted interactions between eIF4E and eIF4G, key components of eIF4F (m(7)GpppX) cap binding complex. These results demonstrate that "pure" isoprenoids and genistein differentially impact cap-dependent translation in tumor cell lines.  相似文献   

10.
Protein translation initiation is a tightly controlled process responding to nutrient availability and mitogen stimulation. Serving as one of the most important negative regulators of protein translation, 4E binding protein 1 (4E-BP1) binds to translation initiation factor 4E and inhibits cap-dependent translation in a phosphorylation-dependent manner. Although it has been demonstrated previously that the phosphorylation of 4E-BP1 is controlled by mammalian target of rapamycin in the mammalian target of rapamycin complex 1, the mechanism underlying the dephosphorylation of 4E-BP1 remains elusive. Here, we report the identification of PPM1G as the phosphatase of 4E-BP1. A coimmunoprecipitation experiment reveals that PPM1G binds to 4E-BP1 in cells and that purified PPM1G dephosphorylates 4E-BP1 in vitro. Knockdown of PPM1G in 293E and colon cancer HCT116 cells results in an increase in the phosphorylation of 4E-BP1 at both the Thr-37/46 and Ser-65 sites. Furthermore, the time course of 4E-BP1 dephosphorylation induced by amino acid starvation or mammalian target of rapamycin inhibition is slowed down significantly in PPM1G knockdown cells. Functionally, the amount of 4E-BP1 bound to the cap-dependent translation initiation complex is decreased when the expression of PPM1G is depleted. As a result, the rate of cap-dependent translation, cell size, and protein content are increased in PPM1G knockdown cells. Taken together, our study has identified protein phosphatase PPM1G as a novel regulator of cap-dependent protein translation by negatively controlling the phosphorylation of 4E-BP1.  相似文献   

11.
The SR protein SF2/ASF has been initially characterized as a splicing factor but has also been shown to mediate postsplicing activities such as mRNA export and translation. Here we demonstrate that SF2/ASF promotes translation initiation of bound mRNAs and that this activity requires the presence of the cytoplasmic cap-binding protein eIF4E. SF2/ASF promotes translation initiation by suppressing the activity of 4E-BP, a competitive inhibitor of cap-dependent translation. This activity is mediated by interactions of SF2/ASF with both mTOR and the phosphatase PP2A, two key regulators of 4E-BP phosphorylation. These findings suggest the model whereby SF2/ASF functions as an adaptor protein to recruit the signaling molecules responsible for regulation of cap-dependent translation of specific mRNAs. Taken together, these data suggest a novel mechanism for the activation of translation initiation of a subset of mRNAs bound by the shuttling protein SF2/ASF.  相似文献   

12.
Signaling mediated by the cellular kinase mammalian target of rapamycin (mTOR) activates cap-dependent translation under normal (nonstressed) conditions. However, translation is inhibited by cellular stress responses or rapamycin treatment, which inhibit mTOR kinase activity. We show that during human cytomegalovirus (HCMV) infection, viral protein synthesis and virus production proceed relatively normally when mTOR kinase activity is inhibited due to hypoxic stress or rapamycin treatment. Using rapamycin inhibition of mTOR, we show that HCMV infection induces phosphorylation of two mTOR effectors, eucaryotic initiation factor 4E (eIF4E) binding protein (4E-BP) and eIF4G. The virally induced phosphorylation of eIF4G is both mTOR and phosphatidylinositol 3-kinase (PI3K) independent, whereas the phosphorylation of 4E-BP is mTOR independent, but PI3K dependent. HCMV infection does not induce mTOR-independent phosphorylation of a third mTOR effector, p70S6 kinase (p70S6K). We show that the HCMV-induced phosphorylation of eIF4G and 4E-BP correlates with the association of eIF4E, the cap binding protein, with eIF4G in the eIF4F translation initiation complex. Thus, HCMV induces mechanisms to maintain the integrity of the eIF4F complex even when mTOR signaling is inhibited.  相似文献   

13.
Eukaryotic initiation factor 4E (eIF4E) binding proteins (4E-BPs) regulate the assembly of initiation complexes required for cap-dependent mRNA translation. 4E-BP1 undergoes insulin-stimulated phosphorylation, resulting in its release from eIF4E, allowing initiation complex assembly. 4E-BP1 undergoes caspase-dependent cleavage in cells undergoing apoptosis. Here we show that cleavage occurs after Asp24, giving rise to the N-terminally truncated polypeptide Delta4E-BP1, which possesses the eIF4E-binding site and all the known phosphorylation sites. Delta4E-BP1 binds to eIF4E and fails to become sufficiently phosphorylated upon insulin stimulation to bring about its release from eIF4E. Therefore, Delta4E-BP1 acts as a potent inhibitor of cap-dependent translation. Using a mutagenesis approach, we identify a novel regulatory motif of four amino acids (RAIP) which lies within the first 24 residues of 4E-BP1 and which is necessary for efficient phosphorylation of 4E-BP1. This motif is conserved among sequences of 4E-BP1 and 4E-BP2 but is absent from 4E-BP3. Insulin increased the phosphorylation of 4E-BP3 but not sufficiently to cause its release from eIF4E. However, a chimeric protein that was generated by replacing the N terminus of 4E-BP3 with the N-terminal sequence of 4E-BP1 (containing this RAIP motif) underwent a higher degree of phosphorylation and was released from eIF4E. This suggests that the N-terminal sequence of 4E-BP1 is required for optimal regulation of 4E-BPs by insulin.  相似文献   

14.
Meiotic maturation of mammalian oocytes (transition from prophase I to metaphase II) is accompanied by complex changes in the protein phosphorylation pattern. At least two major protein kinases are involved in these events; namely, cdc2 kinase and mitogen-activated protein (MAP) kinase, because the inhibition of these kinases arrest mammalian oocytes in the germinal vesicle (GV) stage. We show that during meiotic maturation of bovine oocytes, the translation initiation factor, eIF4E (the cap binding protein), gradually becomes phosphorylated. This substantial phosphorylation begins at the time of germinal vesicle breakdown (GVBD) and continues to the metaphase II stage. The onset of eIF4E phosphorylation occurs in parallel with a significant increase in overall protein synthesis. However, although eIF4E is nearly fully phosphorylated in metaphase II oocytes, protein synthesis reaches only basal levels at this stage, similar to that of prophase I oocytes, in which the factor remains unphosphorylated. We present evidence that a specific repressor of eIF4E, the binding protein 4E-BP1, is present and could be involved in preventing eIF4E function in metaphase II stage oocytes. Recently, two protein kinases, called Mnk1 and Mnk2, have been identified in somatic cells as eIF4E kinases, both of which are substrates of MAP kinase in vivo. In bovine oocytes, a specific inhibitor of cdk kinases, butyrolactone I, arrests oocytes in GV stage and prevents activation of both cdc2 and MAP kinase. Under these conditions, the phosphorylation of eIF4E is also blocked, and its function in initiation of translation is impaired. In contrast, PD 098059, a specific inhibitor of the MAP kinase activation pathway, which inhibits the MAP kinase kinase, called MEK function, leads only to a postponed GVBD, and a delay in MAP kinase and eIF4E phosphorylation. These results indicate that in bovine oocytes, 1) MAP kinase activation is only partially dependent on MEK kinase, 2) MAP kinase is involved in eIF4E phosphorylation, and 3) the abundance of fully phosphorylated eIF4E does not necessarily directly stimulate protein synthesis. A possible MEK kinase-independent pathway of MAP kinase phosphorylation and the role of 4E-BP1 in repressing translation in metaphase II oocytes are discussed.  相似文献   

15.
Haspin-catalyzed histone H3 threonine 3 (Thr3) phosphorylation facilitates chromosomal passenger complex (CPC) docking at centromeres, regulating indirectly chromosome behavior during somatic mitosis. It is not fully known about the expression and function of H3 with phosphorylated Thr3 (H3T3-P) during meiosis in oocytes. In this study, we investigated the expression and sub-cellular distribution of H3T3-P, as well as its function in mouse oocytes during meiotic division. Western blot analysis revealed that H3T3-P expression was only detected after germinal vesicle breakdown (GVBD), and gradually increased to peak level at metaphase I (MI), but sharply decreased at metaphase II (MII). Immunofluorescence showed H3T3-P was only brightly labeled on chromosomes after GVBD, with relatively high concentration across the whole chromosome axis from pro-metaphase I (pro-MI) to MI. Specially, H3T3-P distribution was exclusively limited to the local space between sister centromeres at MII stage. Haspin inhibitor, 5-iodotubercidin (5-ITu), dose- and time-dependently blocked H3T3-P expression in mouse oocytes. H3T3-P inhibition delayed the resumption of meiosis (GVBD) and chromatin condensation. Moreover, the loss of H3T3-P speeded up the meiotic transition to MII of pro-MI oocytes in spite of the presence of non-aligned chromosomes, even reversed MI-arrest induced with Nocodazole. The inhibition of H3T3-P expression distinguishably damaged MAD1 recruitment on centromeres, which indicates the spindle assembly checkpoint was impaired in function, logically explaining the premature onset of anaphase I. Therefore, Haspin-catalyzed histone H3 phosphorylation is essential for chromatin condensation and the following timely transition from meiosis I to meiosis II in mouse oocytes during meiotic division.  相似文献   

16.
We report that late in a simian virus 40 (SV40) infection in CV-1 cells, there are significant decreases in phosphorylations of two mammalian target of rapamycin (mTOR) signaling effectors, the eIF4E-binding protein (4E-BP1) and p70 S6 kinase (p70S6K). The hypophosphorylation of 4E-BP1 results in 4E-BP1 binding to eIF4E, leading to the inhibition of cap-dependent translation. The dephosphorylation of 4E-BP1 is specifically mediated by SV40 small t antigen and requires the protein phosphatase 2A binding domain but not an active DnaJ domain. Serum-starved primary African green monkey kidney (AGMK) cells also showed decreased phosphorylations of mTOR, 4E-BP1, and p70S6K at late times in infection (48 h postinfection [hpi]). However, at earlier times (12 and 24 hpi), in AGMK cells, phosphorylated p70S6K was moderately increased, correlating with a significant increase in phosphorylation of the p70S6K substrate, ribosomal protein S6. Hyperphosphorylation of 4E-BP1 at early times could not be determined, since hyperphosphorylated 4E-BP1 was present in mock-infected AGMK cells. Elevated levels of phosphorylated eIF4G, a third mTOR effector, were detected in both CV-1 and AGMK cells at all times after infection, indicating that eIF4G phosphorylation was induced throughout the infection and unaffected by small t antigen. The data suggest that during SV40 lytic infection in monkey cells, the phosphorylations of p70S6K, S6, and eIF4G are increased early in the infection (12 and 24 hpi), but late in the infection (48 hpi), the phosphorylations of mTOR, p70S6K, and 4E-BP1 are dramatically decreased by a mechanism mediated, at least in part, by small t antigen.  相似文献   

17.
Eukaryotic initiation factor (eIF) 4E-binding protein 1 (4E-BP1) is a translational repressor that is characterized by its capacity to bind specifically to eIF4E and inhibit its interaction with eIF4G. Phosphorylation of 4E-BP1 regulates eIF4E availability, and therefore, cap-dependent translation, in cell stress. This study reports a physiological study of 4E-BP1 regulation by phosphorylation using control conditions and a stress-induced translational repression condition, ischemia-reperfusion (IR) stress, in brain tissue. In control conditions, 4E-BP1 was found in four phosphorylation states that were detected by two-dimensional gel electrophoresis and Western blotting, which corresponded to Thr69-phosphorylated alone, Thr69- and Thr36/Thr45-phosphorylated, all these plus Ser64 phosphorylation, and dephosphorylation of the sites analyzed. In control or IR conditions, no Thr36/Thr45 phosphorylation alone was detected without Thr69 phosphorylation, and neither was Ser64 phosphorylation without Thr36/Thr45/Thr69 phosphorylation detected. Ischemic stress induced 4E-BP1 dephosphorylation at Thr69, Thr36/Thr45, and Ser64 residues, with 4E-BP1 remaining phosphorylated at Thr69 alone or dephosphorylated. In the subsequent reperfusion, 4E-BP1 phosphorylation was induced at Thr36/Thr45 and Ser64, in addition to Thr69. Changes in 4E-BP1 phosphorylation after IR were according to those found for Akt and mammalian target of rapamycin (mTOR) kinases. These results demonstrate a new hierarchical phosphorylation for 4E-BP1 regulation in which Thr69 is phosphorylated first followed by Thr36/Thr45 phosphorylation, and Ser64 is phosphorylated last. Thr69 phosphorylation alone allows binding to eIF4E, and subsequent Thr36/Thr45 phosphorylation was sufficient to dissociate 4E-BP1 from eIF4E, which led to eIF4E-4G interaction. These data help to elucidate the physiological role of 4E-BP1 phosphorylation in controlling protein synthesis.  相似文献   

18.
BACKGROUND: The mammalian target of rapamycin (mTOR) controls the translation machinery via activation of S6 kinases 1 and 2 (S6K1/2) and inhibition of the eukaryotic initiation factor 4E (eIF4E) binding proteins 1, 2, and 3 (4E-BP1/2/3). S6K1 and 4E-BP1 are regulated by nutrient-sensing and mitogen-activated pathways. The molecular basis of mTOR regulation of S6K1 and 4E-BP1 remains controversial. RESULTS: We have identified a conserved TOR signaling (TOS) motif in the N terminus of all known S6 kinases and in the C terminus of the 4E-BPs that is crucial for phosphorylation and regulation S6K1 and 4E-BP1 activities. Deletion or mutations within the TOS motif significantly inhibit S6K1 activation and the phosphorylation of its hydrophobic motif, Thr389. In addition, this sequence is required to suppress an inhibitory activity mediated by the S6K1 C terminus. The TOS motif is essential for S6K1 activation by mTOR, as mutations in this motif mimic the effect of rapamycin on S6K1 phosphorylation, and render S6K1 insensitive to changes in amino acids. Furthermore, only overexpression of S6K1 with an intact TOS motif prevents 4E-BP1 phosphorylation by a common mTOR-regulated modulator of S6K1 and 4E-BP1. CONCLUSIONS: S6K1 and 4E-BP1 contain a conserved five amino acid sequence (TOS motif) that is crucial for their regulation by the mTOR pathway. mTOR seems to regulate S6K1 by two distinct mechanisms. The TOS motif appears to function as a docking site for either mTOR itself or a common upstream activator of S6K1 and 4E-BP1.  相似文献   

19.
The eIF4E-binding proteins (4E-BPs) interact with translation initiation factor 4E to inhibit translation. Their binding to eIF4E is reversed by phosphorylation of several key Ser/Thr residues. In Drosophila, S6 kinase (dS6K) and a single 4E-BP (d4E-BP) are phosphorylated via the insulin and target of rapamycin (TOR) signaling pathways. Although S6K phosphorylation is independent of phosphoinositide 3-OH kinase (PI3K) and serine/threonine protein kinase Akt, that of 4E-BP is dependent on PI3K and Akt. This difference prompted us to examine the regulation of d4E-BP in greater detail. Analysis of d4E-BP phosphorylation using site-directed mutagenesis and isoelectric focusing-sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that the regulatory interplay between Thr37 and Thr46 of d4E-BP is conserved in flies and that phosphorylation of Thr46 is the major phosphorylation event that regulates d4E-BP activity. We used RNA interference (RNAi) to target components of the PI3K, Akt, and TOR pathways. RNAi experiments directed at components of the insulin and TOR signaling cascades show that d4E-BP is phosphorylated in a PI3K- and Akt-dependent manner. Surprisingly, RNAi of dAkt also affected insulin-stimulated phosphorylation of dS6K, indicating that dAkt may also play a role in dS6K phosphorylation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号