首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 135 毫秒
1.
2.
During the period of adult emergence in the Eri silkworm, Samia cynthia ricini, the corpora allata (CA) are apparently reactivated in females, but not males. This creates a significant sexual dimorphism in juvenile hormone (JH) synthesis by CA. To determine the underlying molecular mechanisms in this process, we cloned cDNAs of two enzymes involved in the JH synthesis pathway: 3-hydroxy-3-methylglutaryl CoA reductase (HMGR) and juvenile hormone acid methyl transferase (JHAMT). Both Samcri-HMGR and -JHAMT mRNAs were detected in CA almost exclusively. However, their expression patterns were different from each other. During the period of adult emergence, Samcri-HMGR was expressed in CA at a constantly high level suggesting it plays little role for the regulation of JH synthesis. In contrast, the patterns of both Samcri-JHAMT mRNA level and enzyme activity were closely correlated with the patterns of JH synthesis, CA reactivation, and sexual dimorphism of JH synthesis. In addition, JHAMT mRNA levels were paralleled JH synthesis in the fifth-instar larvae of S. cynthia ricini and the pharate adults of the silkworm Bombyx mori. We infer from these results that JHAMT is a key regulatory enzyme for JH synthesis in the Eri silkworm.  相似文献   

3.
4.
Juvenile hormones (JHs) are synthesized by the corpora allata (CA) and play a key role in insect development. A decrease of JH titer in the last instar larvae allows pupation and metamorphosis to proceed. As the anti-metamorphic role of JH comes to an end, the CA of the late pupa (or pharate adult) becomes again “competent” to synthesize JH, which would play an essential role orchestrating reproductive maturation. In the present study, we provide evidence that ecdysis triggering hormone (ETH), a key endocrine factor involved in ecdysis control, acts as an allatotropic regulator of JH biosynthesis, controlling the exact timing of CA activation in the pharate adult mosquito. Analysis of the expression of Aedes aegypti ETH receptors (AeaETHRs) revealed that they are present in the CA and the corpora cardiaca (CC), and their expression peaks 4 h before eclosion. In vitro stimulation of the pupal CA glands with ETH resulted in an increase in JH synthesis. Consistent with this finding, silencing AeaETHRs by RNA interference (RNAi) in pupa resulted in reduced JH synthesis by the CA of one day-old adult females. Stimulation with ETH resulted in increases in the activity of juvenile hormone acid methyltransferase (JHAMT), a key JH biosynthetic enzyme. Furthermore, inhibition of IP3R-operated mobilization of endoplasmic reticulum Ca2+ stores prevented the ETH-dependent increases of JH biosynthesis and JHAMT activity. All together these findings provide compelling evidence that ETH acts as a regulatory peptide that ensures proper developmental timing of JH synthesis in pharate adult mosquitoes.  相似文献   

5.
6.
7.
Development and activity of the corpora allata (CA) were investigated in adult female Blattella germanica and Supella longipalpa. These two cockroach species differ in their reproductive modes, with relatively uninterrupted cycles of oocyte development in S. longipalpa and discrete patterns of oocyte development which are interrupted by pregnancy in B. germanica. During ovarian cycles in both cockroach species, elevated rates of juvenile hormone (JH) synthesis closely coincide with synchronous volumetric growth of the CA. Declines in CA activity before ovulation coincide with synchronous declines in the size of CA cells. However, in adult females of both species the number of CA cells remains relatively constant. Quantitative studies in normal and ovariectomized adult B. germanica females show that the volumetric changes in CA cells are paced and synchronized by ovarian factors. Without the ovaries, the enlargement of CA cells in newly eclosed females is slower and relatively asynchronous. Without an ootheca in ovariectomized females, the volume of CA cells fails to decline synchronously, resulting in variable but high rates of JH synthesis. The precise relationship between volume of CA cells and-JH biosynthesis in oviparous and viviparous cockroaches suggests that in cockroaches, cell volume, and not CA cell number, is a better predictor of JH biosynthetic activity. © 1994 Wiley-Liss, Inc.  相似文献   

8.
Changes in activity of the corpora allata (CA) during larval-pupal-adult development of the tobacco hornworm Manduca sexta were studied by transplantation assays, measurements of in vitro juvenile hormone (JH) and JH acid synthesis, and determination of JH acid methyltransferase (JHAMT) and 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase activities. The data from these assays demonstrate that the CA cease to secrete JH by day 4 of the last larval instar (wandering stage). With regard to JH synthesis, they remain inactive throughout the prepupal, pupal, and most of the pharate adult periods. CA of females, but not of males, resume JH synthesis shortly before eclosion. The biochemical basis of the inactivation process is the loss of JHAMT activity. However, prepupal CA produce JH acids, as shown by enzyme and in vitro assays. Pupal and pharate adult CA do not synthesize JH acids although levels of HMG-CoA reductase activity seem to remain relatively high. Radiolabeled JH was recovered from hemolymph of allatectomized prepupae that had been injected with radiolabeled JH acid. These results provide further evidence that certain peripheral tissues (eg, imaginal discs) convert JH acid secreted by the prepupal CA to JH and, thus, that JH acid is a prohormone in the prepupal period. The CA change from hormone secretion to prohormone secretion during larval-prepupal transformation, a unique functional alteration in an endocrine gland.  相似文献   

9.
The corpora allata (CA) of both intact and ovariectomized Blattella germanica adult females exhibited a high degree of bilateral symmetry in the rate of juvenile hormone (JH) biosynthesis, the mean size of CA cells, and gland volume (81.3%, 98.3%, and 100% respectively with less than a twofold difference between the two glands in CA pairs). This permitted us to split each CA pair randomly, measure JH biosynthesis in one gland, and dissociate the other gland into a cell suspension in which the size of CA cells was measured. In ovariectomized females, changes in CA volume and the spontaneous and farnesoic acid (FA)-stimulated rates of JH biosynthesis, measured from the same glands, were well correlated (r = 0.78, for both correlations). Similarly, the mean volume of CA cells in one gland increased in relation to increases in both the spontaneous and FA-stimulated rates of JH biosynthesis by the contralateral member of the pair (r = 0.83 and r = 0.91, respectively). Concurrent changes in CA cell size and activity suggest that in the CA of B. germanica cellular growth and degradation are involved in the regulation of JH biosynthesis.  相似文献   

10.
Juvenile hormone III (JH) is synthesized by the corpora allata (CA) and plays a key role in mosquito development and reproduction. JH titer decreases in the last instar larvae allowing pupation and metamorphosis to progress. As the anti-metamorphic role of JH comes to an end, the CA of the late pupa (or pharate adult) becomes again “competent” to synthesize JH, which plays an essential role orchestrating reproductive maturation. 20-hydroxyecdysone (20E) prepares the pupae for ecdysis, and would be an ideal candidate to direct a developmental program in the CA of the pharate adult mosquito. In this study, we provide evidence that 20E acts as an age-linked hormonal signal, directing CA activation in the mosquito pupae. Stimulation of the inactive brain-corpora allata-corpora cardiaca complex (Br-CA-CC) of the early pupa (24 h before adult eclosion or −24 h) in vitro with 20E resulted in a remarkable increase in JH biosynthesis, as well as increase in the activity of juvenile hormone acid methyltransferase (JHAMT). Addition of methyl farnesoate but not farnesoic acid also stimulated JH synthesis by the Br-CA-CC of the −24 h pupae, proving that epoxidase activity is present, but not JHAMT activity. Separation of the CA-CC complex from the brain (denervation) in the −24 h pupae also activated JH synthesis. Our results suggest that an increase in 20E titer might override an inhibitory effect of the brain on JH synthesis, phenocopying denervation. All together these findings provide compelling evidence that 20E acts as a developmental signal that ensures proper reactivation of JH synthesis in the mosquito pupae.  相似文献   

11.
12.
We investigated the effect of fifteen 1,5-disubstituted imidazoles (1,5-dis) on juvenile hormone III (JH III) and methyl farnesoate (MF) biosynthesis by the corpora allata (CA) of the mosquito Aedes aegypti in vitro. Four compounds (TH-35, TH-83, TH-62 and TH-28) significantly decreased JH biosynthesis in the CA dissected from 3-day old sugar-fed females. The decrease of JH synthesis was not always associated with increased MF. TH-30 and TH-83 increased MF levels, while TH-85 and TH-61 significantly decreased MF levels. Five compounds (TH-26, TH-60, TH-83, TH-35 and TH-30) significantly inhibited JH biosynthesis in the CA dissected from females 15 h after a blood meal. Four 1,5-dis (TH-30, TH-26, TH-28 and TH-66) caused MF increases in CA from blood-fed females. 1,5-Disubstituted imidazoles had higher inhibitory activity on JH synthesis when substituted at position 5 by a 3-benzyloxyphenyl group and at position 1 by a benzyl group (such as TH-35). Inhibition of JH and MF biosynthesis by TH-35 was age-dependent and influenced by nutritional status; inhibition differed when evaluated in the CA dissected from sugar-fed females at different days after emergence and in the CA dissected from females at different hours after a blood meal. Inhibition was always higher when the CA was more active. The addition of TH-35 significantly reduced the stimulatory effect of Aedes-allatotropin and farnesoic acid on JH synthesis. This is the first report of an inhibitory effect of 1,5-disubstituted imidazoles on JH synthesis in Diptera.  相似文献   

13.
14.
The occurrence of a peak of juvenile hormone (JH) during the prepupal period has been noted in several lepidopterans. In Manduca sexta and Hyalophora cecropia this peak is known to prevent the precocious onset of adult differentiation in imaginal tissues. However, it has previously been observed in our laboratory that corpora allata (CA) of this age are incapable of making JH owing to a lack of the terminal synthetic enzyme, juvenile hormone acid methyltransferase (JHAMT). Since the CA are required for normal pupation, it is likely that JH acid is the product released by the prepupal CA. Therefore, we analyzed whether JH acid treatment would prevent precocious adultoid differentiation in allatectomized M. sexta larvae. JH acid injections were found to be as effective as JH in normalizing pupation, and acted in a time- and dose-dependent manner. This finding led to a question of whether injected or endogenous JH acid could be methylated to JH. Homogenates of several tissues from prepupae were assayed for the presence of JHAMT. Of the tissues assayed, only imaginal discs possessed significant levels of the enzyme. These results support our previously proposed mechanism for production of the prepupal JH peak in M. sexta.  相似文献   

15.
Teneral reserves are utilized to initiate previtellogenic ovarian development in mosquitoes. Females having emerged with low teneral reserves have reduced juvenile hormone (JH) synthesis and previtellogenic development. We investigated what role JH, allatotropin (AT) and other head-factors play in the regulation of previtellogenic ovarian development and adult survivorship. Factors from the head are essential for corpora allata (CA) activation and reproductive maturation. We have shown that decapitation of females within 9-12h after adult ecdysis prevented normal development of the previtellogenic follicles; however maximum previtellogenic ovarian development could be induced in decapitated females by topically applying a JH analog. When females were decapitated 12 or more hours after emergence nutritional resources had been committed to ovarian development and survivorship was significantly reduced. To study if allatotropin levels correlated with teneral reserves, we measured AT titers in the heads of two adult phenotypes (large and small females) generated by raising larvae under different nutritional diets. In large mosquitoes AT levels increased to a maximum of 45 fmol in day 4; in contrast, the levels of allatotropin in the heads of small mosquitoes remained below 9 fmol during the 7 days evaluated. These results suggest that only when nutrients are appropriate, factors released from the brain induce the CA to synthesize enough JH to activate reproductive maturation.  相似文献   

16.
Juvenile Hormone (JH) has a prominent role in the regulation of insect development. Much less is known about its roles in adults, although functions in reproductive maturation have been described. In adult females, JH has been shown to regulate egg maturation and mating. To examine a role for JH in male reproductive behavior we created males with reduced levels of Juvenile Hormone Acid O-Methyl Transferase (JHAMT) and tested them for courtship. JHAMT regulates the last step of JH biosynthesis in the Corpora Allata (CA), the organ of JH synthesis. Males with reduced levels of JHAMT showed a reduction in courtship that could be rescued by application of Methoprene, a JH analog, shortly before the courtship assays were performed. In agreement with this, reducing JHAMT conditionally in mature flies led to courtship defects that were rescuable by Methoprene. The same result was also observed when the CA were conditionally ablated by the expression of a cellular toxin. Our findings demonstrate that JH plays an important physiological role in the regulation of male mating behavior.  相似文献   

17.
Juvenile hormone (JH) acid methyltransferase (JHAMT) is a rate-limiting enzyme that converts JH acids or inactive precursors of JHs to active JHs at the final step of JH biosynthesis in insects and thus presents an excellent target for the development of insect growth regulators or insecticides. However, the three-dimensional properties and catalytic mechanism of this enzyme are not known. Herein, we report the crystal structure of the JHAMT apoenzyme, the three-dimensional holoprotein in binary complex with its cofactor S-adenosyl-l-homocysteine, and the ternary complex with S-adenosyl-l-homocysteine and its substrate methyl farnesoate. These structures reveal the ultrafine definition of the binding patterns for JHAMT with its substrate/cofactor. Comparative structural analyses led to novel findings concerning the structural specificity of the progressive conformational changes required for binding interactions that are induced in the presence of cofactor and substrate. Importantly, structural and biochemical analyses enabled identification of one strictly conserved catalytic Gln/His pair within JHAMTs required for catalysis and further provide a molecular basis for substrate recognition and the catalytic mechanism of JHAMTs. These findings lay the foundation for the mechanistic understanding of JH biosynthesis by JHAMTs and provide a rational framework for the discovery and development of specific JHAMT inhibitors as insect growth regulators or insecticides.  相似文献   

18.
In this study, we report the cDNA cloning and sequence determination of Hh‐JHAMT from the seabuckthorn carpenterworm, Holcocerus hippophaecolus, by using rapid amplification of cDNA ends. The full‐length cDNA of putative Hh‐JHAMT was 1659 bp and contained a highly conserved Motif I, SAM motif I, which showed that Hh‐JHAMT like enzyme was a member of SAM‐dependent MTases. Moreover, putative Hh‐JHAMT had high homology to the other members of the JHAMT peptide family: 59% with Spodoptera litura, 54% with Bombyx mori and 54% with Helicoverpa armigera. Multiple alignments and phylogenetic analysis revealed that Hh‐JHAMT was closely related to JHAMT from Lepidoptera. Real‐time quantitative PCR experiments showed that Hh‐JHAMT mRNA expression was highest in the corpora allata (CA) complex, and was also detected at high levels during earlier larval and adult stages. The JHAMT mRNA level gradually declined during larval development, and the lowest amount of expression was observed in the pupal stage, while it increased to a higher level during adult stages. The pattern of Hh‐JHAMT expression was similar to the mode of JH biosynthesis. These results provided information concerning molecular characteristics of Hh‐JHAMT, whose expression profile suggests that the Hh‐JHAMT gene might be changed with larval development, metamorphosis and adult reproduction of the H. hippophaecolus.  相似文献   

19.
The effect of exogenous 20‐hydroxyecdysone (20E) and juvenile hormone (JH) on the activities of the tyrosine decarboxylase (TDC), the first enzyme in octopamine (OA) synthesis, has been studied in young females of wild type D. virilis and D. melanogaster under normal and heat stress (38°C) conditions. Flies fed 20E expressed increased TDC activity in both species. JH application decreased TDC activity in both species. A rise in JH and 20E levels did not prevent a TDC response to heat stress, but changed the response intensity. A long‐term increase in JH titre had no effect on the activity of main OA catabolyzing enzyme, arylalkylamine N‐acetyltransferase, in females of both species. A possible mechanism of regulation of OA levels by 20E and JH in Drosophila females is discussed. © 2009 Wiley Periodicals, Inc.  相似文献   

20.
The genome of Tribolium castaneum encodes two allatostatin [AS type B; W(X)6Wamide and AS type C; PISCF‐OH] and one allatotropin (AT) precursor, but no AS type A (FGLamide) (Tribolium Genome Sequencing Consortium, 2008: Nature 452:949–955). Here we studied the activity (in vitro) of peptides derived from these precursors on the synthesis/release of juvenile hormone (JH) III. The corpora cardiaca‐corpora allata (CC‐CA) complexes of adult females of another tenebrionid beetle, the mealworm Tenebrio molitor, were used. Incubating the gland complexes in a medium containing Trica‐AS B3 peptide, we showed that the peptide has allatostatic function in T. molitor. The activity of the type C AS depended on the age of the test animals and their intrinsic rate of JH III biosynthesis. The Trica‐AS C peptide inhibited the JH release from CA of 3‐day‐old females with a high intrinsic rate of JH synthesis, but activated JH release from the CA of 7‐day‐old females with a lower intrinsic rate of JH production. The allatotropin peptide (Trica‐AT) also activated the JH release from the CA of 7‐day‐old females in a dose‐dependent and reversible manner. Unexpectedly, a type A AS derived from the precursor of the American cockroach Periplaneta americana (Peram‐AS A2b) inhibited the JH release from the CA of younger and older females in the concentration range of 10?8 to 10?4 M, and the effects were fully reversible in the absence of peptide. These data suggest a complex role of allatoactive neuropeptides in the regulation of JH III biosynthesis in beetles. © 2010 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号