首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Garden asparagus (Asparagus officinalis L.) has homochlamydeous flowers. Like Liliaceae plants such as lily and tulip, the perianths of asparagus have two whorls of almost identical petaloid organs, called tepals. Floral structures of these homochlamydeous flowers could be explained by a modified ABC model, in which the expression of the class B genes has expanded to whorl 1, so that the organs of whorls 1 and 2 have the same petaloid structure. In this study, we isolated and characterized two GLOBOSA-like genes (AOGLOA and AOGLOB), one of class B gene, from asparagus. Southern blot showed that AOGLOA and AOGLOB genes are single copy genes. Northern blot analysis indicated that these genes were specifically expressed in male and female flowers. In situ hybridization showed that the expression of AOGLOA and AOGLOB genes is confined to whorls 2 and 3 (inner tepal and stamen) and not detected in whorl 1 (outer tepal). The other asparagus class B gene, AODEF, was also not expressed in outer tepal [Park et al. (2003) Plant Mol Biol. 51: 867]. These results indicate that the class B genes are not involved in the outer tepal development in asparagus, not supporting the modified ABC model in asparagus.  相似文献   

2.
Asparagus officinalis is a dioecious plant. The flowers start to develop as hermaphrodites and later become unisexual. In female flowers the stamens degenerate, while in male flowers the ovary stops growing without degenerating. We have examined young asparagus flowers using SEM and optical microscopy in order to determine the exact moment of transition from hermaphroditic to unisexual development. We defined 13 stages of development, starting from flower primordia up to completely mature flowers and labelled them with numbers from -6 to 7. The first five stages are fully hermaphroditic: a difference between sexes becomes visible at stage — 1 when the style begins to develop in female flowers. Degeneration of stamens in female flowers starts somewhat later. At the stage of transition, some differences between sexes also appear in the bidimensional polypeptide pattern of flowers. RNase activity shows a distinct peak at this stage (in female flowers only), probably related to stamen degeneration.  相似文献   

3.
We analyzed cell division patterns during the differentiation of unisexual flowers of the dioecious plant Silene latifolia using in situ hybridization with histone H4 and cyclin A1 genes. The gene expression patterns indicated that the activation of cell divisions in whorls 3 and 4 was reversed in young male and female flower buds. During maturation of flower buds, a remarkable reduction in cell division activity occurred in the male gynoecium primordium and female stamen primordia. Our analyses showed that differential activation and reduction of cell division strongly correlated with sex-specific promotion and cessation in the sex differentiation of unisexual flowers.  相似文献   

4.
MADS box genes are implicated in different steps of plant development. Some of them are expressed in vegetative organs. Most of them, however, are expressed in flower tissues and are involved in different phases of flower development. Here we describe the isolation and characterization of an Asparagus officinalis MADS box gene, AOM1. The deduced AOM1 protein shows the highest degree of similarity with FBP2 of Petunia hybrida and AGL9 (SEP3), AGL2 (SEP1) and AGL4 (SEP2) of Arabidopsis thaliana. In situ hybridization analyses, however, show that the expression profile of AOM1 is different from that of these genes: AOM1 is expressed not only in flower organs but also in inflorescence and flower meristems. These data indicate a possible function of AOM1 during flower development as well as in earlier stages of the flowering process. Asparagus officinalis is a dioecious species which bears male and female flowers on different individuals. AOM1, which is expressed very early during the process of flowering and has a similar expression profile in male and female flowers, does not seems to be involved in asparagus sex differentiation. Received: 3 July 2000 / Revision accepted: 4 August 2000  相似文献   

5.
6.
During the first stages of development, flowers of most dioecious species are hermaphroditic, with their transition to unisexual flowers being the result of the developmental arrest of one set of reproductive organs. In this work, we describe the development of male and female flowers of the dioecious wild grape species Vitis vinifera ssp. silvestris through scanning electron microscopy analysis and cytological observations, focusing our attention on the transition from bisexual to unisexual development. We divide floral development of the wild grape into eight stages. Differences between male and female flowers appear first at stage 6, when the style and stigma start to differentiate in female but not in male flowers. Cytological analysis of the slowly growing abortive pistil of male flowers shows that megagametophyte formation is, surprisingly, not inhibited. Instead of pistil abortion in the male flower, sexual determination is accomplished through programmed death of external nucellus cells and some layers of integumentary cells. Sterility of male structures in female flowers follows a different pattern, with microspore abnormalities evident from the time of their release from the tetrad. Sterile microspores and pollen grains in female flowers display an abnormal round shape, lacking colpi and possessing uniformly thickened cell walls that impede germination.  相似文献   

7.

Background and Aims

Within Chenopodioideae, Atripliceae have been distinguished by two bracteoles enveloping the female flowers/fruits, whereas in other tribes flowers are described as ebracteolate with persistent perianth. Molecular phylogenetic hypotheses suggest ‘bracteoles’ to be homoplastic. The origin of the bracteoles was explained by successive inflorescence reductions. Flower reduction was used to explain sex determination. Therefore, floral ontogeny was studied to evaluate the nature of the bracteoles and sex determination in Atripliceae.

Methods

Inflorescences of species of Atriplex, Chenopodium, Dysphania and Spinacia oleracea were investigated using light microscopy and scanning electron microscopy.

Key Results

The main axis of the inflorescence is indeterminate with elementary dichasia as lateral units. Flowers develop centripetally, with first the formation of a perianth primordium either from a ring primordium or from five individual tepal primordia fusing post-genitally. Subsequently, five stamen primordia originate, followed by the formation of an annular ovary primordium surrounding a central single ovule. Flowers are either initially hermaphroditic remaining bisexual and/or becoming functionally unisexual at later stages, or initially unisexual. In the studied species of Atriplex, female flowers are strictly female, except in A. hortensis. In Spinacia, female and male flowers are unisexual at all developmental stages. Female flowers of Atriplex and Spinacia are protected by two accrescent fused tepal lobes, whereas the other perianth members are absent.

Conclusions

In Atriplex and Spinacia modified structures around female flowers are not bracteoles, but two opposite accrescent tepal lobes, parts of a perianth persistent on the fruit. Flowers can achieve sexuality through many different combinations; they are initially hermaphroditic, subsequently developing into bisexual or functionally unisexual flowers, with the exception of Spinacia and strictly female flowers in Atriplex, which are unisexual from the earliest developmental stages. There may be a relationship between the formation of an annular perianth primordium and flexibility in floral sex determination.  相似文献   

8.
在近期缅甸北部的植物考察中,一种菌类寄生植物矮生喜荫草(Sciaphila nana Blume)被发现和确认。矮生喜荫草代表缅甸被子植物一新记录科,霉草科植物。矮生喜荫草主要特征为花单性同株、雄花内轮花被片顶端具有柄的门把状物、花被片6、3个雄蕊、花药4室。  相似文献   

9.
该研究以雌雄异株植物石刁柏为材料,利用基因组消减杂交技术对石刁柏雌雄核基因组中的性别差异核质体DNA(nuclear plastid DNA,NUPTs)进行了分离和分析。结果表明:(1)通过构建消减杂交文库共获得了52个雄性偏向序列,序列长度分布在63~297 bp之间,其中有19个差异序列属于叶绿体来源序列(命名为Ao1~Ao19),且这些序列与石刁柏叶绿体基因组的相似性均大于84%,Ao19与石刁柏叶绿体基因组相似性为100%。(2)利用基因组半定量PCR对19个NUPTs序列的性别差异分析表明,有4条序列为稳定的雄性偏向NUPTs序列,分别为Ao1、Ao3、Ao10和Ao18。(3)序列比对表明,转移到核基因组的NUPTs主要来源于叶绿体基因组的反向重复区(包含IRa和IRb区),说明石刁柏叶绿体基因组重复区序列更容易向核基因组进行转移形成雄性偏向的NUPTs序列。  相似文献   

10.

Premise

Characterizing the developmental processes in the transition from hermaphroditism to unisexuality is crucial for understanding floral evolution. Amaranthus palmeri, one of the most devastating weeds in the United States, is an emerging model system for studying a dioecious breeding system and understanding the biological traits of this invasive weed. The objectives of this study were to characterize phases of flower development in A. palmeri and compare organogenesis of flower development in female and male plants.

Methods

Flower buds from male and female plants were dissected for light microscopy. Segments of male and female inflorescences at different stages of development were cut longitudinally and visualized using scanning electron microscopy.

Results

Pistillate flowers have two to three styles, one ovary with one ovule, and five obtuse tepals. Staminate flowers have five stamens with five acute tepals. Floral development was classified into 10 stages. The distinction between the two flower types became apparent at stage four by the formation of stamen primordia in staminate flowers, which developed female and male reproductive organs initially, as contrasted to pistillate flowers, which produced carpel primordia only. In staminate flowers, the putative carpel primordia changed little in size and remained undeveloped.

Conclusions

Timing of inappropriate organ termination varies across the two sexes in A. palmeri. Our study suggests that the evolution of A. palmeri from a cosexual ancestral state to complete dioecy is still in progress since males exhibited transient hermaphroditism and females produced strictly pistillate flowers.  相似文献   

11.

Background  

Evolution of unisexual flowers entails one of the most extreme changes in plant development. Cultivated spinach, Spinacia oleracea L., is uniquely suited for the study of unisexual flower development as it is dioecious and it achieves unisexually by the absence of organ development, rather than by organ abortion or suppression. Male staminate flowers lack fourth whorl primordia and female pistillate flowers lack third whorl primordia. Based on theoretical considerations, early inflorescence or floral organ identity genes would likely be directly involved in sex-determination in those species in which organ initiation rather than organ maturation is regulated. In this study, we tested the hypothesis that sexual dimorphism occurs through the regulation of B class floral organ gene expression by experimentally knocking down gene expression by viral induced gene silencing.  相似文献   

12.
Asparagus officinalis L. is a dioecious plant. A region called the M-locus located on a pair of homomorphic sex chromosomes controls the sexual dimorphism in asparagus. The aim of this work was to clone the region determining sex in asparagus from its position in the genome. The structure of the region encompassing M should be investigated and compared to the sex-determining regions in other dioecious model species. To establish an improved basis for physical mapping, a high-resolution genetic map was enriched with AFLP markers closely linked to the target locus by carrying out a bulked segregant analysis. By screening a BAC library with AFLP- and STS-markers followed by chromosome walking, a physical map with eight contigs could be established. However, the gaps between the contigs could not be closed due to a plethora of repetitive elements. Surprisingly, two of the contigs on one side of the M-locus did not overlap although they have been established with two markers, which mapped in a distance as low as 0.25 cM flanking the sex locus. Thus, the clustering of the markers indicates a reduced recombination frequency within the M-region. On the opposite side of the M-locus, a contig was mapped in a distance of 0.38 cM. Four closely linked BAC clones were partially sequenced and 64 putative ORFs were identified. Interestingly, only 25% of the ORFs showed sequence similarity to known proteins and ESTs. In addition, an accumulation of repetitive sequences and a low gene density was revealed in the sex-determining region of asparagus. Molecular cytogenetic and sequence analysis of BACs flanking the M-locus indicate that the BACs contain highly repetitive sequences that localize to centromeric and pericentromeric locations on all asparagus chromosomes, which hindered the localization of the M-locus to the single pair of sex chromosomes. We speculate that dioecious Silene, papaya and Asparagus species may represent three stages in the evolution of XX, XY sex determination systems. Given that asparagus still rarely produces hermaphroditic flowers and has homomorphic sex chromosomes, this species may be an ideal system to further investigates early sex chromosome evolution and the origins of dioecy.  相似文献   

13.
Bai SL  Peng YB  Cui JX  Gu HT  Xu LY  Li YQ  Xu ZH  Bai SN 《Planta》2004,220(2):230-240
To understand the regulatory mechanisms governing unisexual flower development in cucumber, we conducted a systematic morphogenetic analysis of male and female flower development, examined the dynamic changes in expression of the C-class floral organ identity gene CUM1, and assessed the extent of DNA damage in inappropriate carpels of male flowers. Accordingly, based on the occurrence of distinct morphological events, we divided the floral development into 12 stages ranging from floral meristem initiation to anthesis. As a result of our investigation we found that the arrest of stamen development in female flowers, which occurs just after the differentiation between the anther and filament, is mainly restricted to the primordial anther, and that it is coincident with down-regulation of CUM1 gene expression. In contrast, the arrest of carpel development in the male flowers occurs prior to the differentiation between the stigma and ovary, given that no indication of ovary differentiation was observed even though CUM1 gene expression remained detectable throughout the development of the stigma-like structures. Although the male and female reproductive organs have distinctive characteristics in terms of organ differentiation, there are two common features regarding organ arrest. The first is that the arrest of the inappropriate organ does not affect the entirety of the organ uniformly but occurs only in portions of the organs. The second feature is that all the arrested portions in both reproductive organs are spore-bearing parts.Abbreviations SEM Scanning electron microscopy - TEM Transmission electron microscopy - TUNEL TdT-mediated dUTP nick-end labeling  相似文献   

14.
A new genus of fossil angiosperms (Spanomera gen. nov.) is established for flowers from two localities in the mid-Cretaceous Potomac Group of Maryland, eastern North America. The type species, Spanomera mauldinensis sp. nov., from the early Cenomanian Elk Neck beds, has inflorescence units with terminal pistillate, and lateral staminate flowers. The organization of inflorescences and flowers is opposite and decussate. Staminate flowers typically have five tepals: two lateral, one posterior, and two in the anterior position. Each tepal is opposed to a stamen with a short filament, dorsifixed anther, and two pairs of pollen sacs. Stamens contain pollen comparable to the dispersed pollen species Striatopollis paraneus (Norris) Singh. Pistillate flowers have two lateral tepals and two anterior-posterior tepals that are opposed to two carpels. Carpels are slightly fused basally along their ventral margins and are semicircular in outline with a long, decurrent, papillate ventral stigma. Frequently this stigmatic surface has abundant attached pollen of the Striatopollis paraneus type. Spanomera marylandensis sp. nov., from the late Albian Patapsco Formation, is similar to S. mauldinensis but is known only from isolated flowers and floral parts. Staminate flowers have four stamens with dorsifixed anthers and each is opposed to a tepal. Stamens contain pollen comparable to the dispersed pollen species Striatopollis vermimurus (Brenner) Srivastava. Carpels have pollen of S. vermimurus on the stigma. Spanomera provides further evidence of unisexual but probably insect-pollinated flowers among mid-Cretaceous, early nonmagnoliid (“higher”) dicotyledons, and is interpreted as closely related to extant Buxaceae. Characters that Spanomera shares with other taxa suggest that the Buxaceae themselves may be closely related to Myrothamnaceae and other “lower” Hamamelididae.  相似文献   

15.
Asparagus kiusianus is a disease-resistant dioecious plant species and a wild relative of garden asparagus (Asparagus officinalis). To enhance A. kiusianus genomic resources, advance plant science, and facilitate asparagus breeding, we determined the genome sequences of the male and female lines of A. kiusianus. Genome sequence reads obtained with a linked-read technology were assembled into four haplotype-phased contig sequences (∼1.6 Gb each) for the male and female lines. The contig sequences were aligned onto the chromosome sequences of garden asparagus to construct pseudomolecule sequences. Approximately 55,000 potential protein-encoding genes were predicted in each genome assembly, and ∼70% of the genome sequence was annotated as repetitive. Comparative analysis of the genomes of the two species revealed structural and sequence variants between the two species as well as between the male and female lines of each species. Genes with high sequence similarity with the male-specific sex determinant gene in A. officinalis, MSE1/AoMYB35/AspTDF1, were presented in the genomes of the male line but absent from the female genome assemblies. Overall, the genome sequence assemblies, gene sequences, and structural and sequence variants determined in this study will reveal the genetic mechanisms underlying sexual differentiation in plants, and will accelerate disease-resistance breeding in garden asparagus.  相似文献   

16.
Woonyoungia septentrionalis (Dandy) Law is aceae. The floral morphology and structure of the species a dioecious species with unisexual flowers in Magnoliare conspicuously different from other species and are important to the study of floral phylogeny in this family. The floral anatomy and ontogeny were investigated to evaluate the systematic position of W. septentrionalis, using scanning electron microscopy and light microscopy. All of the floral organs are initiated acropetally and spirally. The carpels are of conduplicated type without the differentiation of stigma and style. The degenerated stamens in the female flowers have the same structures as the normal stamens at the earlier developmental stages, but they do not undergo successive development and eventually degenerate. The male floral apex was observed to have the remnants of carpels in a few investigated samples. As the bisexual flower features could be traced both in the male and female flowers in W. septentrionalis, it suggests that the flower sex in Magnoliaceae tends toward unisexual. As well as the unisexual flowers, the reduced tepals and carpels and concrescence of carpels conform to the specialized tendency in Magnoliaceae, which confirms the derived position of W. septentrionalis in this family. As the initiation pattern of floral parts of W. septentrionalis is very similar to other species in this family, it needs further investigation and especially comparison with species in Kmeria to evaluate the separation of Woonyoungia.  相似文献   

17.
In this paper we study merosity in the genus Urospatha within the framework of a resolved phylogeny of the Araceae. We analyse how a transition from dimerous or tetramerous merosity to pentamerous or hexamerous merosity can occur developmentally in the Lasioideae. In Urospatha, initiation of floral primordia along the inflorescence is acropetal, while development of flowers is basipetal. This indicates the presence of two distinct phases in the development of the Urospatha inflorescence. The first phase corresponds to initiation of flowers and establishment of the phyllotactic pattern, and the second phase to differentiation of floral organs. Urospatha is characterized by the presence of trimerous, tetramerous, pentamerous and rarely hexamerous flowers. In all types of flowers, the stamens are closely associated and opposite to the tepals. Pentamerous flowers are formed by addition of a sector comprising a stamen and tepal. Likewise, in the case of hexamerous flowers, two sectors are added. In the Lasioideae, the increase in the number of tepals and stamens is linked with two developmental processes that have appeared independently in the subfamily: (1) addition of one or two stamen?Cpetal sectors (Anaphyllopsis and Urospatha), and (2) independent increase in the number of tepals and stamens on whorls, more or less organized and inserted in alternate position (Dracontium). Tetramerous whorls as they occur in basal Lasioideae would be homologous to two dimerous whorls from an evolutionary point of view.  相似文献   

18.
Summary Male and female flowers of the dioecious perennial herb Rubus chamaemorus L. are similar in general appearance. However, female flowers are somewhat smaller, do not produce any pollen, and contain very small amounts of nectar. Syrphids and bumblebees, which are important pollinators of R. chamaemorus, showed a strong preference for male flowers. Male flowers were also less often rejected by flower visitors than were female flowers, and two different groups of syrphid species stayed longer in male than in female flowers. These observations suggest that female flowers of R. chamaemorus attract pollinators by deceit.Hand-pollination experiments indicated that pollen availability limited seed production of R. chamaemorus in female dominated habitats but not in areas with an equal floral sex ratio. We suggest that the relative importance of factors limiting female reproductive success is not constant, but is influenced by the floral sex ratio of the population. This should apply also to other dioecious species that show variable sex ratios on either a local or regional scale.  相似文献   

19.
In higher eudicotyledonous angiosperms the floral organs are typically arranged in four different whorls, containing sepals, petals, stamens and carpels. According to the ABC model, the identity of these organs is specified by floral homeotic genes of class A, A+B, B+C and C, respectively. In contrast to the sepal and petal whorls of eudicots, the perianths of many plants from the Liliaceae family have two outer whorls of almost identical petaloid organs, called tepals. To explain the Liliaceae flower morphology, van Tunen et al. (1993) proposed a modified ABC model, exemplified with tulip. According to this model, class B genes are not only expressed in whorls 2 and 3, but also in whorl 1. Thus the organs of both whorls 1 and 2 express class A plus class B genes and, therefore, get the same petaloid identity. To test this modified ABC model we have cloned and characterized putative class B genes from tulip. Two DEF- and one GLO-like gene were identified, named TGDEFA, TGDEFB and TGGLO. Northern hybridization analysis showed that all of these genes are expressed in whorls 1, 2 and 3 (outer and inner tepals and stamens), thus corroborating the modified ABC model. In addition, these experiments demonstrated that TGGLO is also weakly expressed in carpels, leaves, stems and bracts. Gel retardation assays revealed that TGGLO alone binds to DNA as a homodimer. In contrast, TGDEFA and TGDEFB cannot homodimerize, but make heterodimers with PI. Homodimerization of GLO-like protein has also been reported for lily, suggesting that this phenomenon is conserved within Liliaceae plants or even monocot species.these authors contributed equally to this work  相似文献   

20.
为探究蜡梅花被片表层蜡质的微形态结构特征和差异性,采用扫描电子显微镜对蜡梅和山蜡梅的花被片进行观察。结果表明:蜡梅花被片表层无明显蜡质覆盖物,细胞排列平滑,内表层有加厚透明状覆盖物; 山蜡梅花被片表层有厚蜡质覆盖物和表皮毛; 山蜡梅、蜡梅花被片均无气孔。以上独特的结构形态对于蜡梅花开放于寒冷季节,应对外界环境胁迫可能有一定的保护作用和生态意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号