首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several studies have suggested that the majority of iron (Fe) and zinc (Zn) in wheat grains are associated with phytate, but a nuanced approach to unravel important tissue‐level variation in element speciation within the grain is lacking. Here, we present spatially resolved Fe‐speciation data obtained directly from different grain tissues using the newly developed synchrotron‐based technique of X‐ray absorption near‐edge spectroscopy imaging, coupling this with high‐definition μ‐X‐ray fluorescence microscopy to map the co‐localization of essential elements. In the aleurone, phosphorus (P) is co‐localized with Fe and Zn, and X‐ray absorption near‐edge structure imaging confirmed that Fe is chelated by phytate in this tissue layer. In the crease tissues, Zn is also positively related to P distribution, albeit less so than in the aleurone. Speciation analysis suggests that Fe is bound to nicotianamine rather than phytate in the nucellar projection, and that more complex Fe structures may also be present. In the embryo, high Zn concentrations are present in the root and shoot primordium, co‐occurring with sulfur and presumably bound to thiol groups. Overall, Fe is mainly concentrated in the scutellum and co‐localized with P. This high resolution imaging and speciation analysis reveals the complexity of the physiological processes responsible for element accumulation and bioaccessibility.  相似文献   

2.
The transgenic indica rice lines of IR68144 and BR29, developed using endosperm-specific promoters were analyzed for their iron, zinc and β-carotene content in the endosperm. Biochemical analysis clearly revealed the presence of higher accumulation of iron, zinc and β-carotene in transgenic rice grains in comparison with control. Prussian blue staining reaction evidenced the presence of iron in the endosperm cells of transgenic rice grains in comparison with control where iron is restricted only to aleurone and embryo. The rice grain structure of IR64, IR72, IR68144, Swarna, BRRI Dhan 29 (BR29), BR28, Taipai 309 (T309) and New Plant Type-3 (NPT3) indicated that the number of aleurone layers, size of the embryo and size of the caryopsis determines the quantity of important micronutrients (iron, zinc) in the grains. Biochemical analysis revealed that iron and zinc content drastically varies in polished and unpolished rice and among the varieties examined. During the polishing process almost entire aleurone and most part of the embryo is removed which are the main storehouse for major micronutrients. It is estimated that more than 70% of micronutrients are lost during polishing process.  相似文献   

3.
Rice, a staple food for more than half of the world population, is an important target for iron and zinc biofortification. Current strategies mainly focus on the expression of genes for efficient uptake, long‐distance transport and storage. Targeting intracellular iron mobilization to increase grain iron levels has not been reported. Vacuole is an important cell compartment for iron storage and the NATURAL RESISTANCE ASSOCIATED MACROPHAGE PROTEIN (NRAMP) family of transporters export iron from vacuoles to cytosol when needed. We developed transgenic Nipponbare rice lines expressing AtNRAMP3 under the control of the UBIQUITIN or rice embryo/aleurone‐specific 18‐kDa Oleosin (Ole18) promoter together with NICOTIANAMINE SYNTHASE (AtNAS1) and FERRITIN (PvFER), or expressing only AtNRAMP3 and PvFER together. Iron and zinc were increased close to recommended levels in polished grains of the transformed lines, with maximum levels when AtNRAMP3, AtNAS1 and PvFER were expressed together (12.67 μg/g DW iron and 45.60 μg/g DW zinc in polished grains of line NFON16). Similar high iron and zinc levels were obtained in transgenic Indica IR64 lines expressing the AtNRAMP3, AtNAS1 and PvFER cassette (13.65 μg/g DW iron and 48.18 μg/g DW zinc in polished grains of line IR64_1), equalling more than 90% of the recommended iron increase in rice endosperm. Our results demonstrate that targeting intracellular iron stores in combination with iron and zinc transport and endosperm storage is an effective strategy for iron biofortification. The increases achieved in polished IR64 grains are of dietary relevance for human health and a valuable nutrition trait for breeding programmes.  相似文献   

4.
Iron K-edge X-ray absorption spectra were obtained on the protein B2, the small subunit of ribonucleotide reductase from Escherichia coli. Protein B2 contains a binuclear iron center with many properties in common with the iron center of oxidized hemerythrins. The extended X-ray absorption fine structure (EXAFS) measurements on protein B2 were analyzed and compared with published data for oxyhemerythrin. In protein B2 there are, in the first coordination shell around each Fe atom, five or six oxygen or nitrogen atoms that are directly coordinated ligands. In oxyhemerythrin there are six ligands to each iron. As in oxyhemerythrin, one of the ligands in the first shell of protein B2 is at a short distance, about 1.78 A, confirming the existence of a mu-oxo bridge. The other atoms of the first shell are at an average distance of 2.04 A, which is about 0.1 A shorter than in oxyhemerythrin. In protein B2 the Fe-Fe distance is in the range 3.26-3.48 A, and the bridging angle falls between 130 and 150 degrees. On the basis of these data, there is no direct evidence for any histidine ligands in protein B2, but the noise level leaves way for the possibility of a maximum of about three histidines for each Fe pair. The X-ray absorption spectrum of a hydroxyurea-treated sample was not significantly different from that of the native protein B2, which implies that no significant alteration in the structure of the iron site occurs upon destruction of the tyrosine radical.  相似文献   

5.

Main conclusion

Wheat and its related genotypes show distinct distribution patterns for mineral nutrients in maternal and filial tissues in grains. X-ray-based imaging techniques are very informative to identify genotypes with contrasting tissue-specific localization of different elements. This can help in the selection of suitable genotypes for nutritional improvement of food grain crops.

Abstract

Understanding mineral localization in cereal grains is important for their nutritional improvement. Spatial distribution of mineral nutrients (Mg, P, S, K, Ca, Fe, Zn, Mn and Cu) was investigated between and within the maternal and filial tissues in grains of two wheat cultivars (Triticum aestivum Cv. WH291 and WL711), a landrace (T. aestivum L. IITR26) and a related wild species Aegilops kotschyi, using micro-proton-induced X-ray emission (µ-PIXE) and micro-X-ray fluorescence (µ-XRF). Aleurone and scutellum were major storage tissues for macro (P, K, Ca and Mg) as well as micro (Fe, Zn, Cu and Mn) nutrients. Distinct elemental distribution patterns were observed in each of the four genotypes. A. kotschyi, the wild relative of wheat and the landrace, T. aestivum L. IITR26, accumulated more Zn and Fe in scutellum and aleurone than the cultivated wheat varieties, WH291 and WL711. The landrace IITR26, accumulated far more S in grains, Mn in scutellum, aleurone and embryo region, Ca and Cu in aleurone and scutellum, and Mg, K and P in scutellum than the other genotypes. Unlike wheat, lower Mn and higher Fe, Cu and Zn concentrations were noticed in the pigment strand of A. kotschyi. Multivariate statistical analysis, performed on mineral distribution in major grain tissues (aleurone, scutellum, endosperm and embryo region) resolved the four genotypes into distinct clusters.  相似文献   

6.
The ubiquitous, multi-enzyme, nucleotide excision repair (NER) pathway is responsible for correcting a wide range of chemically and structurally distinct DNA lesions in the eukaryotic genome. Human XPA, a 31 kDa, zinc-associated protein, is thought to play a major NER role in the recognition of damaged DNA and the recruitment of other proteins, including RPA, ERCC1, and TFIIH, to repair the damage. Sequence analyses and genetic evidence suggest that zinc is associated with a C4-type motif, C105-X2-C108-X17-C126-X2-C129, located in the minimal DNA binding region of XPA (M98-F219). The zinc-associated motif is essential for damaged DNA recognition. Extended X-ray absorption fine structure (EXAFS) spectra collected on the zinc associated minimal DNA-binding domain of XPA (ZnXPA-MBD) show directly, for the first time, that the zinc is coordinated to the sulfur atoms of four cysteine residues with an average Zn-S bond length of 2.34+/-0.01 A. XPA-MBD was also expressed in minimal medium supplemented with cobalt nitrate to yield a blue-colored protein that was primarily (>95%) cobalt associated (CoXPA-MBD). EXAFS spectra collected on CoXPA-MBD show that the cobalt is also coordinated to the sulfur atoms of four cysteine residues with an average Co-S bond length of 2.33+/-0.02 A.  相似文献   

7.
Late maturity alpha-amylase (LMA) in wheat is a genetic defect that may result in the accumulation of unacceptable levels of high pI alpha-amylase in grain in the absence of germination or weather damage. During germination, gibberellin produced in the embryo triggers expression of alpha-Amy genes, the synthesis of alpha-amylase and, subsequently, cell death in the aleurone. LMA also involves the aleurone and whilst LMA appears to be independent of the embryo there is nevertheless some evidence that gibberellin is involved. The aim of this investigation was to determine whether the increase in alpha-amylase activity in LMA-prone genotypes, like alpha-amylase synthesis by aleurone cells in germinating or GA-challenged grains, is followed by aleurone cell death. Programmed cell death was seen in aleurone layers from developing, ripe and germinated grains using confocal microscopy and fluorescent probes specific for dead or living cells. Small pockets of dying cells were observed distributed at random throughout the aleurone of ripening LMA-affected grains and by harvest-ripeness these cells were clearly dead. The first appearance of dying cells, 35 d post-anthesis, coincided with the later part of the 'window of sensitivity' in grain development in LMA-prone wheat cultivars. No dead or dying cells were present in ripening or fully ripe grains of control cultivars. In germinating grains, dying cells were observed in the aleurone adjacent to the scutellum and, as germination progressed, the number of dead cells increased and the affected area extended further towards the distal end of the grain. Aside from the obvious differences in spatial distribution, dying cells in 20-24 h germinated grains were similar to dying cells in developing LMA-affected grains, consistent with previous measurements of alpha-amylase activity. The increase in high pI alpha-amylase activity in developing grains of LMA-prone cultivars, like alpha-amylase synthesis in germinating grains, is associated with cell death, providing further evidence for the involvement of gibberellin in the LMA response.  相似文献   

8.
Biofortification of wheat for higher grain iron and zinc is the most feasible and cost-effective approach for alleviating micronutrient deficiency. The non-progenitor donor Aegilops species had 2–3 times higher grain iron and zinc content than the wheat cultivars, whereas the wheat–Aegilops substitution lines mostly of group 2 and 7 chromosomes had intermediate levels of grain micronutrients. The non-progenitor Aegilops species also had the highest iron content and intermediate-to-highest zinc content in straw, lower leaves, and flag leaves at the pre-anthesis, grain-filling, and maturity growth stages. The micronutrients accumulation status is followed by wheat–Aegilops substitution lines and is the least in wheat cultivars indicating that the donor Aegilops species and their substituted chromosomes possess genes for higher iron and zinc uptake and mobilization. The grain iron content was highly positively correlated with iron content in the plant tissues. Most of the lines had much higher iron and zinc content in all tissues during grain-filling period indicating higher iron and zinc uptake from soil during this stage. Although iron and zinc contents are nearly similar in grains, there was much less zinc content in the plant tissues of all the lines suggesting that the Triticeae species take up less zinc which is mobilized to grains more effectively than iron.  相似文献   

9.
小麦籽粒不同部位的矿质元素组成与其含量差异   总被引:4,自引:0,他引:4  
采用X-射线能谱仪测定非糯与糯性等品种小麦籽粒不同部位的矿质元素组成(H和He元素除外)和含量的结果表明:小麦籽粒中除含有大量C、O外,皮层富含K、P、se,其次是Cl、Si、S、Mg和Ca等;糊粉层富含P、K和Mg,其次是Si、Se、S、Ca、Cl和Fe等;胚乳层中相应的矿质元素含量比皮层和糊粉层低。不同品种籽粒各部位的矿质元素含量存在遗传性差异。据此认为籽粒磨成粉时应减少糊粉层的损失,以提高面粉的矿质价值。  相似文献   

10.
In addition to the starchy endosperm, a specialized tissue accumulating storage material, the endosperm of wheat grain, comprises the aleurone layer and the transfer cells next to the crease. The transfer cells, located at the ventral region of the grain, are involved in nutrient transfer from the maternal tissues to the developing endosperm. Immunolabeling techniques, Raman spectroscopy, and synchrotron infrared micro-spectroscopy were used to study the chemistry of the transfer cell walls during wheat grain development. The kinetic depositions of the main cell wall polysaccharides of wheat grain endosperm, arabinoxylan, and (1–3)(1–4)-β-glucan in transfer cell walls were different from kinetics previously observed in the aleurone cell walls. While (1–3)(1–4)-β-glucan appeared first in the aleurone cell walls at 90°D, arabinoxylan predominated in the transfer cell walls from 90 to 445°D. Both aleurone and transfer cell walls were enriched in (1–3)(1–4)-β-glucan at the mature stage of wheat grain development. Arabinoxylan was more substituted in the transfer cell walls than in the aleurone walls. However, arabinoxylan was more feruloylated in the aleurone than in the transfer cell walls, whatever the stage of grain development. In the transfer cells, the ferulic acid was less abundant in the outer periclinal walls while para-coumarate was absent. Possible implications of such differences are discussed.  相似文献   

11.
Research into the composition of cereal grains is motivated by increased interest in food quality. Here multi-element analysis is conducted on leaves and grain of the Bala x Azucena rice mapping population grown in the field. Quantitative trait loci (QTLs) for the concentration of 17 elements were detected, revealing 36 QTLs for leaves and 41 for grains. Epistasis was detected for most elements. There was very little correlation between leaf and grain element concentrations. For selenium, lead, phosphorus and magnesium QTLs were detected in the same location for both tissues. In general, there were no major QTL clusters, suggesting separate regulation of each element. QTLs for grain iron, zinc, molybdenum and selenium are potential targets for marker assisted selection to improve seed nutritional quality. An epistatic interaction for grain arsenic also looks promising to decrease the concentration of this carcinogenic element.  相似文献   

12.
An imaging secondary ion mass spectrometry system has been developed that allows the distribution of elements or ions to be superimposed on an image of the plant cell or tissue generated by ion-induced secondary electrons. This system has been evaluated by analysing the aleurone and sub-aleurone cells of mature wheat grain, showing high spatial resolution (100-200 nm) images of O-, PO(2)-, Mg+, Ca+, Na+ and K+ within the phytate granules of the aleurone, with CN- being diagnostic for proteins and C(2)- being diagnostic for starch in the starchy endosperm cells. This system should provide improved localization of elements in a range of other plant systems.  相似文献   

13.

Background and Aims

Micronutrient malnutrition, particularly zinc and iron deficiency, afflicts over three billion people worldwide due to low dietary intake. In the current study, wild emmer wheat (Triticum turgidum ssp. dicoccoides), the progenitor of domesticated wheat, was tested for (1) genetic diversity in grain nutrient concentrations, (2) associations among grain nutrients and their relationships with plant productivity, and (3) the association of grain nutrients with the eco-geographical origin of wild emmer accessions.

Methods

A total of 154 genotypes, including wild emmer accessions from across the Near Eastern Fertile Crescent and diverse wheat cultivars, were characterized in this 2-year field study for grain protein, micronutrient (zinc, iron, copper and manganese) and macronutrient (calcium, magnesium, potassium, phosphorus and sulphur) concentrations.

Key Results

Wide genetic diversity was found among the wild emmer accessions for all grain nutrients. The concentrations of grain zinc, iron and protein in wild accessions were about two-fold greater than in the domesticated genotypes. Concentrations of these compounds were positively correlated with one another, with no clear association with plant productivity, suggesting that all three nutrients can be improved concurrently with no yield penalty. A subset of 12 populations revealed significant genetic variation between and within populations for all minerals. Association between soil characteristics at the site of collection and grain nutrient concentrations showed negative associations between soil clay content and grain protein and between soil-extractable zinc and grain zinc, the latter suggesting that the greatest potential for grain nutrient minerals lies in populations from micronutrient-deficient soils.

Conclusions

Wild emmer wheat germplasm offers unique opportunities to exploit favourable alleles for grain nutrient properties that were excluded from the domesticated wheat gene pool.  相似文献   

14.
Measurements were made of the extended x-ray absorption fine structure (EXAFS) of the iron site in photosynthetic reaction centers from the bacterium Rhodopseudomonas sphaeroides. Forms with two quinones, two quinones with added o-phenanthroline, and one quinone were studied. Only the two forms containing two quinones maintained their integrity and were analyzed. The spectra show directly that the added o-phenanthroline does not chelate the iron atom. Further analysis indicates that the iron is octahedrally coordinated by nitrogen and/or oxygen atoms located at various distances, with the average value of about 2.14 A. The analysis suggests that most of the ligands are nitrogens and that three of the nitrogen ligands belong to histidine rings. This interpretation accounts for several unusual features of the EXAFS spectrum. We speculate that the quinones are bound to the histidine rings in some manner. Qualitative features of the absorption edge spectra also are discussed and are related to the Fe-ligand distance.  相似文献   

15.
16.
Early cellularization of the free-nuclear endosperm and subsequent differentation of the aleurone cells in the ventral region of the developing wheatgrain (Triticumaestivum L. cv. Heron) were examined using both light and electron microscopy. In ovules harvested 1 d after anthesis, irregular wall ingroths typical of transfer cells protrude into the multinucleate cytoplasm. Initital cellularization occurs by a process of free wall formation in much the same fashion as in the dorsal region of the grain. In places, sheets of endoplasmic reticulum and dictyosomes appear to be closely associated with the growing wall. Like the wall ingrowths noted earlier, the freely growing walls are intensely fluorescent after staining with aniline blue. Initiatal cellularization is complete 2–3 days after anthesis. Unlike the first-formed cells in the dorsal region of the developing grain, those in the ventral region are not meristematic. These amitotic cells become the groove aleurone cells which at an early stage of development are set apart from the rest of the endosperm by their irregularly thickened walls and dense cytoplasm. Autofluorescence is first apparent in the walls of those cells next to the degenerating nucellus. In contrast to the aleurone cells in the dorsal region of the grain, at maturity only the inner wall layer of each of the groove aleurone cells remains autofluorescent. The aleurone grains are highly variable in appearance and contain no Type II inclusions.  相似文献   

17.
A pig model was used to investigate the difference in metabolic response of plasma between whole grain wheat and wheat aleurone. Six pigs were fed in a cross-over design iso dietary fiber (DF) breads prepared from whole grain wheat and wheat aleurone and with a wash-out diet based on bread produced from refined wheat flour made iso-DF by adding Vitacel. The pigs were fitted with catheters in the mesenteric artery and the portal vein, which allow studying the enrichment of nutrient in plasma after passing the gastrointestinal tract. LC–MS measurements showed the presence of oxygenated fatty acids (oxylipins) in the plasma of pigs and with discrimination between whole grain wheat versus wheat aleurone and refined flour. The oxylipin-marker of this difference was identified as a mixture of 13-hydroxy-9,11-octadecadienoic and 9-hydroxy-10,12-octadecadienoic acid (13-HODE and 9-HODE). Similar oxylipins were also found in the flour and the bread consumed by pigs. Since the germ is part of the whole grain flour, the germ is most likely responsible for the elevated level of oxylipins in plasma after whole grain wheat consumption. This finding may also point towards bioactive compounds, which can be used as novel lipid candidate biomarkers of whole grain intake versus aleurone. Principal component analysis discriminated between venous and arterial plasma samples. We identified glycine conjugated and unconjugated bile acids to be responsible for this discrimination. Moreover we discovered the existence of unsaturated bile acid in the plasma of pigs.  相似文献   

18.
Analyses for phytate by an indirect precipitation method and for the minerals calcium (Ca), zinc (Zn), iron (Fe), copper (Cu), and manganese (Mn) by atomic absorption spectrophotometry were carried out on 100 foods available in New Zealand. Foods with 1% phytate (dry weight basis) included untoasted muesli, rolled oats, wheat germ, wheat bran, soybean, and some soy products. Most breads contained between 0.35 and 0.60% phytate; legumes on average had 0.62% phytate, as did snack bars. There was a wide variation in Ca and Zn contents: There was a tenfold variation in Ca content among the legume products, whereas there was a seventyfold variation in Zn content among the cereals. The phytate: Zn molar ratio, which is presumed to indicate the biovailability of Zn, was above 20∶1 for two-thirds of the cereals and almost all of the snack bars; it was above 15∶1 for one-third of the breads, almost all of the legumes, and half of the legume products. These high phytate: Zn molar ratios, as well as some Ca: phytate molar ratios above 6∶1, indicate that there might be a reduced biovailability of Zn in many of the foods analyzed in this study.  相似文献   

19.
20.
Amorphous powders and films of some metal hyaluronate complexes of general composition (C14H20O11N)2 x xH2O (M = Mn2+, Ni2+ and Co2+) have been prepared at pH 5.5-6.0. The coordination geometry around the metal ions has been analyzed by EXAFS (extended X-ray absorption fine structure) and FTIR spectroscopy. Mn2+, Ni2+, and Co2+ ions are coordinated to carboxylate oxygen atoms and water molecules. The process of local geometry formation round the metal ions is sensitive to sample preparation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号