共查询到20条相似文献,搜索用时 15 毫秒
1.
Substrate determinants for rabbit and chicken skeletal muscle myosin light chain kinases were examined with synthetic peptides. Both skeletal muscle myosin light chain kinases had similar phosphorylation kinetics with synthetic peptide substrates. Average kinetic constants for skeletal muscle myosin light chain heptadecapeptide, (formula; see text) where S(P) is phosphoserine, were Km, 2.3 microM and Vmax, 0.9 mumol/min/mg of enzyme. Km values were 122 and 162 microM for skeletal muscle peptides containing A-A for basic residues at positions 2-3 and 6-7, respectively. Average kinetic constants for smooth muscle myosin light chain peptide, (formula; see text), were Km, 1.4 microM and Vmax 27 mumol/min/mg of enzyme. Average Km values for the smooth muscle peptide, residues 11-23, were 10 microM which increased 6- and 11-fold with substitutions of alanine at residues 12 and 13, respectively. Vmax values decreased and Km values increased markedly by substitution of residue 16 with glutamate in the 11-23 smooth muscle tridecapeptide. Basic residues located 3 and 6-7 residues toward the NH2 terminus from phosphoserine in smooth muscle myosin light chain and 6-8 and 10-11 residues toward the NH2 terminus from phosphoserine in skeletal muscle myosin light chain appear to be important substrate determinants for skeletal muscle myosin light chain kinases. These properties are different from myosin light chain kinase from smooth muscle. 相似文献
2.
Thiol-disulfide exchange reactions between myosin and 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) lead to the formation of 5-thio-2-nitrobenzoic acid (TNB)-mixed disulfides as well as to protein disulfide bonds. After incubation with DTNB, myosin was treated with an excess of N-ethylmaleimide (NEM) before electrophoretic analysis of the protein subunits in sodium dodecyl sulfate (SDS) without prior reduction by dithiothreitol (DTT). Without NEM treatment, thiol-disulfide rearrangement reactions occurred in the presence of SDS between the residual free thiols and DTNB. In the absence of divalent metal ions at 25 degrees C, DTNB was shown to induce an intrachain disulfide bond between Cys-127 and Cys-156 of the RLC. This intrachain cross-link restricts partially the unfolding of the RLC in SDS and can be followed as a faster migrating species, RLC'. Densitometric evaluation of the electrophoretic gel patterns indicated that the stoichiometric relation of the light chains (including RLC and RLC') remained unchanged. The two cysteine residues of the fast migrating RLC' were no more available for reaction with [14C]NEM, but upon reduction with DTT, the electrophoretic mobility of the RLC' reverted to that of unmodified RLC and of the RLC modified with two TNB groups. Ca2+ or Mg2+ was able to prevent this disulfide formation in the RLC of myosin by 50% at a free ion concentration of 1.1 X 10(-8) and 4.0 X 10(-7) M, respectively, at 25 degrees C and pH 7.6. Intrachain disulfide formation of RLC never occurred in myosin at 0 degree C.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
3.
Kinetic effects of myosin regulatory light chain phosphorylation on skeletal muscle contraction
下载免费PDF全文

Kinetic analysis of contracting fast and slow rabbit muscle fibers in the presence of the tension inhibitor 2,3-butanedione monoxime suggests that regulatory light chain (RLC) phosphorylation up-regulates the flux of weakly attached cross-bridges entering the contractile cycle by increasing the actin-catalyzed release of phosphate from myosin. This step appears to be separate from earlier Ca(2+) regulated steps. Small step-stretches of single skinned fibers were used to study the effect of phosphorylation on fiber mechanics. Subdivision of the resultant tension transients into the Huxley-Simmons phases 1, 2(fast), 2(slow), 3, and 4 reveals that phosphorylation reduces the normalized amplitude of the delayed rise in tension (stretch activation response) by decreasing the amplitudes of phase 3 and, to a lesser extent, phase 2(slow). In slow fibers, the RLC P1 isoform phosphorylates at least 4-fold faster than the P2 isoform, complicating the role of RLC phosphorylation in heart and slow muscle. We discuss the functional relevance of the regulation of stretch activation by RLC phosphorylation for cardiac and other oscillating muscles and speculate how the interaction of the two heads of myosin could account for the inverse effect of Ca(2+) levels on isometric tension and rate of force redevelopment (k(TR)). 相似文献
4.
5.
Phosphorylation of myosin light chain by a protease-activated kinase from rabbit skeletal muscle 总被引:1,自引:0,他引:1
A protease-activated protein kinase that phosphorylates the P light chain of myosin in the absence of Ca2+ and calmodulin has been isolated from rabbit skeletal muscle. The enzyme has properties similar to protease-activated kinase I from rabbit reticulocytes [S. M. Tahara and J. A. Traugh (1981) J. Biol. Chem. 256, 11588-11564], which has been shown to phosphorylate the P light chain of myosin [P. T. Tuazon, J. T. Stull, and J. A. Traugh (1982) Biochem. Biophys. Res. Commun. 108, 910-917]. The protease-activated kinase from skeletal muscle has been partially purified by chromatography on DEAE-cellulose, phosphocellulose and hydroxyapatite. The enzyme phosphorylates histone as well as the P light chain of myosin following activation by proteolysis. Stoichiometric phosphorylation of myosin light chain was observed with the protease-activated kinase and myosin light chain kinase. The sites phosphorylated by the protease-activated kinase and myosin light chain kinase were examined by two-dimensional peptide mapping following chymotryptic digestion. The phosphopeptides observed with the protease-activated kinase were different from those obtained with the Ca2+-dependent myosin light chain kinase, indicating that the two enzymes phosphorylated different sites on the P light chain of skeletal muscle myosin. When actomyosin from skeletal muscle was examined as substrate, the P light chain was phosphorylated following activation of the protease-activated kinase by limited proteolysis. 相似文献
6.
Ca2+/calmodulin-dependent myosin light chain kinase phosphorylates the regulatory light chain of myosin. Rabbit skeletal muscle myosin light chain kinase also catalyzes a Ca2+/calmodulin-dependent autophosphorylation with a rapid rate of incorporation of 1 mol of 32P/mol of kinase and a slower rate of incorporation up to 1.52 mol of 32P/mol. Autophosphorylation was inhibited by a peptide substrate that has a low Km value for myosin light chain kinase. Autophosphorylation at both rates was concentration-independent, indicating an intramolecular mechanism. There were no significant changes in catalytic properties toward light chain and MgATP substrates or in calmodulin activation properties upon autophosphorylation. After digestion with V8 protease, phosphopeptides were purified and sequenced. Two phosphorylation sites were identified, Ser 160 and Ser 234, with the former associated with the rapid rate of phosphorylation. Both sites are located amino terminal of the catalytic domain. These results indicate that the extended "tail" region of the enzyme can fold into the active site of the kinase. 相似文献
7.
Orientation of the N-terminal lobe of the myosin regulatory light chain in skeletal muscle fibers 总被引:1,自引:0,他引:1
The orientation of the N-terminal lobe of the myosin regulatory light chain (RLC) in demembranated fibers of rabbit psoas muscle was determined by polarized fluorescence. The native RLC was replaced by a smooth muscle RLC with a bifunctional rhodamine probe attached to its A, B, C, or D helix. Fiber fluorescence data were interpreted using the crystal structure of the head domain of chicken skeletal myosin in the nucleotide-free state. The peak angle between the lever axis of the myosin head and the fiber or actin filament axis was 100—110° in relaxation, isometric contraction, and rigor. In each state the hook helix was at an angle of ~40° to the lever/filament plane. The in situ orientation of the RLC D and E helices, and by implication of its N- and C-lobes, was similar in smooth and skeletal RLC isoforms. The angle between these two RLC lobes in rigor fibers was different from that in the crystal structure. These results extend previous crystallographic evidence for bending between the two lobes of the RLC to actin-attached myosin heads in muscle fibers, and suggest that such bending may have functional significance in contraction and regulation of vertebrate striated muscle. 相似文献
8.
9.
Danuta Szczesna Jiaju Zhao Michelle Jones Gang Zhi James Stull James D Potter 《Journal of applied physiology》2002,92(4):1661-1670
The role of phosphorylation of the myosin regulatory light chains (RLC) is well established in smooth muscle contraction, but in striated (skeletal and cardiac) muscle its role is still controversial. We have studied the effects of RLC phosphorylation in reconstituted myosin and in skinned skeletal muscle fibers where Ca2+ sensitivity and the kinetics of steady-state force development were measured. Skeletal muscle myosin reconstituted with phosphorylated RLC produced a much higher Ca2+ sensitivity of thin filament-regulated ATPase activity than nonphosphorylated RLC (change in -log of the Ca2+ concentration producing half-maximal activation = approximately 0.25). The same was true for the Ca2+ sensitivity of force in skinned skeletal muscle fibers, which increased on reconstitution of the fibers with the phosphorylated RLC. In addition, we have shown that the level of endogenous RLC phosphorylation is a crucial determinant of the Ca2+ sensitivity of force development. Studies of the effects of RLC phosphorylation on the kinetics of force activation with the caged Ca2+, DM-nitrophen, showed a slight increase in the rates of force development with low statistical significance. However, an increase from 69 to 84% of the initial steady-state force was observed when nonphosphorylated RLC-reconstituted fibers were subsequently phosphorylated with exogenous myosin light chain kinase. In conclusion, our results suggest that, although Ca2+ binding to the troponin-tropomyosin complex is the primary regulator of skeletal muscle contraction, RLC play an important modulatory role in this process. 相似文献
10.
Josephson MP Sikkink LA Penheiter AR Burghardt TP Ajtai K 《Biochemical and biophysical research communications》2011,416(3-4):367-371
Specific phosphorylation of the human ventricular cardiac myosin regulatory light chain (MYL2) modifies the protein at S15. This modification affects MYL2 secondary structure and modulates the Ca(2+) sensitivity of contraction in cardiac tissue. Smooth muscle myosin light chain kinase (smMLCK) is a ubiquitous kinase prevalent in uterus and present in other contracting tissues including cardiac muscle. The recombinant 130 kDa (short) smMLCK phosphorylated S15 in MYL2 in vitro. Specific modification of S15 was verified using the direct detection of the phospho group on S15 with mass spectrometry. SmMLCK also specifically phosphorylated myosin regulatory light chain S15 in porcine ventricular myosin and chicken gizzard smooth muscle myosin (S20 in smooth muscle) but failed to phosphorylate the myosin regulatory light chain in rabbit skeletal myosin. Phosphorylation kinetics, measured using a novel fluorescence method eliminating the use of radioactive isotopes, indicates similar Michaelis-Menten V(max) and K(M) for regulatory light chain S15 phosphorylation rates in MYL2, porcine ventricular myosin, and chicken gizzard myosin. These data demonstrate that smMLCK is a specific and efficient kinase for the in vitro phosphorylation of MYL2, cardiac, and smooth muscle myosin. Whether smMLCK plays a role in cardiac muscle regulation or response to a disease causing stimulus is unclear but it should be considered a potentially significant kinase in cardiac tissue on the basis of its specificity, kinetics, and tissue expression. 相似文献
11.
Y Ikeuchi 《The International journal of biochemistry》1986,18(3):251-255
The effect of phosphorylation in skeletal myosin light chain (LC2) on the actomyosin and acto-heavymeromyosin (HMM) ATPase activities was investigated in the presence or absence of regulatory proteins (tropomyosin-troponin complex). Phosphorylation in LC2 did not modulate the actin-myosin and actin-HMM interactions over a wide range of KCl concentrations from 30 to 150 mM without regulatory proteins. In the presence of regulatory proteins, phosphorylation in myosin LC2 enhanced the ATPase activity of actomyosin with calcium ions, but the removal of calcium ions made little difference in the ATPase activity between phosphorylated and dephosphorylated myosins. Ca2+-sensitivity of the regulated actomyosin was slightly changed by phosphorylation in myosin LC2. However, both the ATPase activity and Ca2+-sensitivity of the regulated acto-HMM were unaffected by phosphorylation in HMM LC2. 相似文献
12.
Fluorescence polarization transients from rhodamine isomers on the myosin regulatory light chain in skeletal muscle fibers. 总被引:1,自引:1,他引:1
下载免费PDF全文

S C Hopkins C Sabido-David J E Corrie M Irving Y E Goldman 《Biophysical journal》1998,74(6):3093-3110
Fluorescence polarization was used to examine orientation changes of two rhodamine probes bound to myosin heads in skeletal muscle fibers. Chicken gizzard myosin regulatory light chain (RLC) was labeled at Cys108 with either the 5- or the 6-isomer of iodoacetamidotetramethylrhodamine (IATR). Labeled RLC (termed Cys108-5 or Cys108-6) was exchanged for the endogenous RLC in single, skinned fibers from rabbit psoas muscle. Three independent fluorescence polarization ratios were used to determine the static angular distribution of the probe dipoles with respect to the fiber axis and the extent of probe motions on the nanosecond time scale of the fluorescence lifetime. We used step changes in fiber length to partially synchronize the transitions between biochemical, structural, and mechanical states of the myosin cross-bridges. Releases during active contraction tilted the Cys108-6 dipoles away from the fiber axis. This response saturated for releases beyond 3 nm/half-sarcomere (h.s.). Stretches in active contraction caused the dipoles to tilt toward the fiber axis, with no evidence of saturation for stretches up to 7 nm/h.s. These nonlinearities of the response to length changes are consistent with a partition of approximately 90% of the probes that did not tilt when length changes were applied and 10% of the probes that tilted. The responding fraction tilted approximately 30 degrees for a 7.5 nm/h.s. release and traversed the plane perpendicular to the fiber axis for larger releases. Stretches in rigor tilted Cys108-6 dipoles away from the fiber axis, which was the opposite of the response in active contraction. The transition from the rigor-type to the active-type response to stretch preceded the main force development when fibers were activated from rigor by photolysis of caged ATP in the presence of Ca2+. Polarization ratios for Cys108-6 in low ionic strength (20 mM) relaxing solution were compatible with a combination of the relaxed (200 mM ionic strength) and rigor intensities, but the response to length changes was of the active type. The nanosecond motions of the Cys108-6 dipole were restricted to a cone of approximately 20 degrees half-angle, and those of Cys108-5 dipole to a cone of approximately 25 degrees half-angle. These values changed little between relaxation, active contraction, and rigor. Cys108-5 showed very small-amplitude tilting toward the fiber axis for both stretches and releases in active contraction, but much larger amplitude tilting in rigor. The marked differences in these responses to length steps between the two probe isomers and between active contraction and rigor suggest that the RLC undergoes a large angle change (approximately 60 degrees) between these two states. This motion is likely to be a combination of tilting of the RLC relative to the fiber axis and twisting of the RLC about its own axis. 相似文献
13.
Kate Bárány David L. Vander Meulen Ronald F. Ledvora Michael Bárány 《Archives of biochemistry and biophysics》1982,217(1):392-396
The phosphorylation of myosin light chain was quantitated in fast and slow chicken skeletal muscles and in frog sartorius and semitendinosus muscles. The phosphate content of light chain was determined either as moles [32P]phosphate per mole of light chain in 32P-labeled muscles or as percentage phosphorylated light chain of the total P-light chain, measured by densitometry after separating the phospho and dephospho forms of P-light chain with two-dimensional gel electrophoresis. Both methods revealed that the percentage of total P-light chain which was phosphorylated did not exceed 50% either in maximally tetanized or caffeine-contracted skeletal muscle. This suggests that one of the two P-light chains is selectively phosphorylated in skeletal muscle. 相似文献
14.
Myosin light chain kinase and the role of myosin light chain phosphorylation in skeletal muscle 总被引:3,自引:0,他引:3
Skeletal muscle myosin light chain kinase (skMLCK) is a dedicated Ca2+/calmodulin-dependent serine–threonine protein kinase that phosphorylates the regulatory light chain (RLC) of sarcomeric myosin. It is expressed from the MYLK2 gene specifically in skeletal muscle fibers with most abundance in fast contracting muscles. Biochemically, activation occurs with Ca2+ binding to calmodulin forming a (Ca2+)4•calmodulin complex sufficient for activation with a diffusion limited, stoichiometric binding and displacement of a regulatory segment from skMLCK catalytic core. The N-terminal sequence of RLC then extends through the exposed catalytic cleft for Ser15 phosphorylation. Removal of Ca2+ results in the slow dissociation of calmodulin and inactivation of skMLCK. Combined biochemical properties provide unique features for the physiological responsiveness of RLC phosphorylation, including (1) rapid activation of MLCK by Ca2+/calmodulin, (2) limiting kinase activity so phosphorylation is slower than contraction, (3) slow MLCK inactivation after relaxation and (4) much greater kinase activity relative to myosin light chain phosphatase (MLCP). SkMLCK phosphorylation of myosin RLC modulates mechanical aspects of vertebrate skeletal muscle function. In permeabilized skeletal muscle fibers, phosphorylation-mediated alterations in myosin structure increase the rate of force-generation by myosin cross bridges to increase Ca2+-sensitivity of the contractile apparatus. Stimulation-induced increases in RLC phosphorylation in intact muscle produces isometric and concentric force potentiation to enhance dynamic aspects of muscle work and power in unfatigued or fatigued muscle. Moreover, RLC phosphorylation-mediated enhancements may interact with neural strategies for human skeletal muscle activation to ameliorate either central or peripheral aspects of fatigue. 相似文献
15.
Phosphorylation of myosin light chain modulates the in vitro movement of fibrils composed of actin and myosin filaments from skeletal muscle 总被引:1,自引:0,他引:1
S Higashi-Fujime 《Journal of biochemistry》1983,94(5):1539-1545
In vitro movement of fibrils composed of actin and myosin filaments purified from skeletal muscle was observed by dark field microscopy during superprecipitation at low ionic strengths at room temperature. The movement was activated by phosphorylation of light chain (LC2) of myosin. The activity of the movement was evaluated in terms of the spreading of the area where the fibrils were moving. Adenosine triphosphatase activity of actomyosin was also enhanced by phosphorylation of LC2 and was correlated with the activity of the in vitro movement. 相似文献
16.
Phosphorylation of regulatory light chain a (RLC-a) in smooth muscle myosin of scallop, Patinopecten yessoensis 总被引:1,自引:0,他引:1
One of the two regulatory light chains, RLC-a, of scallop smooth muscle myosin was fully phosphorylated by myosin light chain kinase of chicken gizzard muscle. The residue phosphorylated was Ser. It may be the Ser at number 11 from the N-terminal. The sequence of 9 residues around the Ser-11, QRATSNVFA, is identical with that around the phosphorylatable Ser of LC20 of chicken gizzard myosin. RLC-a was also phosphorylated slowly by cAMP-dependent protein kinase. The phosphorylation of RLC-a may be involved in the regulatory system for the catch contraction of scallop muscle. 相似文献
17.
Phosphorylation of smooth muscle myosin at two distinct sites by myosin light chain kinase 总被引:16,自引:0,他引:16
The 20,000-dalton light chain of turkey gizzard myosin is phosphorylated at two sites. Dual phosphorylation is observed when both intact myosin and isolated light chains are used as substrates. Phosphorylation of the second site is not observed at higher ionic strength (e.g. 0.35 M KCl). The first phosphorylation site (serine 19) is phosphorylated preferentially to the second site. The latter is phosphorylated more slowly than the first site, and its phosphorylation requires relatively high concentrations of myosin light chain kinase. It is suggested that myosin light chain kinase catalyzes the phosphorylation of both sites on the light chain, and several reasons are cited that make it unlikely that a contaminant kinase is involved. The second phosphorylation site is a threonine residue. Based on the results of limited proteolysis of the light chain, it is concluded that the threonine residue is close to serine 19, and possible locations are threonines 9, 10, and 18. At all concentrations of MgCl2, phosphorylation of the second site markedly increases the actin-activated ATPase activity of myosin and accelerates the superprecipitation response of myosin plus actin. 相似文献
18.
19.
Abalone myosin contains two kinds of light chain, regulatory light chain (LC2) and essential light chain (LC1) according to SDS-PAGE. Three distinct light chain bands were observed on polyacrylamide gel electrophoresis of purified abalone myosin in the presence of urea (urea-PAGE). The slower two components showed had mobility on SDS-PAGE and they also showed regulatory activity as the regulatory light chain. They were termed LC2-a and LC2-b in order of increasing mobility on urea-PAGE and isolated by DE-32 ion exchange column chromatography in the presence 8 M urea. The ratio of LC2-a and LC2-b in the central portion of adductor muscle of abalone (LC2-a: LC2-b = 7:3) was different from that (1:1) in the peripheral portion. These results suggest that the two light chains are isoforms of the regulatory light chain. The amino acid compositions of LC2-a and LC2-b were very similar to each other except for the Cys content. The UV absorption spectra were also quite similar, as were the UV difference absorption spectra induced by Ca2+. Phosphorylation was not detectable with the myosin light chain kinase of chicken gizzard. The Ca2+ concentration dependencies of Mg-ATPase activity of LC2-a or LC2-b hybridized abalone myosin (a-myosin, b-myosin) were similar to each other in the absence of rabbit F-actin, but differed in the presence of actin. The b-myosin had a higher maximum value of actomyosin ATPase activity and a lower apparent binding constant of actin and myosin than a-myosin.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
20.
Phosphorylation of rabbit skeletal muscle myosin in situ 总被引:4,自引:0,他引:4
Myosin light chain (P light chain) is phosphorylated by Ca2+ X calmodulin-dependent myosin light chain kinase. Based on studies with rat skeletal muscles, it has been shown that P light chain phosphorylation correlated to the extent of potentiation of isometric twitch tension. It is not clear whether this correlation exists in rabbit skeletal muscle, which has been the primary source of contractile proteins for biochemical studies. Therefore, phosphorylation of myosin P light chain in rabbit slow-twitch soleus and fast-twitch plantaris muscles in situ was examined. Electrical stimulation (5 Hz, 20 seconds) of plantaris muscle produced an increase in the phosphate content of P light chain from 0.17 to 0.45 mol phosphate/mol P light chain. This increase in phosphate content was accompanied by a 58% increase in maximal isometric twitch tension. Tetanic stimulation (100 Hz, 15 seconds) of rabbit soleus muscle resulted in only a small increase in P light chain phosphate content from 0.02 to 0.10 mol phosphate/mol P light chain, and posttetanic twitch tension did not increase significantly. The correlation between potentiated isometric twitch tension and P light chain phosphorylation in rabbit fast-twitch muscle is similar to that observed in rat skeletal muscle. These results were consistent with the hypothesis that phosphorylation of rabbit skeletal muscle myosin, which results in an increase in actin-activated ATPase activity, may be related to isometric twitch potentiation. 相似文献