首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We previously reported that shear stress induces phosphorylation and disassembly of keratin intermediate filaments (IFs). Shear stress also induces a time- and strain-dependent degradation of keratin IFs, and the current study examines the mechanisms involved in degradation of keratin proteins in human A549 cells exposed to 0-24 h of shear stress (7.5-30 dynes/cm(2)). Ubiquitin was found to be covalently associated with keratin proteins immunoprecipitated from shear-stressed cells, and pretreatment with the proteasomal inhibitor MG132 prevented the degradation of the keratin IF network. Importantly, phosphorylation of K8 Ser-73 is required for the shear stress-mediated ubiquitination, disassembly, and degradation of the keratin IF network. Immunofluorescence microscopy revealed that shear stress caused the thin array of keratin fibrils observed in control cells to be reorganized into a perinuclear aggregate, known as an aggresome, and that ubiquitin was also associated with this structure. Finally, the E2 enzymes, UbcH5b, -c, and Ubc3, but not E2-25K are required for the shear stress-mediated ubiquitin-proteasomal degradation of keratin proteins. These data suggest that shear stress promotes the disassembly and degradation of the keratin IF network via phosphorylation and the ubiquitin-proteasome pathway.  相似文献   

2.
Keratin 8 (K8) serine 73 occurs within a relatively conserved type II keratin motif ((68)NQSLLSPL) and becomes phosphorylated in cultured cells and organs during mitosis, cell stress, and apoptosis. Here we show that Ser-73 is exclusively phosphorylated in vitro by p38 mitogen-activated protein kinase. In cells, Ser-73 phosphorylation occurs in association with p38 kinase activation and is inhibited by SB203580 but not by PD98059. Transfection of K8 Ser-73 --> Ala or K8 Ser-73 --> Asp with K18 generates normal-appearing filaments. In contrast, exposure to okadaic acid results in keratin filament destabilization in cells expressing wild-type or Ser-73 --> Asp K8, whereas Ser-73 --> Ala K8-expressing cells maintain relatively stable filaments. p38 kinase associates with K8/18 immunoprecipitates and binds selectively with K8 using an in vitro overlay assay. Given that K1 Leu-160 --> Pro ((157)NQSLLQPL --> (157)NQSPLQPL) leads to epidermolytic hyperkeratosis, we tested and showed that the analogous K8 Leu-71 --> Pro leads to K8 hyperphosphorylation by p38 kinase in vitro and in transfected cells, likely due to Ser-70 neo-phosphorylation, in association with significant keratin filament collapse upon cell exposure to okadaic acid. Hence, K8 Ser-73 is a physiologic phosphorylation site for p38 kinase, and its phosphorylation plays an important role in keratin filament reorganization. The Ser-73 --> Ala-associated filament reorganization defect is rescued by a Ser-73 --> Asp mutation. Also, disease-causing keratin mutations can modulate keratin phosphorylation and organization, which may affect disease pathogenesis.  相似文献   

3.
Keratins 8 (K8) and 18 are the primary intermediate filaments of simple epithelia. Phosphorylation of keratins at specific sites affects their organization, assembly dynamics, and their interaction with signaling molecules. A number of keratin in vitro and in vivo phosphorylation sites have been identified. One example is K8 Ser-73, which has been implicated as an important phosphorylation site during mitosis, cell stress, and apoptosis. We show that K8 is strongly phosphorylated on Ser-73 upon stimulation of the pro-apoptotic cytokine receptor Fas/CD95/Apo-1 in HT-29 cells. Kinase assays showed that c-Jun N-terminal kinase (JNK) was also activated with activation kinetics corresponding to that of K8 phosphorylation. Furthermore, K8 was also phosphorylated on Ser-73 by JNK in vitro, yielding similar phosphopeptide maps as the in vivo phosphorylated material. In addition, co-immunoprecipitation studies revealed that part of JNK is associated with K8 in vivo, correlating with decreased ability of JNK to phosphorylate the endogenous c-Jun. Taken together, K8 is a new cytoplasmic target for JNK in Fas receptor-mediated signaling. The functional significance of this phosphorylation could relate to regulation of JNK signaling and/or regulation of keratin dynamics.  相似文献   

4.
Post-translational modifications are important functional determinants for intermediate filament (IF) proteins. Phosphorylation of IF proteins regulates filament organization, solubility, and cell-protective functions. Most known IF protein phosphorylation sites are serines localized in the variable “head” and “tail” domain regions. By contrast, little is known about site-specific tyrosine phosphorylation or its implications on IF protein function. We used available proteomic data from large scale studies to narrow down potential phospho-tyrosine sites on the simple epithelial IF protein keratin 8 (K8). Validation of the predicted sites using a pan-phosphotyrosine and a site-specific antibody, which we generated, revealed that the highly conserved Tyr-267 in the K8 “rod” domain was basally phosphorylated. The charge at this site was critically important, as demonstrated by altered filament organization of site-directed mutants, Y267F and Y267D, the latter exhibiting significantly diminished solubility. Pharmacological inhibition of the protein-tyrosine phosphatase PTP1B increased K8 Tyr-267 phosphorylation, decreased solubility, and increased K8 filament bundling, whereas PTP1B overexpression had the opposite effects. Furthermore, there was significant co-localization between K8 and a “substrate-trapping” mutant of PTP1B (D181A). Because K8 Tyr-267 is conserved in many IFs (QYE motif), we tested the effect of the paralogous Tyr in glial fibrillary acidic protein (GFAP), which is mutated in Alexander disease (Y242D). Similar to K8, Y242D GFAP exhibited highly irregular filament organization and diminished solubility. Our results implicate the rod domain QYE motif tyrosine as an important determinant of IF assembly and solubility properties that can be dynamically modulated by phosphorylation.  相似文献   

5.
Chronic inflammation incited by bacteria in the saccular lung of premature infants contributes to the pathogenesis of bronchopulmonary dysplasia (BPD). LPS-mediated type II alveolar epithelial cell (AEC) injury induces the expression of pro-inflammatory cytokines that trigger pulmonary neutrophil influx, alveolar matrix degradation and lung remodeling. We hypothesized that NADPH oxidase (Nox)-dependent mechanisms mediate LPS-induced cytokine expression in AEC. We examined the role of p47phox in mediating LPS-dependent inflammatory cytokine expression in A549 cells (which exhibit phenotypic features characteristic of type II AEC) and elucidated the proximal signaling events by which Nox is activated by LPS. LPS-induced ICAM-1 and IL-8 expression was associated with increased superoxide formation in AEC. LPS-mediated oxidative stress and cytokine expression was inhibited by apocynin and augmented by PMA demonstrating that Nox-dependent redox signaling regulates LPS-dependent pro-inflammatory signaling in AEC. In LPS-treated cells, p47phox translocated from the cytoplasm to the perinuclear region and co-localized with gp91phox. LPS also induced a temporal increase in p47phox serine304 phosphorylation in AEC. While inhibition of classical PKC and novel PKC with calphostin and rottlerin did not inhibit ICAM-1 or IL-8 expression, the myristolyated PKCζ pseudosubstrate peptide (a specific inhibitor of PKCζ) inhibited LPS-induced cytokine expression in AEC. Inhibition of PKCζ also attenuated LPS-mediated p47phox phosphorylation and perinuclear translocation in AEC. Consistent with these data, LPS activated PKCζ in AEC as evidenced by increased threonine410 phophorylation. We conclude that PKCζ-mediated p47phox activation regulates LPS-dependent cytokine expression in AEC. Selective inhibition of PKCζ or p47phox might attenuate LPS-mediated inflammation and alveolar remodeling in BPD.  相似文献   

6.
Lysine acetylation is an important posttranslational modification that regulates microtubules and microfilaments, but its effects on intermediate filament proteins (IFs) are unknown. We investigated the regulation of keratin 8 (K8), a type II simple epithelial IF, by lysine acetylation. K8 was basally acetylated and the highly conserved Lys-207 was a major acetylation site. K8 acetylation regulated filament organization and decreased keratin solubility. Acetylation of K8 was rapidly responsive to changes in glucose levels and was up-regulated in response to nicotinamide adenine dinucleotide (NAD) depletion and in diabetic mouse and human livers. The NAD-dependent deacetylase sirtuin 2 (SIRT2) associated with and deacetylated K8. Pharmacologic or genetic inhibition of SIRT2 decreased K8 solubility and affected filament organization. Inhibition of K8 Lys-207 acetylation resulted in site-specific phosphorylation changes of K8. Therefore, K8 acetylation at Lys-207, a highly conserved residue among type II keratins and other IFs, is up-regulated upon hyperglycemia and down-regulated by SIRT2. Keratin acetylation provides a new mechanism to regulate keratin filaments, possibly via modulating keratin phosphorylation.  相似文献   

7.
Keratin polypeptide 19 (K19) is a type I intermediate filament protein that is expressed in stratified and simple-type epithelia. Little is known regarding K19 regulation or function, and the only other type I keratin that has been studied in terms of regulation is keratin 18 (K18). We characterized K19 phosphorylation as a handle to study its function. In vivo, serine is the major phosphorylated residue, and phosphopeptide mapping of 32PO4-labeled K19 generates one major phosphopeptide. Edman degradation suggested that the radiolabeled phosphopeptide represents K19 Ser-10 and/or Ser-35 phosphorylation. Mutation of Ser-10 or Ser-35 followed by transfection confirmed that Ser-35 is the major K19 phosphorylation site. Transfection of Ser-35 --> Ala K19 showed a filament assembly defect as compared with normal or with Ser-10 --> Ala K19. Comparison of K18 and K19 phosphorylation features in interphase cells showed that both are phosphorylated primarily at a single site, preferentially in the soluble versus the insoluble keratin fractions. K19 has higher basal phosphorylation, whereas K18 phosphorylation is far more sensitive to phosphatase type I and IIA inhibition. Our results demonstrate that Ser-35 is the major K19 interphase phosphorylation site and that it plays a role in keratin filament assembly. K19 and K18 phosphorylations share some features but also have distinct properties that suggest different regulation of type I keratins within the same cells.  相似文献   

8.
Keratin polypeptide 8 (K8) associates noncovalently with its partners K18 and/or K19 to form the intermediate filament cytoskeleton of hepatocytes and other simple-type epithelial cells. Human K8, K18, and K19 variants predispose to liver disease, whereas site-specific keratin phosphorylation confers hepatoprotection. Because stress-induced protein phosphorylation regulates sumoylation, we hypothesized that keratins are sumoylated in an injury-dependent manner and that keratin sumoylation is an important regulatory modification. We demonstrate that K8/K18/K19, epidermal keratins, and vimentin are sumoylated in vitro. Upon transfection, K8, K18, and K19 are modified by poly-SUMO-2/3 chains on Lys-285/Lys-364 (K8), Lys-207/Lys-372 (K18), and Lys-208 (K19). Sumoylation affects filament organization and stimulus-induced keratin solubility and is partially inhibited upon mutation of one of three known K8 phosphorylation sites. Extensive sumoylation occurs in cells transfected with individual K8, K18, or K19 but is limited upon heterodimerization (K8/K18 or K8/K19) in the absence of stress. In contrast, keratin sumoylation is significantly augmented in cells and tissues during apoptosis, oxidative stress, and phosphatase inhibition. Poly-SUMO-2/3 conjugates are present in chronically injured but not normal, human, and mouse livers along with polyubiquitinated and large insoluble keratin-containing complexes. Notably, common human K8 liver disease-associated variants trigger keratin hypersumoylation with consequent diminished solubility. In contrast, modest sumoylation of wild type K8 promotes solubility. Hence, conformational changes induced by keratin natural mutations and extensive tissue injury result in K8/K18/K19 hypersumoylation, which retains keratins in an insoluble compartment, thereby limiting their cytoprotective function.  相似文献   

9.
Plasticity of the resilient keratin intermediate filament cytoskeleton is an important prerequisite for epithelial tissue homeostasis. Here, the contribution of stress-activated p38 MAPK to keratin network organization was examined in cultured cells. It was observed that phosphorylated p38 colocalized with keratin granules that were rapidly formed in response to orthovanadate. The same p38(p) recruitment was noted during mitosis, in various stress situations and in cells producing mutant keratins. In all these situations keratin 8 became phosphorylated on S73, a well-known p38 target site. To demonstrate that p38-dependent keratin phosphorylation determines keratin organization, p38 activity was pharmacologically and genetically modulated: up-regulation induced keratin granule formation, whereas down-regulation prevented keratin filament network disassembly. Furthermore, transient p38 inhibition also inhibited keratin filament precursor formation and mutant keratin granule dissolution. Collectively, the rapid and reversible effects of p38 activity on keratin phosphorylation and organization in diverse physiological, stress, and pathological situations identify p38-dependent signalling as a major intermediate filament-regulating pathway.  相似文献   

10.
Cyclic stretch of alveolar epithelial cells (AEC) can alter normal lung barrier function. Fibroblast growth factor-10 (FGF-10), an alveolar type II cell mitogen that is critical for lung development, may have a role in promoting AEC repair. We studied whether cyclic stretch induces AEC DNA damage and whether FGF-10 would be protective. Cyclic stretch (30 min of 30% strain amplitude and 30 cycles/min) caused AEC DNA strand break formation, as assessed by alkaline unwinding technique and DNA nucleosomal fragmentation. Pretreatment of AEC with FGF-10 (10 ng/ml) blocked stretch-induced DNA strand break formation and DNA fragmentation. FGF-10 activated AEC mitogen-activated protein kinase (MAPK), and MAPK inhibitors prevented FGF-10-induced AEC MAPK activation and abolished the protective effects of FGF-10 against stretch-induced DNA damage. In addition, a Grb2-SOS inhibitor (SH(3)b-p peptide), a RAS inhibitor (farnesyl transferase inhibitor 277), and a RAF-1 inhibitor (forskolin) each prevented FGF-10-induced extracellular signal-regulated kinase (ERK) 1/2 phosphorylation in AEC. Moreover, N17-A549 cells that express a RAS dominant/negative protein prevented the FGF-10-induced ERK1/2 phosphorylation and RAS activation in AEC. We conclude that cyclic stretch causes AEC DNA damage and that FGF-10 attenuates these effects by mechanisms involving MAPK activation via the Grb2-SOS/Ras/RAF-1/ERK1/2 pathway.  相似文献   

11.
T S Yeh  S J Lo  P J Chen    Y H Lee 《Journal of virology》1996,70(9):6190-6198
Hepatitis delta virus (HDV) contains two virus-specific delta antigens (HDAgs), large and small forms, which are identical in sequence except that the large one contains 19 extra amino acids at the C terminus. HDAgs are nuclear phosphoproteins with distinct biological functions; the small form activates HDV RNA replication, whereas the large form suppresses this process but is required for viral particle assembly. In this study, we have characterized the phosphorylative property of HDAg in a human hepatoma cell line (HuH-7) and examined the role of phosphorylation in HDAg function. As demonstrated by in vivo labeling and kinase inhibitor experiments, the phosphorylation levels of both HDAgs were diminished by the inhibitor of casein kinase II (CKII). Nevertheless, phosphorylation of only the small form could be markedly reduced by the protein kinase C (PKC) inhibitor, suggesting different phosphorylation properties between the two HDAgs. When these two kinase inhibitors were added separately to the transient-expression system, HDV RNA replication was profoundly suppressed. In contrast, the inhibitors did not affect the assembly of empty HDAg particle from HDAgs and hepatitis B virus surface antigen. To further examine the role of phosphorylation in HDAg function, two conservative CKII recognition sites at Ser-2 and Ser-123 of both HDAgs and one potential PKC recognition site at Ser-210 of the large HDAg were altered to alanine by site-directed mutagenesis. Transfection experiments indicated that mutation at Ser-2, but not Ser-123, significantly impaired the activity of the small HDAg in assisting HDV RNA replication. This property is in accordance with our observation that Ser-2, not Ser-123, was the predominant CKII phosphorylation site in the small HDAg. Our studies also excluded the possibility that the phosphorylation of Ser-2, Ser-123, or Ser-210, had roles in the trans-suppression activity of the large HDAg, in the assembly of empty virus-like HDAg particle, and in the nuclear transport of HDAgs. In conclusion, our results indicate that both CKII and PKC positively modulate HDV RNA replication but not the assembly of empty HDAg particle. The role of CKII in HDV replication may at least in part be accounted for by the phosphorylation of Ser-2 in the small HDAg. The effect of PKC on HDV RNA replication is, however, not to mediate the phosphorylation of the conservative Ser-210 in the large HDAg but rather to act on as-yet-unidentified Ser or Thr residues in the small HDAg or cellular factors. These findings provide the first insight into the roles of phosphorylation of the two HDAgs in the HDV replication cycle.  相似文献   

12.
Keratin intermediate filaments (KIFs) form a fibrous polymer network that helps epithelial cells withstand external mechanical forces. Recently, we established a correlation between the structure of the KIF network and its local mechanical properties in alveolar epithelial cells. Shear stress applied across the cell surface resulted in the structural remodeling of KIF and a substantial increase in the elastic modulus of the network. This study examines the mechanosignaling that regulates the structural remodeling of the KIF network. We report that the shear stress–mediated remodeling of the KIF network is facilitated by a twofold increase in the dynamic exchange rate of KIF subunits, which is regulated in a PKC ζ and 14-3-3–dependent manner. PKC ζ phosphorylates K18pSer33, and this is required for the structural reorganization because the KIF network in A549 cells transfected with a dominant negative PKC ζ, or expressing the K18Ser33Ala mutation, is unchanged. Blocking the shear stress–mediated reorganization results in reduced cellular viability and increased apoptotic levels. These data suggest that shear stress mediates the phosphorylation of K18pSer33, which is required for the reorganization of the KIF network, resulting in changes in mechanical properties of the cell that help maintain the integrity of alveolar epithelial cells.  相似文献   

13.
Simple epithelia express keratins 8 (K8) and 18 (K18) as their major intermediate filament (IF) proteins. One important physiologic function of K8/18 is to protect hepatocytes from drug-induced liver injury. Although the mechanism of this protection is unknown, marked K8/18 hyperphosphorylation occurs in association with a variety of cell stresses and during mitosis. This increase in keratin phosphorylation involves multiple sites including human K18 serine-(ser)52, which is a major K18 phosphorylation site. We studied the significance of keratin hyperphosphorylation and focused on K18 ser52 by generating transgenic mice that overexpress a human genomic K18 ser52→ ala mutant (S52A) and compared them with mice that overexpress, at similar levels, wild-type (WT) human K18. Abrogation of K18 ser52 phosphorylation did not affect filament organization after partial hepatectomy nor the ability of mouse livers to regenerate. However, exposure of S52A-expressing mice to the hepatotoxins, griseofulvin or microcystin, which are associated with K18 ser52 and other keratin phosphorylation changes, resulted in more dramatic hepatotoxicity as compared with WT K18-expressing mice. Our results demonstrate that K18 ser52 phosphorylation plays a physiologic role in protecting hepatocytes from stress-induced liver injury. Since hepatotoxins are associated with increased keratin phosphorylation at multiple sites, it is likely that unique sites aside from K18 ser52, and phosphorylation sites on other IF proteins, also participate in protection from cell stress.  相似文献   

14.
All intermediate filament (IF) proteins share a highly conserved sequence motif at the COOH-terminal end of their rod domains. We have studied the influence of a 20-residue peptide, representing the consensus motif on filament formation and stability. Addition of the peptide at a 10-20-fold molar excess over keratins K8 plus K18 had a severe effect on subsequent IF assembly. Filaments displayed a rough surface and variable diameters with a substantial amount present in unravelled form. At higher peptide concentration (50-100-fold molar excess), IF formation was completely inhibited and instead only loose aggregates of "globular" particles were formed. The peptide also influenced performed keratin IF in a dose-dependent manner. While a three-fold molar excess was sufficient to cause partial fragmentation of IF, a 50-fold molar excess caused complete disassembly within 5 min. Loosely associated protofibrils, short needlelike IF fragments, and aggregates of globular particles were detected. The motif peptide also caused the disassembly of filaments formed by desmin, a type III IF protein. Peptide concentrations and incubation times required for complete disassembly were somewhat higher than for the filaments containing K8 plus K18. A 50-fold molar excess was sufficient to cause complete disassembly within 1 h. Peptides unrelated in sequence to the motif did not interfere with filament formation or stability even when present for more than 12 h at a 100-fold molar excess. The results suggest that the motif sequence normally binds to a specific acceptor site for which the motif peptide can successfully compete. Taken together with current models of IF structure the results indicate that normal binding of the motif sequence to its acceptor must play an essential role in IF formation, possibly by directing the proper alignment of neighboring tetramers or protofilaments. Finally we show that in vitro formed IF are much more sensitive and dynamic strutures than previously thought.  相似文献   

15.
Mechanical stimuli are transduced into intracellular signals in lung alveolar epithelial cells (AEC). We studied whether mitogen-activated protein kinase (MAPK) pathways are activated during cyclic stretch of AEC. Cyclic stretch induced a rapid (within 5 min) increase in extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation in AEC. The inhibition of Na(+), L-type Ca(2+) and stretch-activated ion channels with amiloride, nifedipine, and gadolinium did not prevent the stretch-induced ERK1/2 activation. The inhibition of Grb2-SOS interaction with an SH3 binding sequence peptide, Ras with a farnesyl transferase inhibitor, and Raf-1 with forskolin did not affect the stretch-induced ERK1/2 phosphorylation. Moreover, cyclic stretch did not increase Ras activity, suggesting that stretch-induced ERK1/2 activation is independent of the classical receptor tyrosine kinase-MAPK pathway. Pertussis toxin and two specific epidermal growth factor receptor (EGFR) inhibitors (AG-1478 and PD-153035) prevented the stretch-induced ERK1/2 activation. Accordingly, in primary AEC, cyclic stretch activates ERK1/2 via G proteins and EGFR, in Na(+) and Ca(2+) influxes and Grb2-SOS-, Ras-, and Raf-1-independent pathways.  相似文献   

16.
Phosphorylation of tau is regulated by PKN   总被引:5,自引:0,他引:5  
For the phosphorylation state of microtubule-associated protein, tau plays a pivotal role in regulating microtubule networks in neurons. Tau promotes the assembly and stabilization of microtubules. The potential for tau to bind to microtubules is down-regulated after local phosphorylation. When we investigated the effects of PKN activation on tau phosphorylation, we found that PKN triggers disruption of the microtubule array both in vitro and in vivo and predominantly phosphorylates tau in microtubule binding domains (MBDs). PKN has a catalytic domain highly homologous to protein kinase C (PKC), a kinase that phosphorylates Ser-313 (= Ser-324, the number used in this study) in MBDs. Thus, we identified the phosphorylation sites of PKN and PKC subtypes (PKC-alpha, -betaI, -betaII, -gamma, -delta, -epsilon, -zeta, and -lambda) in MBDs. PKN phosphorylates Ser-258, Ser-320, and Ser-352, although all PKC subtypes phosphorylate Ser-258, Ser-293, Ser-324, and Ser-352. There is a PKN-specific phosphorylation site, Ser-320, in MBDs. HIA3, a novel phosphorylation-dependent antibody recognizing phosphorylated tau at Ser-320, showed immunoreactivity in Chinese hamster ovary cells expressing tau and the active form of PKN, but not in Chinese hamster ovary cells expressing tau and the inactive form of PKN. The immunoreactivity for phosphorylated tau at Ser-320 increased in the presence of a phosphatase inhibitor, FK506 treatment, which means that calcineurin (protein phosphatase 2B) may be involved in dephosphorylating tau at Ser-320 site. We also noted that PKN reduces the phosphorylation recognized by the phosphorylation-dependent antibodies AT8, AT180, and AT270 in vivo. Thus PKN serves as a regulator of microtubules by specific phosphorylation of tau, which leads to disruption of tubulin assembly.  相似文献   

17.
Protein kinase C (PKC) delta is cleaved by caspase-3 to a kinase-active catalytic fragment (PKCdeltaCF) in the apoptotic response of cells to DNA damage. Expression of PKCdeltaCF contributes to the induction of apoptosis by mechanisms that are presently unknown. Here we demonstrate that PKCdeltaCF associates with p73beta, a structural and functional homologue of the p53 tumor suppressor. The results show that PKCdeltaCF phosphorylates the p73beta transactivation and DNA-binding domains. One PKCdeltaCF-phosphorylation site has been mapped to Ser-289 in the p73beta DNA-binding domain. PKCdeltaCF-mediated phosphorylation of p73beta is associated with accumulation of p73beta and induction of p73beta-mediated transactivation. By contrast, PKCdeltaCF-induced activation of p73beta is attenuated by mutating Ser-289 to Ala (S289A). The results also demonstrate that PKCdeltaCF stimulates p73beta-mediated apoptosis and that this response is attenuated with the p73beta(S289A) mutant. These findings demonstrate that cleavage of PKCdelta to PKCdeltaCF induces apoptosis by a mechanism in part dependent on PKCdeltaCF-mediated phosphorylation of the p73beta Ser-289 site.  相似文献   

18.
Intermediate filament (IF) networks can be regulated by phosphorylation of unit proteins, such as vimentin, by specific kinases leading to reorganization of the IF filamentous structure. Recently, we identified mitogen-activated protein kinase-activated protein kinase-2 (MAPKAP kinase-2) as a vimentin kinase (Cheng and Lai [1998] J. Cell. Biochem. 71:169-181). Herein we describe the results of further in vitro studies investigating the effects of MAPKAP kinase-2 phosphorylation on vimentin and the effects of the phosphorylation on the filamentous structure. We show that MAPKAP kinase-2 mainly phosphorylates vimentin at Ser-38, Ser-50, Ser-55, and Ser-82, residues all located in the head domain of the protein. Surprisingly, and in stark contrast to phosphorylation by most other kinases, phosphorylation of vimentin by MAPKAP kinase-2 has no discernable effect on its assembly. It suggested that structure disassembly is not the only obligated consequence of phosphorylated vimentin as regulated by other kinases. Finally, a mutational analysis of each of the phosphorylated serine residues in vimentin suggested that no single serine site was primarily responsible for structure maintenance, implying that the retention of filamentous structure may be the result of the coordinated action of several phosphorylated serine sites. This also shed new lights on the functional task(s) of vimentin that is intermediate filament proteins might provide a phosphate reservoir to accommodate the phosphate surge without any structural changes.  相似文献   

19.
Chen YL  Lin SZ  Chang WL  Cheng YL  Harn HJ 《Life sciences》2005,76(21):2409-2420
We previously demonstrated that the crude acetone extract of Bupleurum scorzonerifolium (AE-BS) 60 microg/ml has anti-proliferation activity and apoptosis effects to A549 human lung cancer cells. They can also cause tumor cell arrest in G2/M phase. To better understand its target protein in A549 cell, two-dimensional electrophoresis and liquid chromatography-tandem mass spectrometry were applied. The modification of keratin 8 was identified. By immunoblot, the expression of phosphorylated keratin 8 at Ser-73 was increased from 2.0 to 3.0-fold after AE-BS treatment 24 to 48 hr respectively as compared with untreated A549 control cells. Furthermore, the A549 cells were pretreated with 50 microM PD98059, a specific inhibitor of the upstream regulator of ERK1/2, or with the p38 kinase inhibitor 20 microM SB203580 or JNK inhibitor 20 microM SP600125 for 30 min, followed by 24 h of incubation with AE-BS, PD98059 can inhibit K8-Ser-73 hyperphosphorylation and prevented cell apoptosis which was induced by AE-BS significantly. By immunoblot, AE-BS also can induce ERK 1/2 phosphorylation. In conclusion, our data indicate that the AE-BS induced tumor apoptosis in A549 cells was related to ERK 1/2 activation. The molecular mechanism of hyperphosphorylation of K8 on Ser-73 was associated with ERK 1/2 activation rather than JNK and p38 kinase. The apoptosis induced by AE-BS may be related to K8 phosphorylation.  相似文献   

20.
Keratin polypeptides 8 and 18 (K8/18) are intermediate filament (IF) proteins that are expressed in glandular epithelia. Although the mechanism of keratin turnover is poorly understood, caspase-mediated degradation of type I keratins occurs during apoptosis and the proteasome pathway has been indirectly implicated in keratin turnover based on colocalization of keratin-ubiquitin antibody staining. Here we show that K8 and K18 are ubiquitinated based on cotransfection of His-tagged ubiquitin and human K8 and/or K18 cDNAs, followed by purification of ubiquitinated proteins and immunoblotting with keratin antibodies. Transfection of K8 or K18 alone yields higher levels of keratin ubiquitination as compared with cotransfection of K8/18, likely due to stabilization of the keratin heteropolymer. Most of the ubiquitinated species partition with the noncytosolic keratin fraction. Proteasome inhibition stabilizes K8 and K18 turnover, and is associated with accumulation of phosphorylated keratins, which indicates that although keratins are stable they still turnover. Analysis of K8 and K18 ubiquitination and degradation showed that K8 phosphorylation contributes to its stabilization. Our results provide direct evidence for K8 and K18 ubiquitination, in a phosphorylation modulated fashion, as a mechanism for regulating their turnover and suggest that other IF proteins could undergo similar regulation. These and other data offer a model that links keratin ubiquitination and hyperphosphorylation that, in turn, are associated with Mallory body deposits in a variety of liver diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号