首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous mutagenesis studies along with molecular modeling using the x-ray coordinates of the rabbit 15-lipoxygenase have led to the suggestion that the size of the substrate binding pocket may play an essential role in determining the oxygenation specificity of 5-, 12-, and 15-lipoxygenases. Based on the x-ray crystal structure of rabbit 15-lipoxygenase, Ile(593) appeared to be important in defining size and shape of the substrate-binding site in 15-lipoxygenases. We found that substitution of Ile(593) with alanine shifted the positional specificity of this enzyme toward 12-lipoxygenation. To compare the importance of position 593 with previously defined determinants for the oxygenation specificity, we introduced small (alanine-scan) or large amino acids (phenylalanine-scan) at critical positions surrounding the putative fatty acid-binding site, so that the volume of the pocket was either increased or decreased. Enlargement or alteration in packing density within the substrate binding pocket in the rabbit 15-lipoxygenase increased the share of 12-lipoxygenase products, whereas a smaller active site favored 15-lipoxygenation. Simultaneous substitution of both large and small residues in the context of either a 15- or 12-lipoxygenase indicated that there is a functional interplay of the sequence determinants for lipoxygenation specificity. If the 15-lipoxygenase active site is enlarged excessively, however, no lipoxygenation was observed anymore. Together these results indicate the importance of the overall size and shape of the arachidonic acid binding pocket in defining the specificity of lipoxygenase reaction.  相似文献   

2.
Various purified lipoxygenases were incubated with [14C]arachidonylethanolamide which is an endogenous ligand for cannabinoid receptors. When radioactive products were analyzed by thin-layer chromatography, porcine leukocyte 12-lipoxygenase and rabbit reticulocyte and soybean 15-lipoxygenases produced polar compounds at about the same reaction rates as that of oxygenation of free arachidonic acid. In contrast, the reaction of human platelet 12-lipoxygenase proceeded at a much lower rate, and porcine leukocyte 5-lipoxygenase was totally inactive. The result indicated that the lipoxygenases, which had been shown previously to be capable of oxygenating esterified polyunsaturated fatty acids, were also active with the arachidonylethanolamide. High-performance liquid chromatography, ultraviolet and mass spectrometry and nuclear magnetic resonance spectroscopy identified the major product by leukocyte 12-lipoxygenase as 12-hydroperoxy-5,8,10,14-eicosatetraenoylethanolamide and that by 15-lipoxygenases as 15-hydroperoxy-5,8,11,13-eicosatetraenoylethanolamide. The 15-hydroxy derivative inhibited electrically-evoked contraction of mouse vas deferens with an IC50 of 0.63 μM as well as arachidonylethanolamide (0.17 μM), but the 12-hydroxy derivative was much less effective.  相似文献   

3.
Mammalian lipoxygenases constitute a heterogeneous family of lipid-peroxidizing enzymes, and the various isoforms are categorized with respect to their positional specificity of arachidonic acid oxygenation into 5-, 8-, 12-, and 15-lipoxygenases. Structural modeling suggested that the substrate binding pocket of the human 5-lipoxygenase is 20% bigger than that of the reticulocyte-type 15-lipoxygenase; thus, reduction of the active-site volume was suggested to convert a 5-lipoxygenase to a 15-lipoxygenating enzyme species. To test this "space-based" hypothesis of the positional specificity, the volume of the 5-lipoxygenase substrate binding pocket was reduced by introducing space-filling amino acids at critical positions, which have previously been identified as sequence determinants for the positional specificity of other lipoxygenase isoforms. We found that single point mutants of the recombinant human 5-lipoxygenase exhibited a similar specificity as the wild-type enzyme but double, triple, and quadruple mutations led to a gradual alteration of the positional specificity from 5S- via 8S- toward 15S-lipoxygenation. The quadruple mutant F359W/A424I/N425M/A603I exhibited a major 15S-lipoxygenase activity (85-95%), with (8S,5Z,9E,11Z,14Z)-8-hydroperoxyeicosa-5,9 ,11, 14-tetraenoic acid being a minor side product. These data indicate the principle possibility of interconverting 5- and 15-lipoxygenases by site-directed mutagenesis and appear to support the space-based hypothesis of positional specificity.  相似文献   

4.
Leukotrienes are inflammatory mediators involved in several diseases. The enzyme 5-lipoxygenase initiates the synthesis of leukotrienes from arachidonic acid. Little structural information is available regarding 5-lipoxygenase. In this study, we found that the primary structure of the catalytic domain of human 5-lipoxygenase is similar to that of the rabbit 15-lipoxygenase. This similarity allowed the development of a theoretical model of the tertiary structure of the 5-lipoxygenase catalytic domain, using the resolved structure of rabbit 15-lipoxygenase as a template. This model was used in conjunction with primary and secondary structural information to investigate putative nucleotide binding sites, a MAPKAP kinase 2 phosphorylation site, and a Src homology 3 binding site on the 5-lipoxygenase protein, further. Results indicate that the putative nucleotide binding sites are spatially distinct, with one on the -barrel domain and the other(s) on the catalytic domain. The MAPKAP kinase 2 phosphorylation site involves a four amino acid insertion in mammalian 5-lipoxygenases that significantly alters molecular structure. This target for post-translational modification is both common and unique to 5-lipoxygenases. The Src homology 3 binding site, found in all lipoxygenases, appears to lack the characteristic left-handed type II helix structure of known Src homology 3 binding sites. These results, which highlight the unique nature of the MAPKAP kinase site, underscore the utility of structural information in the analysis of protein function. Electronic supplementary material to this paper can be obtained by using the Springer LINK server located at http://dx.doi.org/10.1007/s00894-002-0076-y.Electronic Supplementary Material available.  相似文献   

5.
(5Z,8Z,11Z,13E)-15-Hydroxy-5,8,11,13-eicosatetraenoic acid (15-HETE) is not well oxygenated by arachidonate 15-lipoxygenases because of two structural reasons: (i) it contains a hydrophilic OH-group in close proximity to its methyl end and (ii) it lacks the bisallylic methylene at C(13). We synthesized racemic (5Z,8Z,11Z,14Z)-16-hydroxy-5,8,11,14-eicosatetraenoic acid (16-HETE) which still contains the bisallylic C(13), separated the enantiomers reaching an optical purity of >99% and tested them as substrates for 5- and 15-lipoxygenases. Our synthetic pathway, which is based on stereospecific hydrogenation of a polyacetylenic precursor, yielded substantial amounts (30%) of 14,15-dehydro-16-HETE in addition to 16-HETE. When 16-HETE was tested as lipoxygenase substrate, we found that it is well oxygenated by the soybean 15-lipoxygenase and by the recombinant human 5-lipoxygenase. Analysis of the reaction products suggested an arachidonic acid-like alignment at the active site of the two enzymes. In contrast, the product pattern of 16-HETE methyl ester oxygenation by the soybean lipoxygenase (5-lipoxygenation) may be explained by an inverse head to tail substrate orientation.  相似文献   

6.
The unstable epoxide leukotriene (LT) A(4) is a key intermediate in leukotriene biosynthesis, but may also be transformed to lipoxins via a second lipoxygenation at C-15. The capacity of various 12- and 15-lipoxygenases, including porcine leukocyte 12-lipoxygenase, a human recombinant platelet 12-lipoxygenase preparation, human platelet cytosolic fraction, rabbit reticulocyte 15-lipoxygenase, soybean 15-lipoxygenase and human eosinophil cytosolic fraction, to catalyze conversion of LTA(4) to lipoxins was investigated and standardized against the ability of the enzymes to transform arachidonic acid to 12- or 15-hydroxyeicosatetraenoic acids (HETE), respectively. The highest ratio between the capacity to produce lipoxins and HETE (LX/HETE ratio) was obtained for porcine leukocyte 12-lipoxygenase with an LX/HETE ratio of 0.3. In addition, the human platelet 100000xg supernatant 12-lipoxygenase preparation and the human platelet recombinant 12-lipoxygenase and human eosinophil 100000xg supernatant 15-lipoxygenase preparation possessed considerable capacity to produce lipoxins (ratio 0.07, 0.01 and 0.02 respectively). In contrast, lipoxin formation by the rabbit reticulocyte and soybean 15-lipoxygenases was much less pronounced (LX/HETE ratios <0.002). Kinetic studies of the human lipoxygenases revealed lower apparent K(m) for LTA(4) (9-27 microM), as compared to the other lipoxygenases tested (58-83 microM). The recombinant human 12-lipoxygenase demonstrated the lowest K(m) value for LTA(4) (9 microM) whereas the porcine leukocyte 12-lipoxygenase had the highest V(max). The profile of products was identical, irrespective of the lipoxygenase used. Thus, LXA(4) and 6S-LXA(4) together with the all-trans LXA(4) and LXB(4) isomers were isolated. Production of LXB(4) was not observed with any of the lipoxygenases. The lipoxygenase inhibitor cinnamyl-3,4-dihydroxy-alpha-cyanocinnamate was considerably more efficient to inhibit conversion of LTA(4) to lipoxins, as compared to the inhibitory effect on 12-HETE formation from arachidonic acid (IC(50) 1 and 50 microM, respectively) in the human platelet cytosolic fraction.  相似文献   

7.
15-lipoxygenase-1: a prooxidant enzyme   总被引:2,自引:0,他引:2  
Schewe T 《Biological chemistry》2002,383(3-4):365-374
Human and rabbit reticulocyte 15-lipoxygenase (15-lipoxygenase-1) and the leukocyte-type 12-lipoxygenases (12/15-lipoxygenases) of pig, beef, mouse and rat constitute a particular subfamily of mammalian lipoxygenases (reticulocyte-type lipoxygenases) with unique properties and functions. They catalyze enzymatic lipid peroxidation in complex biological structures via direct dioxygenation of phospholipids and cholesterol esters of biomembranes and plasma lipoproteins. Moreover, they are a source of free radicals initiating non-enzymatic lipid peroxidation and other oxidative processes. Expression and activity of reticulocyte-type lipoxygenases are highly regulated. Moreover, the susceptibility of intracellular membranes toward these lipoxygenases is controlled and may be increased together with lipoxygenase activity under conditions of oxidative stress. Thus, oxidative stress may favor a concerted package of lipoxygenase-mediated enzymatic and non-enzymatic lipid peroxidation and co-oxidative processes. Reaction of reticulocyte-type lipoxygenases with low-density lipoprotein renders the latter atherogenic and appears to be involved in the formation of atherosclerotic lesions.  相似文献   

8.
The oxidation of low density lipoprotein (LDL) by lipoxygenase has been implicated in the pathogenesis of atherosclerosis. It has been known that lipoxygenase-mediated lipid peroxidation proceeds in general via regio-, stereo- and enantio-specific mechanisms, but that it is sometimes accompanied by a share of random hydroperoxides as side reaction products. In this study we investigated the oxidation of various substrates (linoleic acid, methyl linoleate, phosphatidylcholine, isolated LDL, and human plasma) by the arachidonate 15-lipoxygenases from rabbit reticulocytes and soybeans aiming at elucidating the effects of substrate, lipoxygenase and reaction milieu on the contribution and mechanism of random oxidation and also the effect of antioxidant. The specific character of the rabbit 15-lipoxygenase reaction was confirmed under all conditions employed here. However, the specificity by soybean lipoxygenase was markedly dependent on the conditions. When phosphatidylcholine liposomes and LDL were oxygenated by soybean lipoxygenase, the product pattern was found to be exclusively regio-, stereo-, and enantio-random. When free linoleic acid was incorporated into PC liposomes and oxidized by soybean lipoxygenase, the free acid was specifically oxygenated, whereas esterified linoleate gave random oxidation products exclusively. Radical-scavenging antioxidants such as alpha-tocopherol, ascorbic acid and 2-carboxy-2,5,7,8-tetramethyl-6-chromanol selectively inhibited the random oxidation but did not influence specific product formation. It is assumed that the random reaction products originate from free radical intermediates, which have escaped the active site of the enzyme and thus may be accessible to radical scavengers. These data indicate that the specificity of lipoxygenase-catalyzed lipid oxidation and the inhibitory effects of antioxidants depend on the physico-chemical state of the substrate and type of lipoxygenase and that they may change completely depending on the conditions.  相似文献   

9.
Arachidonate 12-lipoxygenases with reference to their selective inhibitors   总被引:4,自引:0,他引:4  
Lipoxygenase is a dioxygenase recognizing a 1-cis,4-cis-pentadiene of polyunsaturated fatty acids. The enzyme oxygenates various carbon atoms of arachidonic acid as a substrate and produces 5-, 8-, 12- or 15-hydroperoxyeicosatetraenoic acid with a conjugated diene chromophore. The enzyme is referred to as 5-, 8-, 12- or 15-lipoxygenase, respectively. Earlier we found two isoforms of 12-lipoxygenase, leukocyte- and platelet-type enzymes, which were distinguished by substrate specificity, catalytic activity, primary structure, gene intron size, and antigenicity. Recently, the epidermis-type enzyme was found as the third isoform. Attempts have been made to find isozyme-specific inhibitors of 12-lipoxygenase, and earlier we found hinokitiol, a tropolone, as a potent inhibitor selective for the platelet-type 12-lipoxygenase. More recently, we tested various catechins of tea leaves and found that (-)-gallocatechin gallate was a potent and selective inhibitor of human platelet 12-lipoxygenase with an IC50 of 0.14 microM. The compound was much less active with 12-lipoxygenase of leukocyte-type, 15-, 8-, and 5-lipoxygenases, and cyclooxygenases-1 and -2.  相似文献   

10.
Lipoxygenases of bovine and human corneal epithelia were investigated. The bovine epithelium contained an arachidonate 12-lipoxygenase and a 15-lipoxygenase. The 12-lipoxygenase was found in the microsomal fraction, while the 15-lipoxygenase was mainly present in the cytosol (100 000 × g supernatant). 12S-Hydroxyeicosatetraenoic acid (12S-HETE) and 15S-hydroxyeicosa-tetraenoic acid (15S-HETE) were identified by GC-MS and chiral HPLC. BW A4C, an acetohydroxamic acid lipoxygenase inhibitor, reduced the biosynthesis of 12S-HETE and 15S-HETE by over 90% at 10 μ M. IC50 for the 12-lipoxygenase was 0.3 μM. The bovine corneal 12-lipoxygenase was compared with the 12-lipoxygenases of bovine platelets and leukocytes. All three enzymes metabolized 14C-labelled linoleic acid and α-linolenic acid poorly (5–16%) in comparison with [l4C]arachidonic acid. [14C]Docosahexaenoic acid and [14C]4,7,10,13,16-docosapentaenoic acid appeared to be less efficiently converted by the corneal enzyme than by the platelet and leukocyte enzymes. Immunohistochemical analysis of the bovine corneal epithelium using a polyconal antibody against porcine leukocyte 12-lipoxygenase gave positive staining. The cytosol of human corneal epithelium converted [14C]arachidonic acid to one prominent metabolite. The product co-chromatographed with 15S-HETE on reverse phase HPLC, straight phase HPLC and chiral HPLC. Our results suggest that human corneal epithelium contains a 15-lipoxygenase and that bovine corneal epithelium contains both a 15-lipoxygenase and a 12-lipoxygenase. The corneal 12-lipoxygenase appears to differ catalytically from earlier described bovine 12-lipoxygenases.  相似文献   

11.
Cloned 15-lipoxygenase has been expressed for the first time in eukaryotic and prokaryotic cells. Transfection of osteosarcoma cells with a mammalian expression plasmid containing the cDNA for human reticulocyte 15-lipoxygenase resulted in cell lines that were capable of oxidizing body arachidonic acid and linoleic acid. The lipoxygenase metabolites were identified by reverse-phase and straight-phase high pressure liquid chromatography, ultraviolet spectroscopy, and direct mass spectrometry, verifying that the cDNA for 15-lipoxygenase encodes an enzyme with authentic 15-lipoxygenase activity. Incubation of the transformed cells with arachidonic acid generated 15-hydroxyeicosatetraenoic acid (HETE) and 12-HETE in a ratio of 8.6 to 1, demonstrating that 15-lipoxygenase can also perform 12-lipoxygenation. Lesser amounts of 15-keto-ETE, four isomers of 8,15-diHETE, and one isomer of 14,15-diHETE were observed. Incubation with linoleic acid generated predominantly 13-hydroxy linoleic acid. The reaction was inhibited by eicosatetraynoic acid but not by indomethacin. Antibodies to a peptide corresponding to a unique region of the predicted amino acid sequence were generated and shown to react with one major band of 70 kDa on immunoblots of human leukocyte 15-lipoxygenase. To obtain antibodies to the full length enzyme, the cDNA was subcloned into a bacterial expression vector and was expressed as a fusion with the CheY protein. The overexpressed protein was readily purified from bacteria and was shown to be immunoreactive to the peptide-derived antibody. Antibodies raised to this recombinant enzyme did not cross-react with human leukocyte 5-lipoxygenase but did identify 15-lipoxygenase in rabbit reticulocytes, human leukocytes, and tracheal epithelial cells, suggesting that the 15-lipoxygenases from these different cell types are structurally related.  相似文献   

12.
Do 15-lipoxygenases have a common biological role?   总被引:4,自引:0,他引:4  
In contrast to the well-studied role of 5-lipoxygenase in the arachidonic acid cascade that occurs in inflammatory cells, the biological role of the related 15-lipoxygenases in the metabolism of free polyenoic fatty acids is far from clear. However, the activity of 15-lipoxygenases with more complex substrates may play a crucial role in the differentiation and maturation of certain cell types and in the oxidative modification of lipoproteins in the early stages of atherosclerosis.  相似文献   

13.
Lipoxygenases and cyclooxygenase are key mediators of arachidonic acid metabolism. The eicosanoids metabolites from these oxygynases have been shown to regulate the growth and death of cancer cells. This study determined the level of expression of 5-, 12-, 15-lipoxygenase and cyclooxygenase-2 expression in a cohort of breast cancer patients and their correlation with clinical outcomes. Compared with normal breast tissues, tumour tissues exhibited a significantly higher levels of 12-lipoxygenase and cyclooxygenase-2 (P<0.05), and significantly lower level of 15-lipoxygenase (P=0.05). Lobular carcinomas had a higher level of cyclooxygenase-2 and lower level of 15-lipoxygenase than ductal carcinomas. The lowest level of 15-lipoxygenase was seen in TNM3 and TNM4 tumours and from patients who died of breast cancer. Levels of 12- and 5-lipoxygenases were also particularly high in tumours from patients who died of breast cancer. This study shows that human breast tumours aberrantly express lipoxygenases and cyclooxygenase-2 and that decreased level of 15-lipoxygenase and raised level of cyclooxygenase-2 and 12-lipoxygenase has prognostic value in patients with breast cancer.  相似文献   

14.
In this study we present evidence for the existence of an intrinsic 12-lipoxygenase in the bovine polymorphonuclear leukocyte which differs from the well-known platelet 12-lipoxygenase. Intact bovine polymorphonuclear leukocytes synthesize predominantly 5-lipoxygenase products. However, this 5-lipoxygenase activity disappears completely upon sonication of the cells, whereas a 12-lipoxygenase activity then becomes apparent. This 12-lipoxygenase resembles the platelet 12-lipoxygenase in metabolizing arachidonic acid into 12(S)-hydroxyeicosatetraenoic acid and in being independent of Ca2+ as well as of ATP. The most striking difference between the two 12-lipoxygenases is their behaviour towards linoleic acid. While the platelet 12-lipoxygenase does not convert linoleic acid, the 12-lipoxygenase from bovine polymorphonuclear leukocytes, apparent only in the cell-free system, converts linoleic acid into 13-hydroxyoctadecadienoic acid as efficiently as it converts arachidonic acid into 12-hydroxyeicosatetraenoic acid. This provides a convenient method to distinguish both 12-lipoxygenase activities. The fact that this new 12-lipoxygenase is able to metabolize linoleic acid into 13-hydroxyoctadecadienoic acid suggests that this enzyme, in contrast to platelet 12-lipoxygenase, resembles 5-lipoxygenases in showing a preference for hydrogen abstraction at a position which is determined by the distance to the carboxylic end of the fatty acid.  相似文献   

15.
We have produced a model to define the linoleate-binding pocket of pea 9/13-lipoxygenase and have validated it by the construction and characterization of eight point mutants. Three of the mutations reduced, to varying degrees, the catalytic centre activity (kcat) of the enzyme with linoleate. In two of the mutants, reductions in turnover were associated with changes in iron-coordination. Multiple sequence alignments of recombinant plant and mammalian lipoxygenases of known positional specificity, and the results from numerous other mutagenesis and modelling studies, have been combined to discuss the possible role of the mutated residues in pea 9/13-lipoxygenase catalysis. A new nomenclature for recombinant plant lipoxygenases based on positional specificity has subsequently been proposed. The null-effect of mutating pea 9/13-lipoxygenase at the equivalent residue to that which controlled dual positional specificity in cucumber 13/9-lipoxygenase, strongly suggests that the mechanisms controlling dual positional specificity in pea 9/13-lipoxygenase and cucumber 13/9-lipoxygenase are different. This was supported from modelling of another isoform of pea lipoxygenase, pea 13/9-lipoxygenase. Dual positional specificity in pea lipoxygenases is more likely to be determined by the degree of penetration of the methyl terminus of linoleate and the volume of the linoleate-binding pocket rather than substrate orientation. A single model for positional specificity, that has proved to be inappropriate for arachidonate-binding to mammalian 5-, 12- and 15-lipoxygenases, would appear to be true also for linoleate-binding to plant 9- and 13-lipoxygenases.  相似文献   

16.
To determine identities of mediators and mechanisms for their release from pulmonary airway epithelial cells, we examined the capacities of epithelial cells from human, dog and sheep airways to incorporate, release and oxygenate arachidonic acid. Purified cell suspensions were incubated with radiolabeled arachidonic acid and/or ionophore A23187; fatty acid esterification and hydrolysis were traced chromatographically, and oxygenated metabolites were identified using high-pressure liquid chromatography and mass-spectrometry. In each species, cellular uptake of 10 nM arachidonic acid was concentrated in the phosphatidylcholine, phosphatidylinositol and phosphatidylethanolamine fractions, and subsequent incubation with 5 microM A23187 caused release of 10-12% of the radiolabeled pool selectively from phosphatidylcholine and phosphatidylinositol. By contrast, the products of arachidonic acid oxygenation were species-dependent and in the case of human cells were also novel: A23187-stimulated human epithelial cells converted arachidonic acid predominantly to 15-hydroxyeicosatetraenoic acid (15-HETE) and two distinct 8,15-diols in addition to prostaglandin (PG) E2 and PGF2 alpha. Cell incubation with exogenous arachidonic acid (2.0-300 microM) led to progressively larger amounts of 15-HETE and the dihydroxy, epoxyhydroxy and keto acids characteristic of arachidonate 15-lipoxygenase. Both dog and sheep cells converted exogenous or endogenous arachidonic acid to low levels of 5-lipoxygenase products, including leukotriene B4 without significant 15-lipoxygenase activity. In the cyclooxygenase series, sheep cells selectively released PGE2, while dog cells generated predominantly PGD2. The findings demonstrate that stereotyped esterification and phospholipase activities are expressed at uniform levels among airway epithelial cells from these species, but pathways for oxygenating arachidonic acid allow mediator diversity depending greatly on species and little on arachidonic acid presentation.  相似文献   

17.
The 5-, 12-, and 15-lipoxygenases contain a highly conserved sequence of the form His-(X)4-His-(X)4-His-(X)17-His-(X)8-His which represents a potential binding site for non heme iron to the protein. The importance of selected amino acids within this His cluster for the activity of human 5-lipoxygenase was investigated by site-directed mutagenesis using bacteria and insect cells expression systems. After single mutation of each of the 5 His residues at positions 363, 368, 373, 391, and 400 by Ser, Cys, or Lys, measurable levels of 5-lipoxygenase activity could be recovered in Escherichia coli only for the Ser363 and Cys363 mutants, with most amino acid substitutions causing a decrease in the levels of expression of the soluble protein. In contrast, 25-80% of soluble 5-lipoxygenase activity was recovered after the replacement of several of the hydrophobic amino acids in this region: Tyr384 by Ser or Phe; Phe394 by Trp and Val375 by Ala. Met436 could be replaced by Leu with little effect on 5-lipoxygenase activity or turnover inactivation half-time. High levels of mutant 5-lipoxygenases containing a Ser residue instead of His at each of the five positions were also expressed in Spodoptera frugiperda (Sf9) cells infected with recombinant baculovirus. The specific activity (58-75% of control) and the reaction time course of the Ser363, Ser391, and Ser400 mutants were comparable with that of native 5-lipoxygenase whereas inactive proteins were obtained for the Ser368 and Ser373 mutants. These results show that His368 and His373 residues are important for 5-lipoxygenase activity and that the other conserved His363, His391, His400, and Met436 residues are not crucial for the catalytic cycle or for the mechanism of self-inactivation of 5-lipoxygenase.  相似文献   

18.
Arachidonate 15-lipoxygenase was purified from human eosinophil-enriched leukocytes after showing that 15-lipoxygenase activity was 100-fold greater in eosinophils than in neutrophils. Partial purification was achieved using ammonium sulfate precipitation, cation-exchange and hydrophobic-interaction chromatography. New evidence is presented suggesting that 15-lipoxygenase has electrostatic and hydrophobic properties distinct from 5-lipoxygenase. In addition, ATP is shown to inhibit, and phosphatidylcholine is shown to stimulate, 15-lipoxygenase, suggesting a regulatory role for these compounds in the lipoxygenation of arachidonic acid.  相似文献   

19.
Cellular and subcellular distribution of 5- and 12-lipoxygenases and cyclooxygenase enzymes were investigated in human granulosa cells from preovulatory follicles using light and electron microscope immunocytochemistry. The results demonstrated that all three enzymes are present in granulosa cells but not in minor contaminating red blood cells. While the distribution of cyclooxygenase and 12-lipoxygenase was relatively uniform among the granulosa cells, 5-lipoxygenase was not uniformly distributed among these cells. All three enzymes are present in microvillus plasma membranes, rough endoplasmic reticulum, cytoplasm, nuclear membranes and chromatin. In summary, 5- and 12-lipoxygenases and cyclooxygenase enzymes, which catalyze the transformation of arachidonic acid into different eicosanoids, are present in several subcellular organelles including nuclei of granulosa cells from preovulatory follicles.  相似文献   

20.
Arachidonate 5-lipoxygenase is an enzyme that catalyzes the oxygenation of arachidonic acid, producing 5-hydroperoxy acid. This enzymatic reaction initiates the biosynthesis of various bioactive leukotrienes. An antiserum was raised in a rabbit against the purified 5-lipoxygenase of porcine leukocytes, and various types of porcine leukocytes were immunostained by use of the antibody. As examined by light and electron microscopy, neutrophils and eosinophils were positively stained. The 5-lipoxygenase was localized in the cytoplasm but not in the plasma membrane and subcellular organelles of the positively stained cells. In contrast, lymphocytes were unstained. In porcine ileum, the majority of 5-lipoxygenase-positive cells were eosinophils and mast cells resident in the lamina propria mucosae, whereas parenchymal cells were not stained. In porcine lung, certain bronchiolar or bronchial epithelial cells were clearly immunostained, in addition to eosinophils and mast cells found in the interstitium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号