首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Escherichia coli ada gene protein coding region under the control of the yeast alcohol dehydrogenase promoter in the extrachromosomally replicating yeast expression vectors pADHO6C and pVT103LO6C was introduced into the wild-type yeast strains, YNN-27 and FF-18733, and the repair deficient mutants LN-1 (rad1-1), VV-5 (rad6-1), C5-6 (rad52-1) and FF-18742 (rad52::URA3). This resulted in the expression of 3950, 1900, 1870, 1620, 1320 and 1420 fmol ada-encoded ATase/mg protein respectively: transformation with the parent vectors resulted in ATase activities of 3-17 fmol/mg protein. The wild-types, rad1-1 and rad6-1 yeast expressing the bacterial ATase showed increased resistance to the toxic and mutagenic effects of N-methyl-N'-nitro-N- nitrosoguanidine (MNNG). Expression of ATase in the rad52-1 and rad52::URA3 mutants neither complemented their sensitivity, nor reduced the mutagenic effects of this agent. These results suggest that whilst a portion of the toxic and mutagenic lesions induced by MNNG can be repaired in yeast by the E.coli Ada protein in a RAD1- and RAD6-independent manner, the RAD52 gene product may be essential for the complete functioning of the Ada ATase. This is the first suggestion of a possible cofactor requirement for ATase.  相似文献   

2.
Expression of the ogt gene in wild-type and ada mutants of E. coli.   总被引:7,自引:3,他引:4       下载免费PDF全文
O6-alkylguanine (O6-AlkG) DNA alkyltransferase (ATase) and alkylphosphotriester (AlkP) ATase activity have been quantitated individually in extracts of various E. coli strains by means of ATase specific DNA substrates. O6-AlkG ATase activity was higher than AlkP ATase activity in the wild-type strains F26, AB1157 and SB229 and in the ada- mutants PJ1, PJ3, PJ5 and PJ6 indicating a 5-70 times higher level of expression of the ogt gene than the ada gene. The ada- mutant strains BS23, BS73 and GW5352 expressed O6-AlkG ATase but not AlkP ATase activity indicating expression only of the ogt gene. Southern analysis of DNA from F26, BS23, BS73, PJ1 and GW5352 showed a consistent pattern of hybridisation to an ogt probe but not to an ada probe. Exposure of E. coli to adaptive doses of N-methyl-N-nitro-N-nitroso-guanidine (MeNNG) caused an increase in AlkP ATase activity in F26, AB1156, SB229, PJ1, PJ3, PJ5 and PJ6. O6-AlkG ATase activity also increased in F26, AB1157 and SB229 but decreased to almost undetectable levels in all other strains examined except PJ3 where it remained constant. MeNNG increased ada mRNA abundance in F26 but no ada mRNA was detected in BS23, BS73 or GW5352: there was no evidence for increased ogt mRNA in any of the strains examined. In a limited survey, other bacterial strains have been shown to possess an ogt-like ATase activity.  相似文献   

3.
When Esherichia coli cells are exposed to a low level of simple alkylating agents, they induce the adaptive response which renders them more resistant to the killing and the mutagenic effects of the same or other alkylating agents. This paper describes the isolation of one strain that was deficient in mutagenic adaptation and five that were deficient in both mutagenic and killing adaptation, confirming previous suggestions that killing and mutagenic adaptation are, at least to some extent, separable. These six strains have been called Ada mutants. They were more sensitive to the killing and mutagenic effects of N-methy-N'-nitro-N-nitrosoguanidine (MNNG) than the unadapted Ada+ parent. Thus, the adaptation pathway is responsible for circumventing some alkylation-induced damage even in cells that are preinduced. The increase in mutation frequency seen in Ada cells treated with MNNG was the same whether the cells were lexA+ or lexA, showing that the extra mutations found in Ada- strains do not depend upon the SOS pathway. Ada strains accumulated more O6-methyl guanine lesions than the Ada+ parent on prolonged exposure to MNNG, and this supports the idea that O6-methyl guanine is the most important lesion for MNNG-induced mutagenesis. The ada mutations have been shown to map in the 47 to 53-min region of the E. coli chromosome.  相似文献   

4.
Escherichia coli has two O6-methylguanine DNA methyltransferases that repair alkylation damage in DNA and are encoded by the ada and ogt genes. The ada gene of E. coli also regulates the adaptive response to alkylation damage. The closely related species Salmonella typhimurium possesses methyltransferase activities but does not exhibit an adaptive response conferring detectable resistance to mutagenic methylating agents. We have previously cloned the ada-like gene of S. typhimurium (adaST) and constructed an adaST-deletion derivative of S. typhimurium TA1535. Unexpectedly, the sensitivity of the resulting strain to the mutagenic action of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) was similar to that of the parent strain. In this study, we have cloned and sequenced the ogt-like gene of S. typhimurium (ogtST) and characterized ogtST-deletion derivatives of TA1535. The ogtST mutant was more sensitive than the parent strain to the mutagenicity of MNNG and other simple alkylating agents with longer alkyl groups (ethyl, propyl, and butyl). The adaST-ogtST double mutant had a level of hypersensitivity to these agents similar to that of the ogtST single mutant. The ogtST and the adaST-ogtST mutants also displayed a two to three times higher spontaneous mutation frequency than the parent strain and the adaST mutant. These results indicate that the OgtST protein, but not the AdaST protein, plays a major role in protecting S. typhimurium from the mutagenic action of endogenous as well as exogenous alkylating agents.  相似文献   

5.
Bacillus subtilis ada operon encodes two DNA alkyltransferases.   总被引:11,自引:4,他引:7       下载免费PDF全文
  相似文献   

6.
H Kataoka  J Hall    P Karran 《The EMBO journal》1986,5(12):3195-3200
Dual expression vectors derived from pSV2gpt and encoding all or part of the Escherichia coli ada+ gene have been constructed. Following transformation into an E. coli ada strain or transfection and stable integration into the genome of Chinese hamster ovary (CHO) cells, plasmid vectors containing the whole ada+ gene conferred resistance to both killing and mutagenesis by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). Thus, the bacterial DNA repair gene was functionally expressed in the mammalian cells. Plasmids containing an N-terminal fragment of the ada+ gene which encoded only one of the two methyltransferase activities of the Ada protein did not significantly protect E. coli or CHO cells against MNNG. These results are consistent with the central role of the intact ada+ gene in controlling the adaptive response to alkylating agents in E. coli. However, the data further suggest that some alkylation lesions in DNA, such as O6-methylguanine, may exert partly different biological effects in E. coli and mammalian cells.  相似文献   

7.
Summary The Escherichia coli recA protein coding region was ligated into an extrachromosomally replicating yeast expression vector downstream of the yeast alcohol dehydrogenase promoter region to produce plasmid pADHrecA. Transformation of the wild-type yeast strains YNN-27 and 7799-4B, as well as the recombination-deficient rad52-t C5-6 mutant, with this shuttle plasmid resulted in the expression of the bacterial 38 kDa RecA protein in exponential phase cells. The wild-type YNN27 and 7799-4B transformants expressing the bacterial recA gene showed increased resistance to the toxic effects of both ionizing and ultraviolet radiation. RecA moderately stimulated the UV-induced mutagenic response of 7799-4B cells. Transformation of the rad52-t mutant with plasmid pADHrecA did not result in the complementation of sensitivity to ionizing radiation. Thus, the RecA protein endows the yeast cells with additional activities, which were shown to be error-prone and dependent on the RAD52 gene.  相似文献   

8.
The ada gene of Escherichia coli encodes O6-methylguanine-DNA methyltransferase, which serves as a positive regulator of the adaptive response to alkylating agents and as a DNA repair enzyme. The gene which can make an ada-deficient strain of E. coli resistant to the cell-killing and mutagenic effects of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) has been cloned from Salmonella typhimurium TA1538. DNA sequence analysis indicated that the gene potentially encoded a protein with a calculated molecular weight of 39,217. Since the nucleotide sequence of the cloned gene shows 70% similarity to the ada gene of E. coli and there is an ada box-like sequence (5'-GAATTAAAACGCA-3') in the promoter region, we tentatively refer to this cloned DNA as the adaST gene. The gene encodes Cys-68 and Cys-320, which are potential acceptor sites for the methyl group from the damaged DNA. The multicopy plasmid carrying the adaST gene significantly reduced the frequency of mutation induced by MNNG both in E. coli and in S. typhimurium. The AdaST protein encoded by the plasmid increased expression of the ada'-lacZ chromosome fusion about 5-fold when an E. coli strain carrying both the fusion operon and the plasmid was exposed to a low concentration of MNNG, whereas the E. coli Ada protein encoded by a low-copy-number plasmid increased it about 40-fold under the same conditions. The low ability of AdaST to function as a positive regulator could account for the apparent lack of an adaptive response to alkylation damage in S. typhimurium.  相似文献   

9.
10.
11.
Escherichia coli expresses two DNA repair methyltransferases (MTases) that repair the mutagenic O6-methylguanine (O6MeG) and O4-methylthymine (O4MeT) DNA lesions; one is the product of the inducible ada gene, and here we confirm that the other is the product of the constitutive ogt gene. We have generated various ogt disruption mutants. Double mutants (ada ogt) do not express any O6MeG/O4MeT DNA MTases, indicating that Ada and Ogt are probably the only two O6MeG/O4MeT DNA MTases in E. coli. ogt mutants were more sensitive to alkylation-induced mutation, and mutants arose linearly with dose, unlike ogt+ cells, which had a threshold dose below which no mutants accumulated; this ogt(+)-dependent threshold was seen in both ada+ and ada strains. ogt mutants were also more sensitive to alkylation-induced killing (in an ada background), and overexpression of the Ogt MTase from a plasmid provided ada, but not ada+, cells with increased resistance to killing by alkylating agents. The induction of the adaptive response was normal in ogt mutants. We infer from these results that the Ogt MTase prevents mutagenesis by low levels of alkylating agents and that, in ada cells, the Ogt MTase also protects cells from killing by alkylating agents. We also found that ada ogt E. coli had a higher rate of spontaneous mutation than wild-type, ada, and ogt cells and that this increased mutation occurred in nondividing cells. We infer that there is an endogenous source of O6MeG or O4MeT DNA damage in E. coli that is prevalent in nondividing cells.  相似文献   

12.
Mutations induced by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) were strongly enhanced in the presence of o-vanillin in E. coli B. The enhancement was also observed in uvrA, umuC, recA, polA, or alkB mutants. This effect was lower in an alkA mutant, but was restored in an alkA umuC double mutant. By contrast, the enhancing effect was almost blocked in an ada and ada umuC double mutant. It was necessary to add simultaneously MNNG and o-vanillin to the growth medium. Further investigations were conducted on the induction of ada and umuC genes using ada'-lacZ' and umuC'-lacZ' plasmids. o-Vanillin suppressed the induction of the ada gene by MNNG treatment, but not that of the umuC gene. In fact expression of the umuC gene was induced by lower concentrations of MNNG in the presence of o-vanillin. The results suggest that o-vanillin inhibits induction of the adaptive response, and consequently, the MNNG-induced mutation frequency is increased due to unrepaired O6-methylguanine.  相似文献   

13.
In the development of mutation assay systems, a number of approaches have been performed with a particular view to improve sensitivity. The inhibition of mutagen-efflux from tester bacteria might lead to increased mutagenic activity as the concentration of mutagen increases inside the cell. In this study, we constructed a series of Escherichia coli CC strains lacking the TolC protein to determine if mutation is actually enhanced by the inhibition of mutagen reflux. TolC is an outer-membrane protein that forms part of an excretion system in E. coli. The frequency of induction of mutations by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), N-ethyl-N'-nitro-N-nitrosoguanidine (ENNG) and ethyl methanesulfonate (EMS) were significantly higher in TolC-deficient strain KA796-1/CC102 than in TolC-proficient strains, especially that of MNNG was seven times higher and detected at lower doses than in the parent strain. In a KA796-1/CC108 TolC-deficient strain, mutation induced by Trp-P-2 was detected at significant levels, even at low doses that did not induce detectable levels of mutation in the parent strain KA796/CC108. When the wild-type E. coli tolC gene was introduced into a strain lacking the gene, TolC function was restored and the frequency of induction by MNNG became similar to that of the wild-type. In contrast, introduction of a mutant tolC gene did not complement the TolC deficiency and the frequency of MNNG-induced mutations remained high. These results suggest that some mutagens are excreted at least in part via the TolC system, and that the lack of functional TolC increases the susceptibility of bacteria to many mutagens.  相似文献   

14.
The E. coli gene ogt encodes the DNA repair protein O6-alkylguanine-DNA-alkyltransferase (O6-AlkG ATase). The protein coding region of the gene was cloned into a multicopy expression vector to obtain high yields of the enzyme (approximately 0.2% of total protein) which was purified to apparent homogeneity by affinity, molecular exclusion and reverse-phase chromatography. Good correlation was found between the determined and predicted amino acid compositions. The ability of the purified protein to act on O6-methylguanine (O6-MeG), O6-ethylguanine (O6-EtG) and O4-methylthymine (O4-MeT) in self-complementary dodecadeoxyribonucleotides was compared to that of 19 kDa fragment of the related ada-protein. With both proteins the rate order was O6-MeG greater than O6-EtG greater than O4-MeT, however, the ogt protein was found to repair O6-MeG, O6-EtG and O4-Met, 1.1, 173 and 84 times, respectively, faster than the ada protein.  相似文献   

15.
The cytotoxic and mutagenic properties of nitrosocimetidine (NC), together with its ability to induce the adaptive response DNA-repair pathway were compared with those of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) using Escherichia coli as test organism. MNNG was found to be 250-fold more cytotoxic and 500-fold more mutagenic than NC. Prior cultivation of E. coli in low concentrations of NC protected it against the cytotoxic and/or mutagenic effects of challenge with either NC or MNNG or methyl methanesulphonate (MMS). Induction of the adaptive response by prior cultivation in low concentrations of MNNG reduced the mutagenic and cytotoxic effects of subsequent NC challenge. These results lead us to conclude that although NC is a less potent mutagen than MNNG, the DNA lesions it produces are capable of not only inducing, but also of being repaired by, the adaptive response.  相似文献   

16.
W J Mackay  S Han    L D Samson 《Journal of bacteriology》1994,176(11):3224-3230
The Escherichia coli Ada and Ogt DNA methyltransferases (MTases) are known to transfer simple alkyl groups from O6-alkylguanine and O4-alkylthymine, directly restoring these alkylated DNA lesions to guanine and thymine. In addition to being exquisitely sensitive to the mutagenic effects of methylating agents, E. coli ada ogt null mutants display a higher spontaneous mutation rate than the wild type. Here, we determined which base substitution mutations are elevated in the MTase-deficient cells by monitoring the reversion of six mutated lacZ alleles that revert via each of the six possible base substitution mutations. During exponential growth, the spontaneous rate of G:C to A:T transitions and G:C to C:G transversions was elevated about fourfold in ada ogt double mutant versus wild-type E. coli. Furthermore, compared with the wild type, stationary populations of the MTase-deficient E. coli (under lactose selection) displayed increased G:C to A:T and A:T to G:C transitions (10- and 3-fold, respectively) and increased G:C to C:G, A:T to C:G, and A:T to T:A transversions (10-, 2.5-, and 1.7-fold, respectively). ada and ogt single mutants did not suffer elevated spontaneous mutation rates for any base substitution event, and the cloned ada and ogt genes each restored wild-type spontaneous mutation rates to the ada ogt MTase-deficient strains. We infer that both the Ada MTase and the Ogt MTase can repair the endogenously produced DNA lesions responsible for each of the five base substitution events that are elevated in MTase-deficient cells. Simple methylating and ethylating agents induced G:C to A:T and A:T to G:C transitions in these strains but did not significantly induce G:C to C:G, A:T to C:G, and A:T to T:A transversions. We deduce that S-adenosylmethionine (known to e a weak methylating agent) is not the only metabolite responsible for endogenous DNA alkylation and that at least some of the endogenous metabolites that cause O-alkyl DNA damage in E. coli are not simple methylating or ethylating agents.  相似文献   

17.
Chlorambucil (CLB; N,N-bis(2-chloroethyl)-p-aminophenylbutyric acid) and its biologically active beta-oxidation product phenylacetic acid mustard (PAM; N,N-bis(2-chloroethyl)-p-aminophenylacetic acid) are bifunctional aromatic alkylators. CLB is in wide clinical use as an anticancer drug and also as an immunosuppressant. The chemical structures indicate that CLB and PAM are mutagenic, teratogenic and carcinogenic, but the mode of action has remained obscure. We have investigated the biological effects of CLB and PAM with DNA repair-deficient Escherichia coli strains. In contrast to MNNG (N-methyl-N'-nitro-N-nitrosoguanine), CLB and PAM were not toxic to E. coli, but permeabilization of the outer membrane of the cells through use of polymyxin B nonapeptide (PMBN) rendered them susceptible to these compounds. The importance of DNA repair, shown by reversal of damage and attenuation of the toxicity of CLB and PAM, was indicated by the susceptibility of cells lacking O(6)-methylguanine-DNA methyltransferase I and II (ada ogt). Similarly, the protective role of base excision repair (BER) was substantiated by demonstration of an even more increased susceptibility to CLB and PAM of cells lacking 3-methyladenine-DNA glycosylase I and II (alkA1 tag-1). Cells deficient in mismatch repair (mutS) appeared to be slightly more sensitive than normal cells to CLB and PAM, although no such sensitivity to MNNG was observed. This implicates the role of mismatches in CLB- and PAM-related cytotoxicity. It is generally believed that bifunctional alkylating agents, like CLB and PAM, exert their cytotoxic action via DNA cross-linking. Our results with O(6)-methyltransferase- and 3-methyladenine-DNA glycosylase-deficient cells indicate that removal of the adducts prior to the formation of cross-links is an important mechanism maintaining cell viability. We conclude that PMBN permeabilization provides a valuable tool to investigate genetically engineered E. coli cells, whose outer membrane is not naturally permeable to mutagens or other interesting compounds.  相似文献   

18.
Roles of two types of O6-methylguanine-DNA methyltransferases in DNA repair   总被引:4,自引:0,他引:4  
Escherichia coli possesses 2 types of O6-methylguanine-DNA methyltransferases, one inducible and the other constitutive. These enzymes are coded by the ada and the ogt genes, respectively. Using a synthetic ogt-specific probe, we mapped ogt at 29.4 min, near the 5'-flanking region of the nirR gene, on the E. coli chromosome. To elucidate the roles of the 2 types of methyltransferases in DNA repair, we constructed mutant strains which lack either one or both of the genes. In either the ada+ or the ada- background, the ogt mutation had no effect on cell survival after N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) treatment. On the other hand, ada- ogt- cells were more prone to mutation as compared to the ada- ogt+ cells exposed to MNNG. The frequency of spontaneous mutation of cells defective in either one or both of the genes was the same, however, the introduction of the ogt+ plasmid into the cells produced a 2-3-fold decrease in the frequency of spontaneous mutation. O6-Methylguanine-DNA methyltransferases appear to eliminate premutagenic DNA lesions not only from cells exposed to alkylating agents but also from those grown in the absence of the agents.  相似文献   

19.
20.
The role of DNA gyrase in handling DNA damages induced by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) was examined with two Escherichia coli strains, KL161 and KL166. The two strains are isogenic except that KL166 harbors a mutation at the nalA (gyrA) locus which specifies one of the two subunits of DNA gyrase. We treated the two strains with several different types of mutagenic agents and found the nalA strain to be highly resistant to MNNG-induced killing and mutagenic effects as compared with the parental strain. The MNNG resistance was specific, since the two strains were about equally sensitive to methyl methane sulfonate, ethyl methane sulfonate, and UV and gamma radiations. We pulse-labeled the two strains with [(3)H]uridine and (14)C-amino acids after MNNG treatment to analyze RNA and protein synthetic rates. The pulse-labeled proteins were also separated on polyacrylamide gels. The results show that pulse-labeled RNA and proteins persisted in the nalA strain but declined rapidly in the parental strain after MNNG treatment. We compared membrane-free nucleoid preparations from the two strains by sucrose density gradient centrifugation and found a difference in nucleoid organization between the two strains. The nucleoid of the nalA strain, unlike that of the parental strain, may have a highly ordered structure, as indicated by its resistance to ethidium bromide-induced relaxation. The ability of the two strains to express an adaptive response to MNNG was determined. We found that the resistance to MNNG killing and mutagenesis by the nalA strain cannot be further increased by adaptive treatment. These results suggest that an alteration in DNA gyrase may have profound effects on E. coli chromosome organization and base methylation by MNNG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号