首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 451 毫秒
1.
The impact of multiple invading species can be magnified owing to mutual facilitation--termed 'invasional meltdown'--but invasive species can also be adversely affected by their interactions with other invaders. Using a unique reciprocal host-parasite relationship between a bitterling fish (Rhodeus amarus) and unionid mussels, we show that an invasive mussel reverses the roles in the relationship. Bitterling lay their eggs into mussel gills, and mussel larvae parasitize fish. Bitterling recently colonized Europe and parasitize all sympatric European mussels, but are unable to use a recently invasive mussel, Anodonta woodiana. The parasitic larvae of A. woodiana successfully develop on R. amarus, whereas larvae of European mussels are rejected by bitterling. This demonstrates that invading species may temporarily benefit from a coevolutionary lag by exploiting evolutionarily naive hosts, but the resulting relaxed selection may facilitate its exploitation by subsequent invading species, leading to unexpected consequences for established interspecific relationships.  相似文献   

2.
The coevolutionary dynamics between European bitterling Rhodeus amarus and freshwater unionid mussels, which the former parasitize by laying eggs on their gills, were tested. In a series of experiments fish preferences and mussel responses were compared in parasites and hosts of recent (Europe) and ancient (Asia) sympatry. Rhodeus amarus readily oviposited on the gills of all mussel species tested. Fish that laid their eggs on the gills of Asian Anodonta woodiana, however, suffered a dramatic reduction in reproductive success compared to fish that oviposited on the gills of European mussels: Unio pictorum , Unio tumidus , Anodonta anatina and Anodonta cygnea . This difference was the result of egg ejection behaviour by mussels rather than the unsuitability of the internal gill environment for European bitterling embryo development. The ejection response of mussels with a long sympatry with European bitterling was considerably more pronounced than that of mussels with a substantially shorter sympatry. The data support a coevolutionary arms race between bitterling and mussels and point to an evolutionary lag in the relationship between R. amarus and its European mussel hosts.  相似文献   

3.
The European bitterling Rhodeus sericeus (Cyprinidae) spawns in the gills of freshwater mussels (Unionidae) and shows some obvious adaptations to this type of spawning, such as the development of an ovipositor. Furthermore, recent studies have shown that the fish avoid species of mussels that have a high likelihood of ejecting their eggs prematurely. This leads to the question of whether the interaction between bitterling and mussels could represent a case of co‐evolution, involving evolutionary responses by both species to selection imposed by the other. The evidence for and against co‐evolution is reviewed, incorporating new results from two sets of experiments designed to test for adaptive choices by bitterling according to the mussels' sex and reproductive state, as well as a preliminary study of potential benefits for mussels from exposure to bitterling. Host preferences by bitterling, both among and within mussel species, may indeed have evolved in response to differences in benefits for offspring survival. There is no evidence yet for any benefits to mussels from receiving eggs, whereas there are costs due to reduced ventilation rates when the gills contain bitterling eggs. While there are differences among mussel species and individuals in their tendency to reject bitterling embryos, these differences do not provide strong evidence for co‐evolution. For example, they may reflect differences in host physiology such as ventilation rate and generalized responses to expelling objects from their gills. Therefore, while bitterling are well adapted for their obligate spawning relationship with mussels, it has been much more difficult to find evidence for adaptations by mussels for dealing with bitterling. This suggests that any co‐evolutionary dynamics between bitterling and mussels may be asymmetric, with stronger responses to selection by the fish than by mussels.  相似文献   

4.
Host–parasite relationships are often characterized by the rapid evolution of parasite adaptations to exploit their host, and counteradaptations in the host to avoid the costs imposed by parasitism. Hence, the current coevolutionary state between a parasite and its hosts is predicted to vary according to the history of sympatry and local abundance of interacting species. We compared a unique reciprocal coevolutionary relationship of a fish, the European bitterling (Rhodeus amarus) and freshwater mussels (Unionidae) between areas of recent (Central Europe) and ancient (Turkey) sympatry. Bitterling parasitize freshwater mussels by laying their eggs in the gills of mussel and, in turn, mussel larvae (glochidia) parasitize the fish. We found that all bitterling from both regions avoided one mussel species. Preferences among other mussel species tended to be related to local mussel abundance rather than duration of sympatry. Individual fish were not consistent in their oviposition choices, precluding the evolution of host‐specific lineages. Mussels were demonstrated to have evolved strong defenses to bitterling parasitism in the area of ancient sympatry, but have no such defenses in the large areas of Europe where bitterling are currently invasive. Bitterling avoided glochidia infection irrespective of the duration of sympatry.  相似文献   

5.
Reichard  M. 《Journal of fish biology》2003,63(S1):255-255
Bitterlings (Acheilognatinae) are a monophyletic group of cyprinid fishes that lay their eggs in the gill chamber of freshwater mussels. They have evolved many behavioural, morphological and physiological adaptations to the symbiosis. Female bitterling develop a long ovipositor that insert into the exhalant siphon of a mussel and males fertilize the eggs by releasing sperm over the inhalant siphon of the mussel. Embryos hatch within 2 days but develop inside the mussel for further 3 to 6 weeks. Embryos are adapted to the low oxygen environment in the mussel's gill chamber. Both males and females discriminate among mussels in relation to their quality as host for developing embryos. On the other hand, mussels used for oviposition have larvae that obligate ectoparasites on fish. Here I review current knowledge on the status of the symbiosis, developmental and behavioural adaptations by bitterling and mussel and summarize costs and benefits to both symbionts. Further, I use a recent well‐resolved bitterling phylogeny to emphasize the potential of this model system to study the evolution of this symbiosis, which is a part of the ongoing study.  相似文献   

6.
Spence, R. and Smith, C. 2011. Rose bitterling (Rhodeus ocellatus) embryos parasitize freshwater mussels by competing for nutrients and oxygen. —Acta Zoologica (Stockholm) 00 : 1–6. Understanding how parasites inflict fitness costs on their hosts is a key question in host–parasite biology. Rose bitterling (Rhodeus ocellatus) are small cyprinid fish that place their eggs in the gills of living freshwater mussels. The embryos complete their development inside the mussel gill and emerge as free‐swimming larvae after approximately 4 weeks. Bitterling show a range of specialized adaptations for using mussels as a spawning substrate, and the presence of bitterling embryos has been shown to retard the growth of mussels. We compared the development and survival of embryos incubated in either mussels or Petri dishes and exposed to either nutrient‐rich or nutrient‐poor pond water. Embryonic development rate was significantly faster in Petri dishes, probably as a result of oxygen limitation in mussel gills. Embryo survival rate was significantly higher in nutrient‐rich than filtered water, suggesting that the embryos obtained a nutritional benefit prior to emergence from the host. The results imply that bitterling embryos compete for oxygen and nutrients with their host mussel, as well as each other, and in this way, impose a growth cost on mussels.  相似文献   

7.
Generalist parasites have the capacity to infect multiple hosts. The temporal pattern of host specificity by generalist parasites is rarely studied, but is critical to understanding what variables underpin infection and thereby the impact of parasites on host species and the way they impose selection on hosts. Here, the temporal dynamics of infection of four species of freshwater mussel by European bitterling fish (Rhodeus amarus) was investigated over three spawning seasons. Bitterling lay their eggs in the gills of freshwater mussels, which suffer reduced growth, oxygen stress, gill damage and elevated mortality as a result of parasitism. The temporal pattern of infection of mussels by European bitterling in multiple populations was examined. Using a Bernoulli Generalized Additive Mixed Model with Bayesian inference it was demonstrated that one mussel species, Unio pictorum, was exploited over the entire bitterling spawning season. As the season progressed, bitterling showed a preference for other mussel species, which were inferior hosts. Temporal changes in host use reflected elevated density-dependent mortality in preferred hosts that were already infected. Plasticity in host specificity by bitterling conformed with the predictions of the host selection hypothesis. The relationship between bitterling and their host mussels differs qualitatively from that of avian brood parasites.  相似文献   

8.
Predicting the impacts of non-native species remains a challenge. As populations of a species are genetically and phenotypically variable, the impact of non-native species on local taxa could crucially depend on population-specific traits and adaptations of both native and non-native species. Bitterling fishes are brood parasites of unionid mussels and unionid mussels produce larvae that parasitize fishes. We used common garden experiments to measure three key elements in the bitterling–mussel association among two populations of an invasive mussel (Anodonta woodiana) and four populations of European bitterling (Rhodeus amarus). The impact of the invasive mussel varied between geographically distinct R. amarus lineages and between local populations within lineages. The capacity of parasitic larvae of the invasive mussel to exploit R. amarus was higher in a Danubian than in a Baltic R. amarus lineage and in allopatric than in sympatric R. amarus populations. Maladaptive oviposition by R. amarus into A. woodiana varied among populations, with significant population-specific consequences for R. amarus recruitment. We suggest that variation in coevolutionary states may predispose different populations to divergent responses. Given that coevolutionary relationships are ubiquitous, population-specific attributes of invasive and native populations may play a critical role in the outcome of invasion. We argue for a shift from a species-centred to population-centred perspective of the impacts of invasions.  相似文献   

9.
10.
Invasive species represent a major threat with both direct and indirect effects on natural ecosystems, including effects on established and coevolved relationships. In a series of experiments, we examined how the interaction between two native species, a unionid mussel (Unio pictorum) and the European bitterling (Rhodeus amarus), a fish that parasitises unionids, was affected by the non-native zebra mussel (Dreissena polymorpha). The zebra mussel fouls hard substrates, including shells of living unionids, and its presence is often associated with a decrease in population density of native unionid mussels. Bitterling lay their eggs into live unionids and the embryos develop inside their gills. Using a range of zebra mussel densities, we demonstrated that zebra mussel fouling had a negative effect on the number of bitterling eggs inside the mussel host, with abundances of 5–10 zebra mussels (shell size 15–25 mm) per unionid critical for bitterling ability to utilise the host. In a further experiment, we found that bitterling did not discriminate between unfouled unionids and those fouled with five zebra mussels. Most ovipositions into fouled hosts, however, were unsuccessful as eggs failed to reach the unionid gills. We discuss implications of such unsuccessful ovipositions for bitterling recruitment and population dynamics.  相似文献   

11.
Bitterling fishes deposit their eggs on the gills of living mussels using a long ovipositor. We examined whether ovipositor length (OL) and egg shape correlated with differences in host mussel species in the family Unionidae among populations of the tabira bitterling (Acheilognathus tabira) in Japan. Bitterling populations that use mussels in the sub-family Anodontinae possessed longer ovipositors and more elongated eggs than those using mussels of Unioninae, as expected from the difference in host size between the sub-families (anodontine mussels are larger than unionine mussels). Based on a robust phylogeny of A. tabira populations, we demonstrated that the evolution of both OL and egg shape were correlated with host differences, but not with each other, suggesting that these traits have been selected for independently. Our study demonstrates how adaptive traits for brood parasitism may diverge with host shift due to different host availability and/or interspecific competition for hosts.  相似文献   

12.
Coevolutionary relationships between parasites and hosts can elevate the rate of evolutionary changes owing to reciprocal adaptations between coevolving partners. Such relationships can result in the evolution of host specificity. Recent methodological advances have permitted the recognition of cryptic lineages, with important consequences for our understanding of biological diversity. We used the European bitterling (Rhodeus amarus), a freshwater fish that parasitizes unionid mussels, to investigate host specialization across regions of recent and ancient sympatry between coevolving partners. We combined genetic data (12 microsatellite and 2 mitochondrial markers) from five populations with experimental data for possible mechanisms of host species recognition (imprinting and conditioning). We found no strong evidence for the existence of cryptic lineages in R. amarus, though a small proportion of variation among individuals in an area of recent bitterling–mussel association was statistically significant in explaining host specificity. No other measures supported the existence of host‐specific lineages. Behavioural data revealed a weak effect of conditioning that biased behavioural preferences towards specific host species. Host imprinting had no effect on oviposition behaviour. Overall, we established that populations of R. amarus show limited potential for specialization, manifested as weak effects of host conditioning and genetic within‐population structure. Rhodeus amarus is the only species of mussel‐parasitizing fish in Europe, which contrasts with the species‐rich communities of bitterling in eastern Asia where several host‐specific bitterling occur. We discuss costs and constraints on the evolution of host‐specific lineages in our study system and more generally.  相似文献   

13.
Large freshwater mussels (Unionoida) are declining throughout the world. The European bitterling Rhodeus amarus (Bloch, 1782) female spawns its eggs inside the unionids’ shells, where fertilisation and further embryonic development take place; thus its reproduction depends fully on the presence of large freshwater mussels. Unio crassus, previously regarded as one of the most numerous unionids in Europe, is now listed in the IUCN Red Data List as being globally endangered. Despite its previous prevalence, it was never reported as a host for the bitterling. A large population of U. crassus was studied in small river at the ?wi?tokrzyskie Mts (Poland), where also electrofishing was conducted. In each bitterling territory located on the study plots, we found individuals of U. crassus, with the bitterling eggs or larvae developing on mussel’s gills. That proves that this species can be also used by the bitterling for reproduction. We suggest that this relationship has not been reported to date due to the mussels’ rarity and ongoing decline. However, it is also possible that the endangered mussel is a novel host for the bitterling, which is expanding its range throughout Europe.  相似文献   

14.
The European bitterling, Rhodeus amarus, is a non-indigenous fish species in British fresh waters. It lays its eggs in unionid mussels which themselves are vulnerable to fouling by the non-indigenous zebra mussel, Dreissena polymorpha. Observations from an unmanipulated natural system showed that only 27% of zebra mussel-fouled Unio pictorum hosted bitterling, while 47% of unfouled U. pictorum hosted bitterling. We conducted a field experiment in the River Great Ouse catchment, Cambridgeshire, England in May–June 2007 and 2008 to quantify the impact of zebra mussels on bitterling load in host mussels. Zebra mussel-fouled unionids were significantly less likely to host bitterling than unfouled unionids. The number of unionids hosting bitterling did not differ significantly whether the zebra mussels fouling the unionid were alive or dead. Bitterling appeared to discriminate against zebra mussel-fouled unionids less as the 2007 breeding season advanced, potentially because preferred unfouled unionids had a higher bitterling load, and were therefore relatively lower quality hosts than at the start of the breeding season.  相似文献   

15.
In some taxa, males perform multiple ejaculations, which may function in sperm competition or in maintaining a baseline density of spermatozoa in the female reproductive tract to ensure fertilization, a process that has been termed ‘topping up’. We investigated the function of multiple ejaculations in two species of bitterling, the European bitterling (Rhodeus amarus) and Chinese rose bitterling (Rhodeus ocellatus). Bitterling oviposit in living freshwater mussels, with fertilization taking place within the mussel gill cavity. Thus, although fertilization is external, the mussel is analogous to the female reproductive tract in an internally fertilizing species. We measured the frequency of ejaculations and mussel inspections by individual males of two bitterling species in 28 replicated mesocosms and examined focal male responses to rival ejaculations and the presence of females in spawning condition. We used a model of ejaculatory behaviour to simulate the temporal abundance of spermatozoa in mussels. Male R. amarus exhibited high rates of ejaculation and inspection of the siphons of mussels and increased their ejaculation rate in response to the presence of females in spawning condition. Rhodeus ocellatus showed lower overall rates of ejaculation, but significantly elevated ejaculation rate in response to rival ejaculations. The ejaculatory strategy of R. amarus is one that maintains a minimum level of spermatozoa in mussels, which is elevated when the probability of oviposition increases. In contrast, R. ocellatus engages more directly in sperm competition with rivals. We discuss these results in the context of the function of multiple ejaculations and male mating tactics.  相似文献   

16.
1. We investigated two possible proximate cues used for oviposition site choice by females of the bitterling ( Rhodeus sericeus ), a freshwater fish that spawns on the gills of live unionid mussels. The two cues were the flow velocity and/or oxygen content of water emerging from the exhalant siphon of a mussel.
2. Field observations showed that female bitterling always inspected the exhalant siphons of mussels before they spawned in them. Siphon inspection was not always a prelude to spawning and it may serve as a means of assessing mussel quality. Female skimming behaviour, swimming over a mussel without spawning, may also be used to assess mussel quality, although the mechanism for this is unclear.
3. Measurements of the flow velocity of water emerging from the exhalant siphons of four mussel species ( Anodonta anatina, A. cygnea, Unio pictorum and U. tumidus ) showed a significant difference among species, with U. tumidus having the highest mean flow velocity and U. pictorum the lowest.
4. Measurements of the change in oxygen concentration of water entering a mussel inhalant siphon and leaving its exhalant siphon in field and laboratory studies showed a significant difference among the four mussel species, with A. cygnea exhibiting a significantly higher change in oxygen concentration than the other species.
5. The presence of bitterling embryos in the gills of a mussel significantly increased its oxygen consumption whereas larval glochidia had no significant effect. We discuss oxygen availability as a possible proximate cue for oviposition site choice in bitterling.  相似文献   

17.
A contemporary outcome of dynamic host–parasite coevolution can be driven by the adaptation of a parasite to exploit its hosts at the population and species levels (parasite specialisation) or by local host adaptations leading to greater host resistance to sympatric parasite populations (host resistance). We tested the predominance of these two scenarios using cross-infection experiments with two geographically distant populations of the rose bitterling, Rhodeus ocellatus, a fish brood parasite of freshwater mussels, and four populations of their mussel hosts (two Anodonta woodiana and two Unio douglasiae populations) with varying degrees of geographic sympatry and local coexistence. Our data support predictions for host resistance at the species level but no effect of local coexistence between specific populations. Rhodeus ocellatus showed a preference for allopatric host populations, irrespective of host species. Host mussel response, in terms of ejection of R. ocellatus eggs, was stronger in the more widespread and abundant host species (A. woodiana) and this response tended to be higher in sympatric populations. These outcomes provide support for the importance of host resistance in bitterling oviposition-site decisions, demonstrating that host choice by R. ocellatus is adaptive by minimizing egg ejections. These findings imply that R. ocellatus, and potentially other bitterling species, may benefit from exploiting novel hosts, which may not possess appropriate adaptive responses to parasitism.  相似文献   

18.
Bitterling are fishes that use freshwater mussels for oviposition. The pattern of mussel utilization of an endangered bitterling species, Acheilognathus longipinnis, which spawned in autumn, was investigated in a lowland river. Six Unio douglasiae nipponensis (1.5% of total 388 individuals) hosted A. longipinnis embryos consistently in their outer gills, and they inhabited areas along the river bank where mussel density was relatively high on a less compacted mud substrate. Unexpectedly low rates of host utilization and the rare occurrence of juvenile (shell length, <40 mm) hosts (<0.8% of total individuals) suggest the need for greater attention to the conservation of A. longipinnis.  相似文献   

19.
The European bitterling: a model for oviposition decision   总被引:2,自引:0,他引:2  
Smith  C. 《Journal of fish biology》2003,63(S1):241-242
For oviparous species, oviposition decisions can have significant fitness consequences. The European bitterling ( Rhodeus sericeus ) is a cyprinid fish that lays its eggs on the gills of freshwater mussels. Because bitterling use a discrete spawning site that can be readily manipulated, they are unusually amenable to field and laboratory studies aimed at understanding the adaptiveness and consequences of oviposition decisions. Here I present data demonstrating the adaptiveness of oviposition decisions by female bitterling, and link these decisions, using game‐theory models, with bitterling population dynamics. I explain the proximate cues used by females in making oviposition choices, and how these respond to environmental variables. I also show how the oviposition decisions of males relate to the risk of sperm competition in mussels, and propose that oviposition choices may represent an inter‐sexual conflict in bitterling. Finally, I present behavioural and genetic data from mesocosm experiments to show the implications of global and local male densities for female oviposition opportunities, and consider the consequences for bitterling population dynamics.  相似文献   

20.
Two hypotheses have been advanced to explain the evolution of host responses to parasites: the arms race-evolutionary lag and equilibrium hypotheses. We investigated predictions from these hypotheses based on interspecies host preferences and adaptations in an obligate spawning relationship between a freshwater fish, the European bitterling (Cyprinidae) and four species of freshwater mussels (Unionidae), which the fish use as hosts for their eggs. We found a significant trend in preference by the fish for mussels in the following order: Unio pictorum, U. tumidus, Anodonta anatina and A. cygnea. Male and female bitterling both showed this ranking and the clutch sizes deposited into each species also followed this trend. These host preferences proved to be adaptive in terms of egg ejection, which was lowest in the most preferred species (U. pictorum). Furthermore, these hierarchical host preferences were flexible, as females switched species when individuals of the preferred species ejected a greater number of eggs. The similarity in mussel defences between the U.K. population and a European population of ancient sympatry suggests that the absence of a defence in some mussel species may not be due to evolutionary lag. Mussel ejection behaviour may have reached an evolutionary equilibrium in each host species, or alternatively the fish may have evolved adaptive preferences that coincide with generalized mussel responses to foreign objects in their gills. Copyright 2002 The Association for the Study of Animal Behaviour. Published by Elsevier Science Ltd. All rights reserved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号