首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Protein L (PpL) is a B-cell superantigen from Peptostreptococcus magnus known to bind to mammalian Vkappa light chains. PpL from P.magnus strain 312 comprises five homologous immunoglobulin (Ig) binding domains. We first analysed the binding of the individual domains (B1-B5) of PpL(312) to human Vkappa light chains (huVkappa) subtypes 1 (huVkappaI) and 3 (huVkappaIII). Using a combination of rational design and phage selection we isolated mutants of the N-terminal B1 domain with a 14-fold increased affinity for huVkappa1 (B1kappa1) and >tenfold increased affinity for huVkappaIII (B1kappa3). We investigated the potential of the selected domains, in particular the B1kappa1 domain, as reagents in immunochemistry and immunotherapy. B1kappa1 proved a superior reagent than the wild-type domain, allowing up to tenfold more sensitive detection of human Vkappa antibody fragments in ELISA. A fusion protein of B1kappa1 with a human Vlambda antibody scFv fragment promoted the efficient recruitment of antibody encoded effector functions including complement, mononuclear phagocyte respiratory burst and phagocytosis through retargeting of IgGkappa and IgMkappa. Our results suggest that superantigens with improved affinity and/or specificity are easily accessible through protein engineering. Such engineered superantigens should prove useful as reagents in immunochemistry and may have potential as agents in immunotherapy.  相似文献   

2.
BACKGROUND: Peptostreptococcus magnus protein L (PpL) is a multidomain, bacterial surface protein whose presence correlates with virulence. It consists of up to five homologous immunoglobulin binding domains that interact with the variable (VL) regions of kappa light chains found on two thirds of mammalian antibodies. RESULTS: We refined the crystal structure of the complex between a human antibody Fab fragment (2A2) and a single PpL domain (61 residues) to 2.7 A. The asymmetric unit contains two Fab molecules sandwiching a single PpL domain, which contacts similar VL framework regions of two light chains via independent interfaces. The residues contacted on VL are remote from the hypervariable loops. One PpL-Vkappa interface agrees with previous biochemical data, while the second is novel. Site-directed mutagenesis and analytical-centrifugation studies suggest that the two PpL binding sites have markedly different affinities for VL. The PpL residues in both interactions are well conserved among different Peptostreptococcus magnus strains. The Fab contact positions identified in the complex explain the high specificity of PpL for antibodies with kappa rather than lambda chains. CONCLUSIONS: The PpL-Fab complex shows the first interaction of a bacterial virulence factor with a Fab light chain outside the conventional combining site. Structural comparison with two other bacterial proteins interacting with the Fab heavy chain shows that PpL, structurally homologous to streptococcal SpG domains, shares with the latter a similar binding mode. These two bacterial surface proteins interact with their respective immunoglobulin regions through a similar beta zipper interaction.  相似文献   

3.
Blood platelets play a key role in physiological hemostasis and in thrombosis. As a consequence, platelet functional analysis is widely used in the diagnosis of hemorrhagic disorders as well as in the evaluation of thrombosis risks and of the efficacy of antithrombotics. Glycoprotein (GP) VI is a platelet-specific collagen-signaling receptor. Clinical studies suggest that increased GPVI expression is associated with a risk of arterial thrombosis. Conversely, GPVI deficiencies have been identified in patients with defective platelet responses to collagen. Currently, there is no standard test available for measuring GPVI expression, essentially because antibodies usually cross-link GPVI upon binding, leading to platelet activation and consecutive changes in GPVI expression. Here, we designed a recombinant monovalent antibody fragment (scFv) derived from an anti-GPVI monoclonal IgG, 3J24, with the characteristics required to analyze GPVI expression. Guided by in silico modeling and V-KAPPA chain analysis, a Protein L (PpL) recognition pattern was engineered in the scFv, making possible its purification and detection using PpL conjugates. The PpL affinity-purified scFv is functional. It retains GPVI-binding specificity and allows detection of platelet surface-expressed GPVI without inducing platelet activation. In conclusion, the reshaped scFv may be very useful in the development of diagnostic approaches.  相似文献   

4.
Rational design and combinatorial chemistry were utilized to search for lead protein L (PpL) mimetics for application as affinity ligands for the purification of antibodies and small fragments, such as Fab and scFv, and as potential diagnostic or therapeutic agents. Inspection of the key structural features of the complex between PpL and human Fab prompted the de novo design and combinatorial synthesis of a 169-membered solid-phase ligand library, which was assessed for binding to human IgG and subsequent selectivity for the Fab fragment. Eight ligands were selected, chemically characterized and compared with a commercial PpL-adsorbent for binding pure immunoglobulin fractions. The most promising lead, ligand 8/7, when immobilized on an agarose support, behaved in a similar fashion to PpL in isolating Fab fragments from papain digests of human IgG to a final purity of 97%.  相似文献   

5.
Recombinant antibody fragments consisting of variable domains can be easily produced in various host cells, but there is no universal system that can be used to purify and detect them in the free form or complexed with their antigen. Protein L (PpL) is a cell wall protein isolated from Peptostreptococcus magnus, which has been reported to interact with the V-KAPPA chain of some, but not all, antibodies. Here we grafted the V-KAPPA framework region 1 (FR1) sequence of a high-affinity PpL-binding antibody onto single-chain antibody fragments (scFvs), which have no reactivity with PpL. This substitution made it possible to purify and detect scFvs using PpL conjugates. It did not hinder scFv folding and expression in recombinant bacteria, and it did not interfere with their antigen-binding function. We also identified residue 12 as being potentially able to alter PpL binding. This study, therefore, suggests a way of engineering a PpL-binding site on any scFv without interfering with its function. This could provide a universally applicable method both for the rapid purification of functional recombinant antibody fragments and for their detection even when complexed with their antigen without requiring fusion to an epitope Flag.  相似文献   

6.
A kappa-light chain from a Fab expression system was truncated by the insertion of a stop codon in the gene sequence to produce a variable light (VL) single domain antibody (dAb). Here, we describe the expression of dAb in the periplasm of Escherichia coli through fermentation in a defined media. Immunoglobulin binding domains from peptostreptococcal protein L (PpL) have been shown to bind specifically to kappa-light chains. We have produced recombinant PpL, at high yield, and this was used to custom-produce PpL-Sepharose affinity columns. Here, we show that the affinity purification of VL dAb by this method is simple and efficient with no apparent loss in protein at any stage. The truncated dAb protein product was confirmed by electrospray mass spectrometry and N-terminal sequencing. When analyzed by SDS-PAGE it was shown to be over 95% pure and produced at yields of 35-65 mg/L of culture medium. The dAb protein produced was shown by NMR and CD to be a folded beta-sheet domain. This domain is bound by PpL with a Kd of approximately 50 nM as determined by stopped-flow fluorimetry.  相似文献   

7.
《MABS-AUSTIN》2013,5(6):1058-1071
Phage-display technology facilitates rapid selection of antigen-specific single-chain variable fragment (scFv) antibodies from large recombinant libraries. ScFv antibodies, composed of a VH and VL domain, are readily engineered into multimeric formats for the development of diagnostics and targeted therapies. However, the recombinant nature of the selection strategy can result in VH and VL domains with sub-optimal biophysical properties, such as reduced thermodynamic stability and enhanced aggregation propensity, which lead to poor production and limited application. We found that the C10 anti-epidermal growth factor receptor (EGFR) scFv, and its affinity mutant, P2224, exhibit weak production from E. coli. Interestingly, these scFv contain a fusion of lambda3 and lambda1 V-region (LV3 and LV1) genes, most likely the result of a PCR aberration during library construction. To enhance the biophysical properties of these scFvs, we utilized a structure-based approach to replace and redesign the pre-existing framework of the VL domain to one that best pairs with the existing VH. We describe a method to exchange lambda sequences with a more stable kappa3 framework (KV3) within the VL domain that incorporates the original lambda DE-loop. The resulting scFvs, C10KV3_LV1DE and P2224KV3_LV1DE, are more thermodynamically stable and easier to produce from bacterial culture. Additionally, C10KV3_LV1DE and P2224KV3_LV1DE retain binding affinity to EGFR, suggesting that such a dramatic framework swap does not significantly affect scFv binding. We provide here a novel strategy for redesigning the light chain of problematic scFvs to enhance their stability and therapeutic applicability.  相似文献   

8.
Phage-display technology facilitates rapid selection of antigen-specific single-chain variable fragment (scFv) antibodies from large recombinant libraries. ScFv antibodies, composed of a VH and VL domain, are readily engineered into multimeric formats for the development of diagnostics and targeted therapies. However, the recombinant nature of the selection strategy can result in VH and VL domains with sub-optimal biophysical properties, such as reduced thermodynamic stability and enhanced aggregation propensity, which lead to poor production and limited application. We found that the C10 anti-epidermal growth factor receptor (EGFR) scFv, and its affinity mutant, P2224, exhibit weak production from E. coli. Interestingly, these scFv contain a fusion of lambda3 and lambda1 V-region (LV3 and LV1) genes, most likely the result of a PCR aberration during library construction. To enhance the biophysical properties of these scFvs, we utilized a structure-based approach to replace and redesign the pre-existing framework of the VL domain to one that best pairs with the existing VH. We describe a method to exchange lambda sequences with a more stable kappa3 framework (KV3) within the VL domain that incorporates the original lambda DE-loop. The resulting scFvs, C10KV3_LV1DE and P2224KV3_LV1DE, are more thermodynamically stable and easier to produce from bacterial culture. Additionally, C10KV3_LV1DE and P2224KV3_LV1DE retain binding affinity to EGFR, suggesting that such a dramatic framework swap does not significantly affect scFv binding. We provide here a novel strategy for redesigning the light chain of problematic scFvs to enhance their stability and therapeutic applicability.  相似文献   

9.
Previously, our group engineered a plant‐derived monoclonal antibody (MAb pE16) that efficiently treated West Nile virus (WNV) infection in mice. In this study, we developed a pE16 variant consisting of a single‐chain variable fragment (scFv) fused to the heavy chain constant domains (CH) of human IgG (pE16scFv‐CH). pE16 and pE16scFv‐CH were expressed and assembled efficiently in Nicotiana benthamiana ?XF plants, a glycosylation mutant lacking plant‐specific N‐glycan residues. Glycan analysis revealed that ?XF plant‐derived pE16scFv‐CH (?XFpE16scFv‐CH) and pE16 (?XFpE16) both displayed a mammalian glycosylation profile. ?XFpE16 and ?XFpE16scFv‐CH demonstrated equivalent antigen‐binding affinity and kinetics, and slightly enhanced neutralization of WNV in vitro compared with the parent mammalian cell‐produced E16 (mE16). A single dose of ?XFpE16 or ?XFpE16scFv‐CH protected mice against WNV‐induced mortality even 4 days after infection at equivalent rates as mE16. This study provides a detailed tandem comparison of the expression, structure and function of a therapeutic MAb and its single‐chain variant produced in glycoengineered plants. Moreover, it demonstrates the development of anti‐WNV MAb therapeutic variants that are equivalent in efficacy to pE16, simpler to produce, and likely safer to use as therapeutics due to their mammalian N‐glycosylation. This platform may lead to a more robust and cost‐effective production of antibody‐based therapeutics against WNV infection and other infectious, inflammatory or neoplastic diseases.  相似文献   

10.
We report a case study in which liquid-liquid phase separation (LLPS) negatively impacted the downstream manufacturability of a therapeutic mAb. Process parameter optimization partially mitigated the LLPS, but limitations remained for large-scale manufacturing. Electrostatic interaction driven self-associations and the resulting formation of high-order complexes are established critical properties that led to LLPS. Through chain swapping substitutions with a well-behaved antibody and subsequent study of their solution behaviors, we found the self-association interactions between the light chains (LCs) of this mAb are responsible for the LLPS behavior. With the aid of in silico homology modeling and charged-patch analysis, seven charged residues in the LC complementarity-determining regions (CDRs) were selected for mutagenesis, then evaluated for self-association and LLPS properties. Two charged residues in the light chain (K30 and D50) were identified as the most significant to the LLPS behaviors and to the antigen-binding affinity. Four adjacent charged residues in the light chain (E49, K52, R53, and R92) also contributed to self-association, and thus to LLPS. Molecular engineering substitution of these charged residues with a neutral or oppositely-charged residue disrupted the electrostatic interactions. A double-mutation in CDR2 and CDR3 resulted in a variant that retained antigen-binding affinity and eliminated LLPS. This study demonstrates the critical nature of surface charged resides on LLPS, and highlights the applied power of in silico protein design when applied to improving physiochemical characteristics of therapeutic antibodies. Our study indicates that in silico design and effective protein engineering may be useful in the development of mAbs that encounter similar LLPS issues.  相似文献   

11.
Variable (V) domains of antibodies are essential for antigen recognition by our adaptive immune system. However, some variants of the light chain V domains (VL) form pathogenic amyloid fibrils in patients. It is so far unclear which residues play a key role in governing these processes. Here, we show that the conserved residue 2 of VL domains is crucial for controlling its thermodynamic stability and fibril formation. Hydrophobic side chains at position 2 stabilize the domain, whereas charged residues destabilize and lead to amyloid fibril formation. NMR experiments identified several segments within the core of the VL domain to be affected by changes in residue 2. Furthermore, molecular dynamic simulations showed that hydrophobic side chains at position 2 remain buried in a hydrophobic pocket, and charged side chains show a high flexibility. This results in a predicted difference in the dissociation free energy of ∼10 kJ mol−1, which is in excellent agreement with our experimental values. Interestingly, this switch point is found only in VL domains of the κ family and not in VLλ or in VH domains, despite a highly similar domain architecture. Our results reveal novel insight into the architecture of variable domains and the prerequisites for formation of amyloid fibrils. This might also contribute to the rational design of stable variable antibody domains.  相似文献   

12.
Semenyuk  E. G.  Stremovskii  O. A.  Orlova  I. V.  Balandin  T. G.  Nosov  A. M.  Buryanov  Ya. I.  Deyev  S. M.  Petrov  R. V. 《Molecular Biology》2003,37(5):780-786
A recombinant scFv antibody against human spleen ferritin was expressed as a barstar-fused protein in Escherichia coli and in Nicotiana tabacum plants and suspension cell cultures. As demonstrated by immunoblotting with antibarstar antibodies, direction of the recombinant protein to the endomembrane system of plant cells ensured its stability and solubility. Production of the recombinant protein did not differ between parental transgenic plants and their first-generation progeny. Fusion with barstar allowed not only immunochemical detection of the recombinant scFv antibody, but also their purification from the plant material by affinity chromatography with barnase-His6 immobilized on a metal-affinity carrier.  相似文献   

13.
[背景] 部分细菌的DNA骨架会发生磷硫酰化修饰,硫结合结构域(Sulfur Binding Domain,SBD)可以特异性识别这种生理修饰。与绝大多数SBD-HNH双结构域核酸酶不同,ScoMcrA的SBD和HNH结构域中间插入了一个特异性识别5-甲基胞嘧啶(5mC)修饰DNA的SET and RING-Associated (SRA)结构域。晶体结构显示,单独的SBD是单体,而SBD-SRA是双体。[目的] 探究ScoMcrA中SRA结构域的存在对SBD识别硫修饰DNA的影响及影响方式。[方法] 凝胶迁移实验(Electrophoresis Mobility Shift Assay,EMSA)比较SBD、SBD-SRA对硫修饰DNA结合力的差异;对参与SBD-SRA二聚体化的关键氨基酸残基突变,并检测点突变对SBD-SRA蛋白二聚体化及结合硫修饰DNA的影响。[结果] 相较于SBD结构域,SBD-SRA双结构域对磷硫酰化修饰DNA的结合能力明显增强。对SBD-SRA双体互作界面进行单点突变基本不影响其对硫修饰DNA的结合,当二聚体化界面连续的L261LGET265突变成A261AAAA265时,突变体对硫修饰DNA的结合力下降到与SBD相似的水平。[结论] 根据EMSA实验结果可以初步判断,SRA结构域介导的SBD-SRA双体化能增强SBD对硫修饰DNA的结合力;L261LGET265是SRA结构域上影响SBD对硫修饰DNA结合力的关键氨基酸位点。  相似文献   

14.

Background

Hep27 monoclonal (Hep27 Mab) is an antibody against hepatocellular carcinoma. Hep27 Mab itself can inhibit the growth of a hepatocellular carcinoma cell line (HCC-S102). We attempted to produce a single-chain fragment (scFv), a small fragment containing an antigen-binding site of Hep27 Mab, by using DNA-recombinant techniques.

Results

The sequences encoding the variable regions of heavy (VH) and light (VL) chains of a murine Hep27 Mab were linked together by a linker peptide (Gly4Ser)3 and tagged with a hexa-histidine at the C-terminal; the resultant DNA construct was expressed in E. coli as an insoluble protein. The denatured scFv was refolded and purified by immobilized metal ion affinity chromatography (12 mg/l with a molecular weight of 27 kDa). Hep27scFv exhibited a tumoricidal activity against the HCC-S102 cell as its parental antibody (Hep27 Mab).

Conclusion

This scFv may be a potential candidate for a targeting agent in HCC immunodiagnosis or immunotherapy.  相似文献   

15.
We report the isolation, for the first time by phage display, of a scFv recombinant antibody called B3 directed against carrageenans, the major sulphated polysaccharides of red seaweeds. Immunoassays were used to characterize the binding of B3 antibodies toward the three main carrageenan forms (iota, kappa, and lambda) differing by their sulfonic ester content and the presence of 3,6-anhydrogalactose. In enzyme-linked immunoadsorbent assay (ELISA), B3 soluble scFv showed a high reactivity towards iota-carrageenan at any titer but, at high titer only, recognized also the highly sulfated lambda-form. Surface-adsorbed kappa-polymers were only recognized in presence of poly-L-lysine (PLL). The replacement of Na+ ions by K+ in the buffers had no effect on kappa-polymer detection but increased the binding of B3 antibodies toward both iota- and lambda-carrageenans, whereas addition of Ca2+ decreased sharply the recognition of the iota-form. In competitive assays, low titer B3 soluble scFv showed a iota>kappa>lambda selectivity and recognized a mixture of iota-oligomers with degrees of polymerization between 4 and 18 but not sub-fractions of 4 or 6 residues long. We suggest therefore that the B3 epitope could consist of a helical conformation of carrageenan chains. Immunofluorescence microscopy showed that, amongst other red algae, Chondrus gametophyte (containing iota-chains) was strongly recognized by B3 scFv whereas sporophytic tissues rich in lambda-carrageenans were not, assessing the preference of this probe for iota-carrageenans in situ. The high potential of the B3 recombinant probe is discussed.  相似文献   

16.
In our previous study, a kind of novel hybrid immunoglobulin (Ig)-binding proteins (IBPs) was obtained with the characteristic structure of alternately arranged Finegoldia magna (formerly Peptostreptococcus magnus) protein L (P. magnus protein L, PpL) B3 domain (B3) and Staphylococcal protein A (SpA) D domain (D). In this study, two representative molecules of these novel proteins, LD3 (B3-D-B3) and LD5 (B3-D-B3-D-B3) (LD3/5), showed substantially higher affinity for IgG-F(ab')2, IgM, and IgA than 4L (B3-B3-B3-B3) or SpA, which were also demonstrated by surface plasmon resonance detection. Further, LD5 showed much stronger binding to single-chain Fv (scFv) KM38 (V(H)3-V(kappa)I) than to KM41 (V(H)1-V(kappa)III) or KM36 (V(H)3-V(kappa)III). Competitive inhibition studies showed that 4L alone or in combination with SpA (4L + SpA) was a weaker inhibitor than LD3/5 in inhibiting LD3/5's binding to IgG-F(ab')2, IgM, or IgA. The computer modeling suggested that the B3-D arrangement in LD3/5 could simultaneously bind to V(H)3 and V(kappa). Thus, our results indicated for the first time that alternate arrangement of B3 and D domains creates synergistic double-site binding to V(H)3 and V(kappa) regions of fragment of antigen binding. The different competitive inhibition pattern of binding of LD5 to scFv KM38 by 4L + SpA suggested strict use of antibody conformation for this simultaneous double-site binding. The demonstration of this novel binding property would promote to achieve the designed hybrid IBPs for useful immunological applications.  相似文献   

17.
Since immobilized metal ion affinity chromatography (IMAC) was first reported, several modifications have been developed. Among them, Ni2+ immobilized by chelation with nitrilotriacetic acid (NTA) bound to a solid support has become the most common method for the purification of proteins carrying either a C‐ or N‐terminal histidine (His) tag. Despite its broad application in protein purification, only little is known about the binding properties of the His‐tag, and therefore almost no thermodynamic and kinetic data are available. In this study, we investigated the binding mechanism of His‐tags to Ni2+‐NTA. Different series of oligohistidines and mixed oligohistidines/oligoalanines were synthesized using automated solid‐phase peptide synthesis (SPPS). Binding to Ni2+‐NTA was analyzed both qualitatively and quantitatively with surface plasmon resonance (SPR) using commercially available NTA sensor chips from Biacore. The hexahistidine tag shows an apparent equilibrium dissociation constant (KD) of 14 ± 1 nM and thus the highest affinity of the peptides synthesized in this study. Furthermore, we could demonstrate that two His separated by either one or four residues are the preferred binding motifs within hexahis tag. Finally, elongation of these referred motifs decreased affinity, probably due to increased entropy costs upon binding. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
The murine mAb CB4-1 raised against p24 (HIV-1) recognizes a linear epitope of the HIV-1 capsid protein. Additionally, CB4-1 exhibits cross-reactive binding to epitope-homologous peptides and polyspecific reactions to epitope nonhomologous peptides. Crystal structures demonstrate that the epitope peptide (e-pep) and the nonhomologous peptides adopt different conformations within the binding region of CB4-1. Site-directed mutagenesis of the fragment variable (Fv) region was performed using a single-chain (sc)Fv construct of CB4-1 to analyze binding contributions of single amino acid side chains toward the e-pep and toward one epitope nonhomologous peptide. The mutations of Ab amino acid side chains, which are in direct contact with the Ag, show opposite influences on the binding of the two peptides. Whereas the affinity of the e-pep to the CB4-1 scFv mutant heavy chain variable region Tyr(32)Ala is decreased 250-fold, the binding of the nonhomologous peptide remains unchanged. In contrast, the mutation light chain variable region Phe(94)Ala reduces the affinity of the nonhomologous peptide 10-fold more than it does for the e-pep. Thus, substantial changes in the specificity can be observed by single amino acid exchanges. Further characterization of the scFv mutants by substitutional analysis of the peptides demonstrates that the effect of a mutation is not restricted to contact residues. This method also reveals an inverse compensatory amino acid exchange for the nonhomologous peptide which increases the affinity to the scFv mutant light chain variable region Phe(94)Ala up to the level of the e-pep affinity to the wild-type scFv.  相似文献   

19.
20.
Differences in the affinity of a monoclonal antibody raised against the protein of tobacco mosaic virus for 15 related peptides (residues 134-146) carrying single-residue modifications were investigated using a novel biosensor technology (Pharmacia BIAcore). Analysis of the peptide-antibody interaction in real time allowed fast and reproducible measurements of both association and dissociation rate constants. Out of 15 mutant peptides analyzed, five were not recognized by the antibody at all, and seven were recognized as well as the wild-type peptide. For three of the peptides, the rate constants were different for the mutant and wild-type peptides. The pattern of residue recognition suggests that the epitope is formed by three residues (140, 143, and 144) in a helical conformation that mimics the structure in the protein. Even a minor modification of these residues totally abolishes recognition by the antibody. Modifications of adjacent residues result in small but significant differences in association and/or dissociation rate constants. One of the recognized residues is totally buried in the three-dimensional structure of TMV protein, suggesting that a structural rearrangement next to the helix occurs during protein-antibody interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号