首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Isolation and characterization of monoclonal antibody (mAb) variants to understand the impact of their structure on function is a typical activity during early-stage candidate selection that contributes to derisking clinical development. In particular, efforts are devoted to characterizing oligomeric variants, owing to their potential immunogenic nature. We report here a mAb variant consisting of a canonical mAb monomer associated in a non-covalent fashion with an antigen-binding fragment (Fab) arm amputated from its Fc domain. The truncated heavy chain is encoded in the cell line genome and is the likely product of a genomic recombination during cell line generation. The addition of the Fab arm results in severe loss of potency, indicating its interaction with the Fab domain of the monomer. The presence of such a variant can easily be mitigated by an adequate purification step.  相似文献   

6.
《MABS-AUSTIN》2013,5(1):150-161
Therapeutic monoclonal antibodies (mAbs) possess a high degree of heterogeneity associated with the cell expression system employed in manufacturing, most notably glycosylation. Traditional immunoassay formats used to quantify therapeutic mAbs are unable to discriminate between different glycosylation patterns that may exist on the same protein amino acid sequence. Mass spectrometry provides a technique to distinguish specific glycosylation patterns of the therapeutic antibody within the same sample, thereby allowing for simultaneous quantification of the same mAb with different glycosylation patterns. Here we demonstrate a two-step approach to successfully differentiate and quantify serum mixtures of a recombinant therapeutic mAb produced in two different host cell lines (CHO vs. Sp2/0) with distinct glycosylation profiles. Glycosylation analysis of the therapeutic mAb, CNTO 328 (siltuximab), was accomplished through sample pretreatment consisting of immunoaffinity purification (IAP) and enrichment, followed by liquid chromatography (LC) and mass spectrometry (MS). LC-MS analysis was used to determine the percentage of CNTO 328 in the sample derived from either cell line based on the N-linked G1F oligosaccharide on the mAb. The relative amount of G1F derived from each cell line was compared with ratios of CNTO 328 reference standards prepared in buffer. Glycoform ratios were converted to concentrations using an immunoassay measuring total CNTO 328 that does not distinguish between the different glycoforms. Validation of the IAP/LC-MS method included intra-run and inter-run variability, method sensitivity and freeze-thaw stability. The method was accurate (%bias range = -7.30–13.68%) and reproducible (%CV range = 1.49–10.81%) with a LOQ of 2.5 μg/mL.  相似文献   

7.
目的:构建CD44新剪接变异体siRNA质粒表达载体,建立CD44新变异体抑制表达的鼻咽癌细胞株.方法:合成CD44新变异体特异性干扰DNA片段,干扰DNA片段亚克隆于带绿色荧光蛋白的pGenesil -1.3质粒表达载体中,双酶切和测序鉴定重组表达质粒载体;采用脂质体将重组表达质粒载体转染入鼻咽癌5 -8F细胞系,进行G418筛选;Western blot分析CD44表达.结果:重组CD44干扰DNA片段质粒表达载体的碱基序列和插入方向正确;细胞转染效率达70%;G418筛选获得GFP表达的单克隆鼻咽癌5 -8F细胞株;Western blot分析表明CD44表达受抑制.结论:建立了CD44新变异体抑制表达的鼻咽癌细胞株,为CD44新变异体在鼻咽癌中的生物学功能提供了基础.  相似文献   

8.
We have generated a number of EBV-transformed B cell lines producing human mAb against human T cell leukemia virus type 1 (HTLV-1) from the peripheral blood B lymphocytes obtained from patients with HTLV-1-associated myelopathy/tropical spastic paraparesis. Various synthetic peptides corresponding to antigenic regions of HTLV-1 gag and env proteins were used for the screening of antibodies in ELISA. In our study, four IgG mAb to the gag p19 amino acids 100 to 130, and 5 IgG mAb to the env p46 amino acids 175 to 199 were characterized. An immunofluorescence assay showed that all of these mAb specifically bound to the surface of HTLV-1-bearing cell lines. Among these mAb, one anti-gp46 mAb, designated KE36-11, neutralized the infectivity of HTLV-1 as determined by both the inhibition of HTLV-1-induced syncytium formation and transformation assays in vitro. An antibody-binding assay using overlapping oligopeptides revealed that KE36-11 recognized a new epitope locating between the gp46 amino acid sequence 187-193 (Ala-Pro-Pro-Leu-Leu-Pro-His). Another anti-gp46 mAb, designated KE36-7, showed antibody-dependent cellular cytotoxicity against HTLV-1-bearing cell line. KE36-7 bound strongly to the 10-mer peptide-gp46 187-196, and weakly to peptides containing the gp46 amino acid sequence 191-196 (Leu-Pro-His-Ser-Asn-Leu). These two epitopes, which are associated with HTLV-1 neutralization and antibody-dependent cellular cytotoxicity, are thus the first epitopes identified in human HTLV-1 infection. It is possible that passive immunization of humans with these two human mAb are effective on the protection of HTLV-1 infection in vivo.  相似文献   

9.
Sequence variants, also known as unintended amino acid substitutions in the protein primary structure, are one of the critical quality attributes needed to be monitored during process development of monoclonal antibodies (mAbs). Here we report on analytical methods for detection and identification of a sequence variant in an IgG1 mAb expressed in Chinese hamster ovary (CHO) cells. The presence of the sequence variant was detected by an imaged capillary isoelectric focusing (ICIEF) assay, showing a new basic species in mAb charge variant profile. The new basic variant was fractionated and enriched by ion-exchange chromatography, analyzed by reduced light and heavy chain mass determination, and characterized by HPLC-UV/MS/MS of tryptic and endoproteinase Lys-C peptide maps. A Serine to Arginine sequence variant was identified at the heavy chain 441 position (S441R), and confirmed by using synthetic peptides. The relative level of the S441R variant was estimated to be in the range of 0.3-0.6% for several mAb batches analyzed via extracted ion chromatogram (EIC). This work demonstrates the effectiveness of using integrated analytical methods to detect and identify protein heterogeneity and the importance of monitoring product quality during mAb bioprocess development.  相似文献   

10.
To determine the genetic and molecular basis for rheumatoid factor (RF) autoantibody reactivity in patients with destructive, erosive arthritis, we established a human lymphoblastoid cell line (hRF-1) from a patient with polyarthritis that produced an IgG RF mAb, mAb hRF-1. Studies of isolated H and L chains showed that the specificity of RF reactivity is conferred by mAb hRF-1 L chains. The L chain gene was cloned from a cDNA library prepared from hRF-1 cells. The nucleotide sequence was similar to known V kappa II L chains except for a two nucleotide change corresponding to a change of two amino acids in an invariable region of FR3. A germ-line gene with one of the nucleotide changes was identified by polymerase chain reaction in multiple cell lines, including K562 that does not rearrange Ig genes, but the other nucleotide change appeared to be due to mutation. Either or both of these amino acid changes may contribute to the RF reactivity, because an antibody with the same V kappa II L chain except for these two amino acid changes in FR3 did not have RF reactivity. The RF reactivity of isolated L chains from mAb hRF-1 was confirmed by transfecting COS cells with an expression vector encoding the hRF-1 kappa-chain and showing that the secreted k-chains had RF reactivity. Expression of this variant V kappa II L chain gene may form the basis for RF autoantibody reactivity in some patients.  相似文献   

11.
Glycation has been observed in antibody therapeutics manufactured by the fed-batch fermentation process. It not only increases the heterogeneity of antibodies, but also potentially affects product safety and efficacy. In this study, non-glycated and glycated fractions enriched from a monoclonal antibody (mAb1) as well as glucose-stressed mAb1 were characterized using a variety of biochemical, biophysical and biological assays to determine the effects of glycation on the structure and function of mAb1. Glycation was detected at multiple lysine residues and reduced the antigen binding activity of mAb1. Heavy chain Lys100, which is located in the complementary-determining region of mAb1, had the highest levels of glycation in both stressed and unstressed samples, and glycation of this residue was likely responsible for the loss of antigen binding based on hydrogen/deuterium exchange mass spectrometry analysis. Peptide mapping and intact liquid chromatography-mass spectrometry (LC-MS) can both be used to monitor the glycation levels. Peptide mapping provides site specific glycation results, while intact LC-MS is a quicker and simpler method to quantitate the total glycation levels and is more useful for routine testing. Capillary isoelectric focusing (cIEF) can also be used to monitor glycation because glycation induces an acidic shift in the cIEF profile. As expected, total glycation measured by intact LC-MS correlated very well with the percentage of total acidic peaks or main peak measured by cIEF. In summary, we demonstrated that glycation can affect the function of a representative IgG1 mAb. The analytical characterization, as described here, should be generally applicable for other therapeutic mAbs.  相似文献   

12.
《MABS-AUSTIN》2013,5(6):1453-1463
During cell line development for an IgG1 antibody candidate (mAb1), a C-terminal extension was identified in 2 product candidate clones expressed in CHO-K1 cell line. The extension was initially observed as the presence of anomalous new peaks in these clones after analysis by cation exchange chromatography (CEX-HPLC) and reduced capillary electrophoresis (rCE-SDS). Reduced mass analysis of these CHO-K1 clones revealed that a larger than expected mass was present on a sub-population of the heavy chain species, which could not be explained by any known chemical or post-translational modifications. It was suspected that this additional mass on the heavy chain was due to the presence of an additional amino acid sequence. To identify the suspected additional sequence, de novo sequencing in combination with proteomic searching was performed against translated DNA vectors for the heavy chain and light chain. Peptides unique to the clones containing the extension were identified matching short sequences (corresponding to 9 and 35 amino acids, respectively) from 2 non-coding sections of the light chain vector construct. After investigation, this extension was observed to be due to the re-arrangement of the DNA construct, with the addition of amino acids derived from the light chain vector non-translated sequence to the C-terminus of the heavy chain. This observation showed the power of proteomic mass spectrometric techniques to identify an unexpected antibody sequence variant using de novo sequencing combined with database searching, and allowed for rapid identification of the root cause for new peaks in the cation exchange and rCE-SDS assays.  相似文献   

13.
During cell line development for an IgG1 antibody candidate (mAb1), a C-terminal extension was identified in 2 product candidate clones expressed in CHO-K1 cell line. The extension was initially observed as the presence of anomalous new peaks in these clones after analysis by cation exchange chromatography (CEX-HPLC) and reduced capillary electrophoresis (rCE-SDS). Reduced mass analysis of these CHO-K1 clones revealed that a larger than expected mass was present on a sub-population of the heavy chain species, which could not be explained by any known chemical or post-translational modifications. It was suspected that this additional mass on the heavy chain was due to the presence of an additional amino acid sequence. To identify the suspected additional sequence, de novo sequencing in combination with proteomic searching was performed against translated DNA vectors for the heavy chain and light chain. Peptides unique to the clones containing the extension were identified matching short sequences (corresponding to 9 and 35 amino acids, respectively) from 2 non-coding sections of the light chain vector construct. After investigation, this extension was observed to be due to the re-arrangement of the DNA construct, with the addition of amino acids derived from the light chain vector non-translated sequence to the C-terminus of the heavy chain. This observation showed the power of proteomic mass spectrometric techniques to identify an unexpected antibody sequence variant using de novo sequencing combined with database searching, and allowed for rapid identification of the root cause for new peaks in the cation exchange and rCE-SDS assays.  相似文献   

14.
Proteins provide the molecular basis for cellular structure, catalytic activity, signal transduction, and molecular transport in biological systems. Recombinant protein expression is widely used to prepare and manufacture novel proteins that serve as the foundation of many biopharmaceutical products. However, protein translation bioprocesses are inherently prone to low-level errors. These sequence variants caused by amino acid misincorporation have been observed in both native and recombinant proteins. Protein sequence variants impact product quality, and their presence can be exacerbated through cellular stress, overexpression, and nutrient starvation. Therefore, the cell line selection process, which is used in the biopharmaceutical industry, is not only directed towards maximizing productivity, but also focuses on selecting clones which yield low sequence variant levels, thereby proactively avoiding potentially inauspicious patient safety and efficacy outcomes. Here, we summarize a number of hallmark studies aimed at understanding the mechanisms of amino acid misincorporation, as well as exacerbating factors, and mitigation strategies. We also describe key advances in analytical technologies in the identification and quantification of sequence variants, and some practical considerations when using LC-MS/MS for detecting sequence variants.  相似文献   

15.
We report that N-linked oligosaccharide structures can be present on an asparagine residue not adhering to the consensus site motif NX(S/T), where X is not proline, described in the literature. We have observed oligosaccharides on a non-consensus asparaginyl residue in the CH1 constant domain of IgG1 and IgG2 antibodies. The initial findings were obtained from characterization of charge variant populations evident in a recombinant human antibody of the IgG2 subclass. HPLC-MS results indicated that cation-exchange chromatography acidic variant populations were enriched in antibody with a second glycosylation site, in addition to the well documented canonical glycosylation site located in the CH2 domain. Subsequent tryptic and chymotryptic peptide map data indicated that the second glycosylation site was associated with the amino acid sequence TVSWN162SGAL in the CH1 domain of the antibody. This highly atypical modification is present at levels of 0.5–2.0% on most of the recombinant antibodies that have been tested and has also been observed in IgG1 antibodies derived from human donors. Site-directed mutagenesis of the CH1 domain sequence in a recombinant-human IgG1 antibody resulted in an increase in non-consensus glycosylation to 3.15%, a greater than 4-fold increase over the level observed in the wild type, by changing the −1 and +1 amino acids relative to the asparagine residue at position 162. We believe that further understanding of the phenomenon of non-consensus glycosylation can be used to gain fundamental insights into the fidelity of the cellular glycosylation machinery.  相似文献   

16.
This study shows that state-of-the-art liquid chromatography (LC) and mass spectrometry (MS) can be used for rapid verification of identity and characterization of sequence variants and posttranslational modifications (PTMs) for antibody products. A candidate biosimilar IgG1 monoclonal antibody (mAb) was compared in detail to a commercially available innovator product. Intact protein mass, primary sequence, PTMs and the micro-differences between the two mAbs were identified and quantified simultaneously. Although very similar in terms of sequences and modifications, a mass difference observed by LC-MS intact mass measurements indicated that they were not identical. Peptide mapping, performed with data independent acquisition LC-MS using an alternating low and elevated collision energy scan mode (LC-MSE), located the mass difference between the biosimilar and the innovator to a two amino acid residue variance in the heavy chain sequences. The peptide mapping technique was also used to comprehensively catalogue and compare the differences in PTMs of the biosimilar and innovator mAbs. Comprehensive glycosylation profiling confirmed that the proportion of individual glycans was different between the biosimilar and the innovator, although the number and identity of glycans were the same. These results demonstrate that the combination of accurate intact mass measurement, released glycan profiling and LC-MSE peptide mapping provides a set of routine tools that can be used to comprehensively compare a candidate biosimilar and an innovator mAb.Key words: biosimilar mAb, innovator mAb, molecular similarity, sequence variants, posttranslational modifications, N-linked glycosylation, chemical degradations, micro-heterogeneities, characterization, intact protein mass measurement, peptide mapping, glycan profiling, LC-MS, LC-fluorescence, MALDI MS  相似文献   

17.
18.
Signal peptides used in biosynthesis of proteins are cleaved at a very specific site by signal peptidase during posttranslational translocation of cytoplasmic proteins across the membrane. In some cases, however, there can be cleavage at nonspecific sites, giving rise to heterogeneity in the mature protein, which manifests itself as either elongation or truncation of the N terminus of the mature protein. When used as biopharmaceutical therapeutics, such heterogeneities may be a cause for concern, depending on the nature of the heterogeneity. This article describes the determination of such heterogeneity by peptide mapping in both the heavy chain and the light chain (LC) of a Chinese hamster ovary (CHO) cell-expressed monoclonal antibody (mAb). The peptide map method described here was capable of detecting the extended N-terminal peptides at levels as low as 1% relative to the peak area of the intact N-terminal peptide. The LC of a mAb product was truncated at its N termini by two amino acid residues at approximately 3-4% levels, resulting from alternate signal peptide cleavage. This article describes the quantitation of this truncation by liquid chromatography-mass spectrometry (LC-MS) peptide mapping. Also described is analysis and characterization of LC truncation by reduced and denatured capillary electrophoresis in sodium dodecyl sulfate (CE-SDS). The truncated mAb, which was devoid of the two N-terminal amino acids, was engineered and shown to migrate as the “pre-LC” peak in reduced CE-SDS assay. The amount of the pre-LC peak recovered from the CE-SDS assay was shown to correlate with the amount of truncated peptide observed from the reduced and alkylated peptide map of the engineered mAb.  相似文献   

19.
Translational frameshifting, a ubiquitous mechanism used to produce alternative proteins for different biological purposes, appears in a variety of genes in probably all organisms. In the past, the combinational use of sophisticated expression vectors, specific endopeptidases, and Edman degradation has been the main approach for identification of the translational frameshift sites. Although Edman degradation is highly reliable, it is also time-consuming and costly. In this article, we report a new liquid chromatography-tandem mass spectrometric (LC-MS/MS) approach for identifying the -1 translational frameshift sites. The approach consists of three steps: (i) LC-MS/MS analysis of the protein digests, (ii) primary data analysis using the known mRNA sequence, and (iii) advanced data analysis using a new database containing distinct mRNA sequences with single insertion at particular positions. We first validated our approach by analyzing the previously documented slippery sequence, A4G, from IS3. With this approach, we further determined whether the TTTTTTG (T6G) sequence of IS1372 from Streptomyces lividans had the -1 translational frameshifting potential. The identified amino acid sequence of the transframe peptide indicated that the -1 frameshifting occurred at the T6G motif, as predicted previously. The results on IS3 (A4G) and IS1372 (T6G) suggested that this approach is effective for the translational frameshifting studies.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号