首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In multicellular organisms, growth and proliferation is adjusted to nutritional conditions by a complex signaling network. The Insulin receptor/target of rapamycin (InR/TOR) signaling cascade plays a pivotal role in nutrient dependent growth regulation in Drosophila and mammals alike. Here we identify Cyclin G (CycG) as a regulator of growth and metabolism in Drosophila. CycG mutants have a reduced body size and weight and show signs of starvation accompanied by a disturbed fat metabolism. InR/TOR signaling activity is impaired in cycG mutants, combined with a reduced phosphorylation status of the kinase Akt1 and the downstream factors S6-kinase and eukaryotic translation initiation factor 4E binding protein (4E-BP). Moreover, the expression and accumulation of Drosophila insulin like peptides (dILPs) is disturbed in cycG mutant brains. Using a reporter assay, we show that the activity of one of the first effectors of InR signaling, Phosphoinositide 3-kinase (PI3K92E), is unaffected in cycG mutants. However, the metabolic defects and weight loss in cycG mutants were rescued by overexpression of Akt1 specifically in the fat body and by mutants in widerborst (wdb), the B''-subunit of the phosphatase PP2A, known to downregulate Akt1 by dephosphorylation. Together, our data suggest that CycG acts at the level of Akt1 to regulate growth and metabolism via PP2A in Drosophila.  相似文献   

2.
Hedgehog (Hh) signaling is essential for embryonic development and adult homeostasis. How its signaling activity is fine-tuned in response to fluctuated Hh gradient is less known. Here, we identify protein phosphatase V (PpV), the catalytic subunit of protein phosphatase 6, as a homeostatic regulator of Hh signaling. PpV is genetically upstream of widerborst (wdb), which encodes a regulatory subunit of PP2A that modulates high-level Hh signaling. We show that PpV negatively regulates Wdb stability independent of phosphatase activity of PpV, by competing with the catalytic subunit of PP2A for Wdb association, leading to Wdb ubiquitination and subsequent proteasomal degradation. Thus, regulated Wdb stability, maintained through competition between two closely related phosphatases, ensures graded Hh signaling. Interestingly, PpV expression is regulated by Hh signaling. Therefore, PpV functions as a Hh activity sensor that regulates Wdb-mediated PP2A activity through feedback mechanisms to maintain Hh signaling homeostasis.  相似文献   

3.
PP2A (protein phosphatase 2A) is a major phosphatase in eukaryotic cells that plays an essential role in many processes. PP2A mutations in Schizosaccharomyces pombe result in defects of cell cycle control, cytokinesis and morphogenesis. Which PP2A substrates are responsible for these changes is not known. In this work, we searched for PP2A substrates in S. pombe using two approaches, 2D‐DIGE analysis of PP2A complex mutants and identification of PP2A interacting proteins. In both cases, we used MS to identify proteins of interest. In the DIGE experiment, we compared proteomes of wild‐type S. pombe, deletion of pta2, the phosphoactivator of the PP2A catalytic subunit, and pab1–4, a mutant of B‐type PP2A regulatory subunit. A total of 1742 protein spots were reproducibly resolved by 2D‐DIGE and 51 spots demonstrated significant changes between PP2A mutants and the wild‐type control. MS analysis of these spots identified 27 proteins that include key regulators of glycerol synthesis, carbon metabolism, amino acid biosyntesis, vitamin production, and protein folding. Importantly, we independently identified a subset of these proteins as PP2A binding partners by affinity precipitation, suggesting they may be direct targets of PP2A. We have validated our approach by demonstrating that phosphorylation of Gpd1, a key enzyme in glycerol biogenesis, is regulated by PP2A and that ability of cells to respond to osmotic stress by synthesizing glycerol is compromised in the PP2A mutants. Our work contributes to a better understanding of PP2A function and identifies potential PP2A substrates.  相似文献   

4.
Notch signalling regulates a multitude of differentiation processes during Drosophila development. For example, Notch activity is required for proper wing vein differentiation which is hampered in mutants of either the receptor Notch, the ligand Delta or the antagonist Hairless. Moreover, the Notch pathway is involved in several aspects of Drosophila oogenesis as well. We have identified Drosophila Cyclin G (CycG) as a molecular interaction partner of Hairless, the major antagonist in the Notch signalling pathway, in vitro and in vivo. Loss of CycG was shown before to cause female sterility and to disturb the architecture of the egg shell. Nevertheless, Notch dependent processes during oogenesis appeared largely unaffected in cycG mutant egg chambers. Loss of CycG modified the dominant wing phenotypes of Notch, Delta and Hairless mutants. Whereas the Notch loss of function phenotype was ameliorated by a loss of CycG, the phenotypes of either Notch gain of function or of Delta or Hairless loss of function were enhanced. In contrast, loss of CycG had only a minor effect on the wing vein phenotype of mutants affecting the EGFR signalling pathway emphasizing the specificity of the interaction of CycG and Notch pathway members.  相似文献   

5.
Cyclin G2 (CycG2) and Cyclin G1 (CycG1), two members of the Cyclin G subfamily, share high amino acid homology in their Cyclin G boxes. Functionally, they play a common role as association partners of the B′γ subunit of protein phosphatase 2A (PP2A) and regulate PP2A function, and their expression is increased following DNA damage. However, whether or not CycG1 and CycG2 have distinct roles during the cellular DNA damage response has remained unclear. Here, we report that CycG2, but not CycG1, co-localized with promyelocytic leukemia (PML) and γH2AX, forming foci following ionizing radiation (IR), suggesting that CycG2 is recruited to sites of DNA repair and that CycG1 and CycG2 have distinct functions. PML failed to localize to nuclear foci when CycG2 was depleted, and vice versa. This suggests that PML and CycG2 mutually influence each other’s functions following IR. Furthermore, we generated CycG2-knockout (Ccng2−/−) mice to investigate the functions of CycG2. These mice were born healthy and developed normally. However, CycG2-deficient mouse embryonic fibroblasts displayed an abnormal response to IR. Dephosphorylation of γH2AX and checkpoint kinase 2 following IR was delayed in Ccng2−/− cells, suggesting that DNA damage repair may be perturbed in the absence of CycG2. Although knockdown of B′γ in wild-type cells also delayed dephosphorylation of γH2AX, knockdown of B′γ in Ccng2−/− cells prolonged this delay, suggesting that CycG2 cooperates with B′γ to dephosphorylate γH2AX. Taken together, we conclude that CycG2 is localized at DNA repair foci following DNA damage, and that CycG2 regulates the dephosphorylation of several factors necessary for DNA repair.  相似文献   

6.
Genetic analysis in Drosophila melanogaster has been widely used to identify a system of genes that control cell growth in response to insulin and nutrients. Many of these genes encode components of the insulin receptor/target of rapamycin (InR/TOR) pathway. However, the biochemical context of this regulatory system is still poorly characterized in Drosophila. Here, we present the first quantitative study that systematically characterizes the modularity and hormone sensitivity of the interaction proteome underlying growth control by the dInR/TOR pathway. Applying quantitative affinity purification and mass spectrometry, we identified 97 high confidence protein interactions among 58 network components. In all, 22% of the detected interactions were regulated by insulin affecting membrane proximal as well as intracellular signaling complexes. Systematic functional analysis linked a subset of network components to the control of dTORC1 and dTORC2 activity. Furthermore, our data suggest the presence of three distinct dTOR kinase complexes, including the evolutionary conserved dTTT complex (Drosophila TOR, TELO2, TTI1). Subsequent genetic studies in flies suggest a role for dTTT in controlling cell growth via a dTORC1‐ and dTORC2‐dependent mechanism.  相似文献   

7.
Repression by E(spl)M8 during inhibitory Notch (N) signaling (lateral inhibition) is regulated, in part, by protein kinase CK2, but the involvement of a phosphatase has been unclear. The studies we report here employ Tik, a unique dominant‐negative (DN) mutation in the catalytic subunit of CK2, in a Gal4‐UAS based assay for impaired lateral inhibition. Specifically, overexpression of Tik elicits ectopic bristles in N+ flies and suppresses the retinal defects of the gain‐of‐function allele Nspl. Functional dissection of the two substitutions in Tik (M161K and E165D), suggests that both mutations contribute to its DN effects. While the former replacement compromises CK2 activity by impairing ATP‐binding, the latter affects a conserved motif implicated in binding the phosphatase PP2A. Accordingly, overexpression of microtubule star (mts), the PP2A catalytic subunit closely mimics the phenotypic effects of loss of CK2 functions in N+ or Nspl flies, and elicits notched wings, a characteristic of N mutations. Our findings suggest antagonistic roles for CK2 and PP2A during inhibitory N signaling. genesis 47:647–658, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

8.
The insulin/insulin-like growth factor (IGF) and the target of rapamycin (TOR) signaling pathways are known to regulate lifespan in diverse organisms. However, only a limited number of genes involved in these pathways have been examined regarding their effects on lifespan. Through a gain-of-function screen in Drosophila, we found that overexpression of the wdb gene encoding a regulatory subunit of PP2A, and overexpression of the lkb1 gene encoding a serine/threonine kinase, reduced organ size and extended lifespan. Overexpression of wdb also reduced the level of phosphorylated AKT, while overexpression of lkb1 increased the level of phosphorylated AMPK and decreased the level of phosphorylated S6K. Taken together, our results suggest that wdb- and lkb1-dependent lifespan extension is mediated by downregulation of S6K, a downstream component of the insulin/IGF and TOR signaling pathways.  相似文献   

9.
Protein phosphatase 2A (PP2A) is the major serine-threonine phosphatase that regulates a number of cell signaling pathways. PP2A activity is controlled partially through protein degradation; however, the underlying mechanism is not fully understood. Here we show that PP2A/C, a catalytic subunit of PP2A, is degraded by the Cullin3 (Cul3) ligase-mediated ubiquitin-proteasome pathway. In response to death receptor signaling by tumor-necrosis factor-related apoptosis-inducing ligand (TRAIL), PP2A/C, caspase-8 and Cul3, a subunit of the cullin family of E3 ligases, are recruited into the death-inducing signaling complex (DISC) where the Cul3 ligase targets PP2A/C for ubiquitination and subsequent degradation. Functionally, knockdown of PP2A/C expression by siRNA or pharmacological inhibition of PP2A activity increases TRAIL-induced apoptosis. In cancer cells that have developed acquired TRAIL resistance, PP2A phosphatase activity is increased, and PP2A/C protein is resistant to TRAIL-induced degradation. Thus, this work identifies a new mechanism by which PP2A/C is regulated by Cul3 ligase-mediated degradation in response to death receptor signaling and suggests that inhibition of PP2A/C degradation may contribute to resistance of cancer cells to death receptor-induced apoptosis.  相似文献   

10.
The Akt family of serine‐threonine kinases integrates a myriad of signals governing cell proliferation, apoptosis, glucose metabolism, and cytoskeletal organization. Akt affects neuronal morphology and function, influencing dendrite growth and the expression of ion channels. Akt is also an integral element of PI3Kinase‐target of rapamycin (TOR)‐Rheb signaling, a pathway that affects synapse assembly in both vertebrates and Drosophila. Our recent findings demonstrated that disruption of this pathway in Drosophila is responsible for a number of neurodevelopmental deficits that may also affect phenotypes associated with tuberous sclerosis complex, a disorder resulting from mutations compromising the TSC1/TSC2 complex, an inhibitor of TOR (Dimitroff et al., 2012). Therefore, we examined the role of Akt in the assembly and physiological function of the Drosophila neuromuscular junction (NMJ), a glutamatergic synapse that displays developmental and activity‐dependent plasticity. The single Drosophila Akt family member, Akt1 selectively altered the postsynaptic targeting of one glutamate receptor subunit, GluRIIA, and was required for the expansion of a specialized postsynaptic membrane compartment, the subsynaptic reticulum (SSR). Several lines of evidence indicated that Akt1 influences SSR assembly by regulation of Gtaxin, a Drosophila t‐SNARE protein (Gorczyca et al., 2007) in a manner independent of the mislocalization of GluRIIA. Our findings show that Akt1 governs two critical elements of synapse development, neurotransmitter receptor localization, and postsynaptic membrane elaboration. © 2013 The Authors. Developmental Neurobiology Published by Wiley Periodicals, Inc. Develop Neurobiol 73: 723–743, 2013  相似文献   

11.
Pruning that selectively eliminates unnecessary axons/dendrites is crucial for sculpting the nervous system during development. During Drosophila metamorphosis, dendrite arborization neurons, ddaCs, selectively prune their larval dendrites in response to the steroid hormone ecdysone, whereas mushroom body γ neurons specifically eliminate their axon branches within dorsal and medial lobes. However, it is unknown which E3 ligase directs these two modes of pruning. Here, we identified a conserved SCF E3 ubiquitin ligase that plays a critical role in pruning of both ddaC dendrites and mushroom body γ axons. The SCF E3 ligase consists of four core components Cullin1/Roc1a/SkpA/Slimb and promotes ddaC dendrite pruning downstream of EcR-B1 and Sox14, but independently of Mical. Moreover, we demonstrate that the Cullin1-based E3 ligase facilitates ddaC dendrite pruning primarily through inactivation of the InR/PI3K/TOR pathway. We show that the F-box protein Slimb forms a complex with Akt, an activator of the InR/PI3K/TOR pathway, and promotes Akt ubiquitination. Activation of the InR/PI3K/TOR pathway is sufficient to inhibit ddaC dendrite pruning. Thus, our findings provide a novel link between the E3 ligase and the InR/PI3K/TOR pathway during dendrite pruning.  相似文献   

12.
The TOR and Jak/STAT signal pathways are highly conserved from Drosophila to mammals, but it is unclear whether they interact during development. The proline-rich Akt substrate of 40 kDa (PRAS40) mediates the TOR signal pathway through regulation of TORC1 activity, but its functions in TORC1 proved in cultured cells are controversial. The Drosophila gene Lobe (L) encodes the PRAS40 ortholog required for eye cell survival. L mutants exhibit apoptosis and eye-reduction phenotypes. It is unknown whether L regulates eye development via regulation of TORC1 activity. We found that reducing the L level, by hypomorphic L mutation or heterozygosity of the null L mutation, resulted in ectopic expression of unpaired (upd), which is known to act through the Jak/STAT signal pathway to promote proliferation during eye development. Unexpectedly, when L was reduced, decreasing Jak/STAT restored the eye size, whereas increasing Jak/STAT prevented eye formation. We found that ectopic Jak/STAT signaling and apoptosis are mutually dependent in L mutants, indicating that L reduction makes Jak/STAT signaling harmful to eye development. In addition, our genetic data suggest that TORC1 signaling is downregulated upon L reduction, supporting the idea that L regulates eye development through regulation of TORC1 activity. Similar to L reduction, decreasing TORC1 signaling by dTOR overexpression results in ectopic upd expression and apoptosis. A novel finding from our data is that dysregulated TORC1 signaling regulates the expression of upd and the function of the Jak/STAT signal pathway in Drosophila eye development.  相似文献   

13.
Drought is a major environmental stress limiting global wheat(Triticum aestivum) production. Exploring drought tolerance genes is important for improving drought adaptation in this crop. Here, we cloned and characterized TaTIP41, a novel drought tolerance gene in wheat. TaTIP41 is a putative conserved component of target of rapamycin(TOR)signaling, and the Ta TIP41 homoeologs were expressed in response to drought stress and abscisic acid(ABA). The overexpression of Ta TIP41 enhanced drought tole...  相似文献   

14.
Plants survive periods of unfavourable conditions with the help of sensory mechanisms that respond to reactive oxygen species (ROS) as signalling molecules in different cellular compartments. We have previously demonstrated that protein phosphatase 2A (PP2A) impacts on organellar cross‐talk and associated pathogenesis responses in Arabidopsis thaliana. This was evidenced by drastically enhanced pathogenesis responses and cell death in cat2 pp2a‐b′γ double mutants, deficient in the main peroxisomal antioxidant enzyme CATALASE 2 and PP2A regulatory subunit B′γ (PP2A‐B′γ). In the present paper, we explored the impacts of PP2A‐B′γ and a highly similar regulatory subunit PP2A‐B′ζ in growth regulation and light stress tolerance in Arabidopsis. PP2AB′γ and PP2AB′ζ display high promoter activities in rapidly growing tissues and are required for optimal growth under favourable conditions. Upon acclimation to a combination of high light, elevated temperature and reduced availability of water, however, pp2a‐b′γζ double mutants grow similarly to the wild type and show enhanced tolerance against photo‐oxidative stress. We conclude that by controlling ROS homeostasis and signalling, PP2A‐B′γ and PP2A‐B′ζ may direct acclimation strategies upon environmental perturbations, hence acting as important determinants of defence responses and light acclimation in plants.  相似文献   

15.
Protein phosphatase 2A (PP2A) regulates almost all cell signaling pathways. It consists of a scaffolding A subunit to which a catalytic C subunit and one of many regulatory B subunits bind. Of the more than 80 PP2A isoforms, 10% use Aβ as a scaffold. This study demonstrates the isoform-specific function of the A scaffold subunits. Polyomaviruses have shown the importance of phosphotyrosine, PI3K, and p53 in transformation. Comparisons of polyoma and SV40 small T antigens implicate Aβ in the control of differentiation. Knockdown of Aβ enhanced differentiation. Akt signaling regulated differentiation; its activation or inhibition promoted or blocked it, respectively. Aβ bound Akt. Enhancement of PP2A Aβ/Akt interaction by polyoma small T antigen increased turnover of Akt Ser-473 phosphorylation. Conversely, knockdown of Aβ promoted Akt activity and reduced turnover of phosphate at Ser-473 of Akt. These data provide new insight into the regulation of Akt, a protein of extreme importance in cancer. Furthermore, our results suggest that the role for Aβ in differentiation and perhaps tumor suppression may lie partly in its ability to negatively regulate Akt.  相似文献   

16.
Akt represents a nodal point between the Insulin receptor and TOR signaling, and its activation by phosphorylation controls cell proliferation, cell size, and metabolism. The activity of Akt must be carefully balanced, as increased Akt signaling is frequently associated with cancer and as insufficient Akt signaling is linked to metabolic disease and diabetes mellitus. Using a genome-wide RNAi screen in Drosophila cells in culture, and in vivo analyses in the third instar wing imaginal disc, we studied the regulatory circuitries that define dAkt activation. We provide evidence that negative feedback regulation of dAkt occurs during normal Drosophila development in vivo. Whereas in cell culture dAkt is regulated by S6 Kinase (S6K)–dependent negative feedback, this feedback inhibition only plays a minor role in vivo. In contrast, dAkt activation under wild-type conditions is defined by feedback inhibition that depends on TOR Complex 1 (TORC1), but is S6K–independent. This feedback inhibition is switched from TORC1 to S6K only in the context of enhanced TORC1 activity, as triggered by mutations in tsc2. These results illustrate how the Akt–TOR pathway dynamically adapts the routing of negative feedback in response to the activity load of its signaling circuit in vivo.  相似文献   

17.
The interleukin-6 (IL-6) stimulates growth in cells such as multiple myeloma and B-cell plasmacytomas/hybridomas, while it inhibits growth in several myeloid leukemia cells. The IL-6 receptor has subunit called gp130. It was reported that Ser-782 of gp130 is phosphorylated by unidentified kinase(s) in cell extracts, and level of gp130 (S782A) transiently expressed on the cell surface of COS-7 is 6-times higher than that of the wild type. These results motivated us to analyze whether the phosphorylation of gp130 at Ser-782 is involved in its degradation or not. In this study, we demonstrated here that treatment of HepG2 cells with okadaic acid (OA), a potent inhibitor for PP2A, promotes phosphorylation of gp130 at Ser-782 and degradation of gp130. MG115, a proteasome inhibitor, suppressed this degradation. These effects of OA could not be replaced with tautomycetin (TC), an inhibitor for PP1. Purified PP2A dephosphorylated phospho-Ser-782 of gp130 in vitro. IL-6-induced activation of Stat3 was suppressed by preincubation of the cells with OA, suggesting that the IL-6 signaling pathway was blocked by OA through degradation of gp130. Taken together, present results strongly suggest that degradation of gp130 is regulated through a phosphorylation-dephosphorylation mechanism in which PP2A is crucially involved and that gp130 is a potential therapeutic target in cancers. (Mol Cell Biochem 269: 183–187, 2005)  相似文献   

18.
The neuronal ceroid lipofuscinoses (NCLs) are a group of inherited neurodegenerative lysosomal storage disorders. CLN8 deficiency causes a subtype of NCL, referred to as CLN8 disease. CLN8 is an ER resident protein with unknown function; however, a role in ceramide metabolism has been suggested. In this report, we identified PP2A and its biological inhibitor I2PP2A as interacting proteins of CLN8. PP2A is one of the major serine/threonine phosphatases in cells and governs a wide range of signaling pathways by dephosphorylating critical signaling molecules. We showed that the phosphorylation levels of several substrates of PP2A, namely Akt, S6 kinase, and GSK3β, were decreased in CLN8 disease patient fibroblasts. This reduction can be reversed by inhibiting PP2A phosphatase activity with cantharidin , suggesting a higher PP2A activity in CLN8-deficient cells. Since ceramides are known to bind and influence the activity of PP2A and I2PP2A, we further examined whether ceramide levels in the CLN8-deficient cells were changed. Interestingly, the ceramide levels were reduced by 60% in CLN8 disease patient cells compared to controls. Furthermore, we observed that the conversion of ER-localized NBD-C6-ceramide to glucosylceramide and sphingomyelin in the Golgi apparatus was not affected in CLN8-deficient cells, indicating transport of ceramides from ER to the Golgi apparatus was normal. A model of how CLN8 along with ceramides affects I2PP2A and PP2A binding and activities is proposed.  相似文献   

19.
Ethylene signaling in Arabidopsis begins with a family of five ethylene receptors that regulate the activity of the Raf-like kinase, CTR1. Recent work to identify novel factors required for modulating ethylene signaling resulted in the isolation of enhanced ethylene response 1 (eer1), a mutant that displays both increased sensitivity and increased amplitude of response to ethylene. Molecular cloning of eer1 reveals that its mutant phenotype results from a loss-of-function mutation in the previously characterized RCN1, one of three PP2A A regulatory subunits in Arabidopsis. Our analysis shows that neither RCN1 expression nor PP2A activity is regulated by ethylene. Instead, we found that Arabidopsis PP2A-1C, a PP2A catalytic subunit previously characterized as interacting with RCN1, associates strongly with the kinase domain of CTR1 in vitro. This likely represents a role for PP2A in modulation of CTR1 activity because an in vitro kinase assay did not reveal phosphorylation of either RCN1 or PP2A-1C by CTR1, indicating that neither of them is a substrate for CTR1. PP2A activity is required for Ras-dependent activation of mammalian Raf, with reductions in PP2A activity significantly compromising the effectiveness of this mechanism. Our genetic and biochemical results suggest that a similar requirement for PP2A activity exists for ethylene signaling, with loss-of-function mutations affecting PP2A activity possibly reducing the effectiveness of CTR1 activation, thus lowering the threshold required for manifestation of ethylene response.  相似文献   

20.
Impaired Akt1 signaling is observed in neurodegenerative diseases, including Parkinson׳s disease (PD). In PD models oxidative modification of Akt1 leads to its dephosphorylation and consequent loss of its kinase activity. To explore the underlying mechanism we exposed Neuro2A cells to cadmium, a pan inhibitor of protein thiol disulfide oxidoreductases, including glutaredoxin 1 (Grx1), or downregulated Grx1, which led to dephosphorylation of Akt1, loss of its kinase activity, and also decreased Akt1 protein levels. Mutation of cysteines to serines at 296 and 310 in Akt1 did not affect its basal kinase activity but abolished cadmium- and Grx1 downregulation-induced reduction in Akt1 kinase activity, indicating their critical role in redox modulation of Akt1 function and turnover. Cadmium-induced decrease in phosphorylated Akt1 correlated with increased association of wild-type (WT) Akt1 with PP2A, which was absent in the C296–310S Akt1 mutant and was also abolished by N-acetylcysteine treatment. Further, increased proteasomal degradation of Akt1 by cadmium was not seen in the C296–310S Akt1 mutant, indicating that oxidation of cysteine residues facilitates degradation of WT Akt1. Moreover, preventing oxidative modification of Akt1 cysteines 296 and 310 by mutating them to serines increased the cell survival effects of Akt1. Thus, in neurodegenerative states such as PD, maintaining the thiol status of cysteines 296 and 310 in Akt1 would be critical for Akt1 kinase activity and for preventing its degradation by proteasomes. Preventing downregulation of Akt signaling not only has long-range consequences for cell survival but could also affect the multiple roles that Akt plays, including in the Akt–mTOR signaling cascade.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号