首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Antibodies represent an important and growing class of biologic research reagents and biopharmaceutical products. They can be used as therapeutics in a variety of diseases. With the rapid expansion of proteomic studies and biomarker discovery, there is a need for the generation of highly specific binding reagents to study the vast number of proteins encoded by the genome. Display technologies provide powerful tools for obtaining antibodies. Aside from the preservation of natural antibody repertoires, they are capable of exploiting diversity by DNA recombination to create very large libraries for selection of novel molecules. In contrast to in vivo immunization processes, display technologies allow selection of antibodies under in vitro-defined selection condition(s), resulting in enrichment of antibodies with desired properties from large populations. In addition, in vitro selection enables the isolation of antibodies against difficult antigens including self-antigens, and this can be applied to the generation of human antibodies against human targets. Display technologies can also be combined with DNA mutagenesis for antibody evolution in vitro. Some methods are amenable to automation, permitting high-throughput generation of antibodies. Ribosome display is considered as representative of the next generation of display technologies since it overcomes the limitations of cell-based display methods by using a cell-free system, offering advantages of screening larger libraries and continuously expanding new diversity during selection. Production of display-derived antibodies can be achieved by choosing one of a variety of prokaryotic and eukaryotic cell-based expression systems. In the near future, cell-free protein synthesis may be developed as an alternative for large-scale generation of antibodies.  相似文献   

2.
Antibodies represent an important and growing class of biologic research reagents and biopharmaceutical products. They can be used as therapeutics in a variety of diseases. With the rapid expansion of proteomic studies and biomarker discovery, there is a need for the generation of highly specific binding reagents to study the vast number of proteins encoded by the genome. Display technologies provide powerful tools for obtaining antibodies. Aside from the preservation of natural antibody repertoires, they are capable of exploiting diversity by DNA recombination to create very large libraries for selection of novel molecules. In contrast to in vivo immunization processes, display technologies allow selection of antibodies under in vitro-defined selection condition(s), resulting in enrichment of antibodies with desired properties from large populations. In addition, in vitro selection enables the isolation of antibodies against difficult antigens including self-antigens, and this can be applied to the generation of human antibodies against human targets. Display technologies can also be combined with DNA mutagenesis for antibody evolution in vitro. Some methods are amenable to automation, permitting high-throughput generation of antibodies. Ribosome display is considered as representative of the next generation of display technologies since it overcomes the limitations of cell-based display methods by using a cell-free system, offering advantages of screening larger libraries and continuously expanding new diversity during selection. Production of display-derived antibodies can be achieved by choosing one of a variety of prokaryotic and eukaryotic cell-based expression systems. In the near future, cell-free protein synthesis may be developed as an alternative for large-scale generation of antibodies.  相似文献   

3.

Background

Isolation of human antibodies using current display technologies can be limited by constraints on protein expression, folding and post-translational modifications. Here we describe a discovery platform that utilizes self-inactivating (SIN) lentiviral vectors for the surface display of high-affinity single-chain variable region (scFv) antibody fragments on human cells and lentivirus particles.

Methodology/Principal Findings

Bivalent scFvFc human antibodies were fused in frame with different transmembrane (TM) anchoring moieties to allow efficient high-level expression on human cells and the optimal TM was identified. The addition of an eight amino acid HIV-1 gp41 envelope incorporation motif further increased scFvFc expression on human cells and incorporation into lentiviral particles. Both antibody-displaying human cells and virus particles bound antigen specifically. Sulfation of CDR tyrosine residues, a property recently shown to broaden antibody binding affinity and antigen recognition was also demonstrated. High level scFvFc expression and stable integration was achieved in human cells following transduction with IRES containing bicistronic SIN lentivectors encoding ZsGreen when scFvFc fusion proteins were expressed from the first cassette. Up to 106-fold enrichment of antibody expressing cells was achieved with one round of antigen coupled magnetic bead pre-selection followed by FACS sorting. Finally, the scFvFc displaying human cells could be used directly in functional biological screens with remarkable sensitivity.

Conclusions/Significance

This antibody display platform will complement existing technologies by virtue of providing properties unique to lentiviruses and antibody expression in human cells, which, in turn, may aid the discovery of novel therapeutic human mAbs.  相似文献   

4.
5.
Antibody display systems have been successfully applied to screen, select and characterize antibody fragments. These systems typically use prokaryotic organisms such as phage and bacteria or lower eukaryotic organisms, such as yeast. These organisms possess either no or different post-translational modification functions from mammalian cells and prefer to display small antibody fragments instead of full-length IgGs. We report here a novel mammalian cell-based antibody display platform that displays full-length functional antibodies on the surface of mammalian cells. Through recombinase-mediated DNA integration, each host cell contains one copy of the gene of interest in the genome. Utilizing a hot-spot integration site, the expression levels of the gene of interest are high and comparable between clones, ensuring a high signal to noise ratio. Coupled with fluorescence-activated cell sorting (FACS) technology, our platform is high throughput and can distinguish antibodies with very high antigen binding affinities directly on the cell surface. Single-round FACS can enrich high affinity antibodies by more than 500-fold. Antibodies with significantly improved neutralizing activity have been identified from a randomly mutagenized library, demonstrating the power of this platform in screening and selecting antibody therapeutics.Key words: antibody display, mammalian display, antibody library, vector, antibody screen, affinity maturation  相似文献   

6.
《Gene》1997,187(1):9-18
Phage display is now an established method to select antibody fragments specific for a wide range of diverse antigens. In particular, isolation of human monoclonal antibodies has become a reality and for most purposes bacterial expression of the selected recombinant antibody fragments is sufficient. However, there are some cases where the expression of complete human immunoglobulin in mammalian cells is, if not essential, at least desirable. For this reason we have designed and constructed a set of mammalian expression vectors which permit facile and rapid cloning of antibody genes for both transient and stable expression in mammalian cells. Immunoglobulin genes may be cloned into these expression vectors as V regions or as Fabs for expression as either complete antibodies or as Fab fragments, using restriction sites which are rare in human V genes. All the important elements in the vectors – promoter, leader sequence, constant domains and selectable markers – are flanked by unique restriction sites, allowing simple substitution of elements. The vectors have been evaluated using the variable regions from the neutralizing anti-nerve growth factor (NGF) antibody, αD11, and the V regions from 2E10, a scFv selected from a scFv phagemid library.  相似文献   

7.
We describe a novel approach named REAL-Select for the non-covalent display of IgG-molecules on the surface of yeast cells for the purpose of antibody engineering and selection. It relies on the capture of secreted native full-length antibodies on the cell surface via binding to an externally immobilized ZZ domain, which tightly binds antibody Fc. It is beneficial for high-throughput screening of yeast-displayed IgG-libraries during antibody discovery and development. In a model experiment, antibody-displaying yeast cells were isolated from a 1∶1,000,000 mixture with control cells confirming the maintenance of genotype-phenotype linkage. Antibodies with improved binding characteristics were obtained by affinity maturation using REAL-Select, demonstrating the ability of this system to display antibodies in their native form and to detect subtle changes in affinity by flow cytometry. The biotinylation of the cell surface followed by functionalization with a streptavidin-ZZ fusion protein is an approach that is independent of the genetic background of the antibody-producing host and therefore can be expected to be compatible with other eukaryotic expression hosts such as P. pastoris or mammalian cells.  相似文献   

8.
We describe a novel polyprotein precursor‐based approach to express antibodies from mammalian cells. Rather than expressing heavy and light chain proteins from separate expression units, the antibody heavy and light chains are contained in one single‐open reading frame (sORF) separated by an intein gene fused in frame. Inside mammalian cells this ORF is transcribed into a single mRNA, and translated into one polypeptide. The antibody heavy and light chains are separated posttranslationally, assembled into the functional antibody molecule, and secreted into culture medium. It is demonstrated that Pol I intein from P. horikoshii mediates protein splicing and cleavage reactions in mammalian cells, in the context of antibody heavy and light chain amino acid sequences. To allow the separation of antibody heavy chain, light chain, and the intein, we investigated a number of intein mutations designed to inhibit intein‐mediated splicing but preserve cleavage reactions. We have also designed constructs in which the signal peptide downstream from intein has altered hydrophobicity. The use of some of these mutant constructs resulted in more efficient antibody secretion, highlighting areas that can be further explored in improving such an expression system. An antibody secreted using one of the sORF constructs was characterized. This antibody has correct N‐terminal sequences for both of its heavy and light chains, correct heavy and light chain MW as well as intact MW as measured by mass spectrometry. Its affinity to antigen, as measured by surface plasmon resonance (SPR), is indistinguishable from that of the same antibody produced using conventional method. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

9.
《MABS-AUSTIN》2013,5(5):508-518
Antibody display systems have been successfully applied to screen, select and characterize antibody fragments. These systems typically use prokaryotic organisms such as phage and bacteria or lower eukaryotic organisms, such as yeast. These organisms possess either no or different post-translational modification functions from mammalian cells and prefer to display small antibody fragments instead of full-length IgGs. We report here a novel mammalian cell-based antibody display platform that displays full-length functional antibodies on the surface of mammalian cells. Through recombinase-mediated DNA integration, each host cell contains one copy of the gene of interest in the genome. Utilizing a hot-spot integration site, the expression levels of the gene of interest are high and comparable between clones, ensuring a high signal to noise ratio. Coupled with fluorescence-activated cell sorting (FACS) technology, our platform is high throughput and can distinguish antibodies with very high antigen binding affinities directly on the cell surface. Single-round FACS can enrich high affinity antibodies by more than 500 fold. Antibodies with significantly improved neutralizing activity have been identified from a randomly mutagenized library, demonstrating the power of this platform in screening and selecting antibody therapeutics.  相似文献   

10.
Antibody library technology represents a powerful tool for the discovery and design of antibodies with high affinity and specificity for their targets. To extend the technique to the expression and selection of antibody libraries in an eukaryotic environment, we provide here a proof of concept that retroviruses can be engineered for the display and selection of variable single-chain fragment (scFv) libraries. A retroviral library displaying the repertoire obtained after a single round of selection of a human synthetic scFv phage display library on laminin was generated. For selection, antigen-bound virus was efficiently recovered by an overlay with cells permissive for infection. This approach allowed more than 103-fold enrichment of antigen binders in a single selection cycle. After three selection cycles, several scFvs were recovered showing similar laminin-binding activities but improved expression levels in mammalian cells as compared with a laminin-specific scFv selected by the conventional phage display approach. Thus, translational problems that occur when phage-selected antibodies have to be transferred onto mammalian expression systems to exert their therapeutic potential can be avoided by the use of retroviral display libraries.  相似文献   

11.
Antibodies play a pivotal role in human health and disease. The application of phage display technology represents another milestone in the attempt to gain a better understanding of human antibodies. Immunoglobulin phage display permits human monoclonal antibodies for the first time to be readily available for analysis and for therapeutic use. Recent developments in molecular biology, in particular the polymerase chain reaction, have made it possible to amplify, clone, and express human antibody fragments in prokaryotic organisms. Phagemid display vectors have a distinct advantage over conventional cell culture technology used to immortalize human antibodies, in that one may quickly survey huge immunoglobulin repertoires for an antibody of desired specificity. Dual expression of immunoglobulin variable region light and heavy chain fragments permits combinatorial shuffling and thus an increase in diversity.The development of sophisticated computer algorithms, such as LINUS,57 that can predict the three-dimensional structure of proteins from DNA sequences will have an enormous influence on the characterization and design of human antibodies. Future advances in computer software will be needed to aid in the identification of unique antibody sequence motifs expressed during disease and in the design of antibodies with defined functional epitopes.  相似文献   

12.
单链抗体(single chain antibody fragment,scFv)是由抗体重链可变区(variable region of heavy chain,VH)和轻链可变区(variable region of light chain,VL)通过柔性短肽连接组成的小分子,是具有完整抗原结合活性的最小功能片段,包含抗体识别及抗原结合部位。相比于其他抗体,scFv具有分子量小、穿透性强、免疫原性弱、易构建表达等优点。目前,scFv最常用的展示系统主要有噬菌体展示系统、核糖体展示系统、mRNA展示系统、酵母细胞表面展示系统和哺乳动物细胞展示系统等。近年来,随着scFv在医学、生物学、食品安全学等领域的发展,使得其在生物合成和应用研究方面备受关注。本文对近年来scFv展示系统的研究进展作一综述,以期为scFv的筛选及应用提供理论基础。  相似文献   

13.
Phage display antibody libraries are a rich resource for discovery of potential therapeutic antibodies. Single-chain variable fragment (scFv) libraries are the most common format due to the efficient display of scFv by phage particles and the ease by which soluble scFv antibodies can be expressed for high-throughput screening. Typically, a cascade of screening and triaging activities are performed, beginning with the assessment of large numbers of E. coli-expressed scFv, and progressing through additional assays with individual reformatting of the most promising scFv to full-length IgG. However, use of high-throughput screening of scFv for the discovery of full-length IgG is not ideal because of the differences between these molecules. Furthermore, the reformatting step represents a bottle neck in the process because each antibody has to be handled individually to preserve the unique VH and VL pairing. These problems could be resolved if populations of scFv could be reformatted to full-length IgG before screening without disrupting the variable region pairing. Here, we describe a novel strategy that allows the reformatting of diverse populations of scFv from phage selections to full-length IgG in a batch format. The reformatting process maintains the diversity and variable region pairing with high fidelity, and the resulted IgG pool enables high-throughput expression of IgG in mammalian cells and cell-based functional screening. The improved process led to the discovery of potent candidates that are comparable or better than those obtained by traditional methods. This strategy should also be readily applicable to Fab-based phage libraries. Our approach, Screening in Product Format (SiPF), represents a substantial improvement in the field of antibody discovery using phage display.  相似文献   

14.
Phage display of antibody fragments from natural or synthetic antibody libraries with the single chain constructs combining the variable fragments (scFv) has been one of the most prominent technologies in antibody engineering. However, the nature of the artificial single chain constructs results in unstable proteins expressed on the phage surface or as soluble proteins secreted in the bacterial culture medium. The stability of the variable domain structures can be enhanced with interdomain disulfide bond, but the single chain disulfide-stabilized constructs (sc-dsFv) have yet to be established as a feasible format for bacterial phage display due to diminishing expression levels on the phage surface in known phage display systems. In this work, biological combinatorial searches were used to establish that the c-region of the signal sequence is critically responsible for effective expression and functional folding of the sc-dsFv on the phage surface. The optimum signal sequences increase the expression of functional sc-dsFv by 2 orders of magnitude compared with wild-type signal sequences, enabling the construction of phage-displayed synthetic antivascular endothelial growth factor sc-dsFv libraries. Comparison of the scFv and sc-dsFv variants selected from the phage-displayed libraries for vascular endothelial growth factor binding revealed the sequence preference differences resulting from the interdomain disulfide bond. These results underlie a new phage display format for antibody fragments with all the benefits from the scFv format but without the downside due to the instability of the dimeric interface in scFv.  相似文献   

15.
《Gene》1997,187(1):1-8
We define intracellular immunization as the inhibition or inactivation of the function of a molecule by the ectopic intracellular expression of antibody binding domains which recognise the molecule. Such recombinant antibodies can be directed to different compartments of eukaryotic cells by means of previously defined targeting signals, thus permiting the study of any molecule in any cellular compartment for which an antibody is available. For this purpose, we have created a set of vectors based on the VHExpress vector described [Persic, L., Roberts, A., Wilton, J., Cattaneo, A., Bradbury, A. and Hoogenboom, H.R. (1997) An integrated vector system for the eukaryotic expression of antibodies or their fragments after selection from phage display libraries. Gene 187, 000–000], which has been modified to express scFvs (single chain fragments) linked to specific targeting signals. These permit the localisation of scFvs to different intracellular compartments: the endoplasmic reticulum (scFvE-er), the nucleus (scFvE-nuclear), the mitochondria (scFvE-mit), the cytoplasm (scFvE-cyto), and as secreted proteins (scFvE-sec). The function of these vectors has been assessed by the immunofluorescence of COS cells transiently transfected with constructs containing the αD11 scFv.  相似文献   

16.
Reliable, specific polyclonal and monoclonal antibodies are important tools in research and medicine. However, the discovery of antibodies against their targets in their native forms is difficult. Here, we present a novel method for discovery of antibodies against membrane proteins in their native configuration in mammalian cells. The method involves the co-expression of an antibody library in a population of mammalian cells that express the target polypeptide within a natural membrane environment on the cell surface. Cells that secrete a single-chain fragment variable (scFv) that binds to the target membrane protein thereby become self-labeled, enabling enrichment and isolation by magnetic sorting and FRET-based flow sorting. Library sizes of up to 109 variants can be screened, thus allowing campaigns of naïve scFv libraries to be selected against membrane protein antigens in a Chinese hamster ovary cell system. We validate this method by screening a synthetic naïve human scFv library against Chinese hamster ovary cells expressing the oncogenic target epithelial cell adhesion molecule and identify a panel of three novel binders to this membrane protein, one with a dissociation constant (KD) as low as 0.8 nm. We further demonstrate that the identified antibodies have utility for killing epithelial cell adhesion molecule–positive cells when used as a targeting domain on chimeric antigen receptor T cells. Thus, we provide a new tool for identifying novel antibodies that act against membrane proteins, which could catalyze the discovery of new candidates for antibody-based therapies.  相似文献   

17.
《MABS-AUSTIN》2013,5(8):1367-1380
ABSTRACT

Antibody engineering in mammalian cells offers the important advantage of expression and screening of libraries in their native conformation, increasing the likelihood of generating candidates with more favorable molecular properties. Major advances in cellular engineering enabled by CRISPR-Cas9 genome editing have made it possible to expand the use of mammalian cells in biotechnological applications. Here, we describe an antibody engineering and screening approach where complete variable light (VL) and heavy (VH) chain cassette libraries are stably integrated into the genome of hybridoma cells by enhanced Cas9-driven homology-directed repair (HDR), resulting in their surface display and secretion. By developing an improved HDR donor format that utilizes in situ linearization, we are able to achieve >15-fold improvement of genomic integration, resulting in a screening workflow that only requires a simple plasmid electroporation. This proved suitable for different applications in antibody discovery and engineering. By integrating and screening an immune library obtained from the variable gene repertoire of an immunized mouse, we could isolate a diverse panel of >40 unique antigen-binding variants. Additionally, we successfully performed affinity maturation by directed evolution screening of an antibody library based on random mutagenesis, leading to the isolation of several clones with affinities in the picomolar range.  相似文献   

18.
Phage display is a key technology for the identification and maturation of high affinity peptides, antibodies, and other proteins. However, limitations of bacterial expression restrict the range and sensitivity of assays that can be used to evaluate phage-selected variants. To address this problem, selected genes are typically transferred to mammalian expression vectors, a major rate-limiting step in the iterative improvement of peptides and proteins. Here we describe a system that combines phage display and efficient mammalian expression in a single vector, pDQ1. This system permits immediate expression of phage-selected genes as IgG1-Fc fusions in mammalian cells, facilitating the rapid, sensitive characterization of a large number of library outputs for their biochemical and functional properties. We demonstrate the utility of this system by improving the ability of a CD4-mimetic peptide to bind the HIV-1 envelope glycoprotein and neutralize HIV-1 entry. We further improved the potency of the resulting peptide, CD4mim6, by limiting its ability to induce the CD4-bound conformation of the envelope glycoprotein. Thus, CD4mim6 and its variants can be used to investigate the properties of the HIV-1 envelope glycoprotein, and pDQ1 can accelerate the discovery of new peptides and proteins through phage display.  相似文献   

19.
Surface display of antibodies   总被引:5,自引:0,他引:5  
To screen antibody libraries that contain many millions of different clones, a selection system is required with an efficiency comparable to that of the immune system. This can be achieved by displaying antibodies on the surface of microorganisms containing the antibody's gene, analogous to the expression of the IgM antigen receptor on the surface of unactivated B-lymphocytes. Specific clones can then be selected using immobilized antigens. The minor coat protein of filamentous phages, pIII, which initiates the infection of E.coli by binding to their F-pili, and the major coat protein, pVIII, have been used as carriers for displaying antibodies on the phage surface. Recombinant antibodies have also been targeted to the cell surface of bacteria by fusing them with outer membrane components derived from lipoproteins, OmpA and an IgA protease. However, only the pIII system has been routinely used for screening antibody libraries. Here we describe the various antibody surface display systems and the screening of antibody libraries generated from the gene repertoire of lymphocytes and by gene synthesis. Finally, we have made a short comparison of the bacterial production of Fabs versus single chain antibodies (scFv).  相似文献   

20.
Since its first application to antibody engineering 15years ago, yeast display technology has been developed into a highly potent tool for both affinity maturing lead molecules and isolating novel antibodies and antibody-like species. Robust approaches to the creation of diversity, construction of yeast libraries, and library screening or selection have been elaborated, improving the quality of engineered molecules and certainty of success in an antibody engineering campaign and positioning yeast display as one of the premier antibody engineering technologies currently in use. Here, we summarize the history of antibody engineering by yeast surface display, approaches used in its application, and a number of examples highlighting the utility of this method for antibody engineering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号