首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A systematic analytical approach combining tryptic and chymotryptic peptide mapping with a Mascot Error Tolerant Search (ETS) has been developed to detect and identify low level protein sequence variants, i.e., amino acid substitutions, in recombinant monoclonal antibodies. The reversed-phase HPLC separation with ultraviolet (UV) detection and mass spectral acquisition parameters of the peptide mapping methods were optimized by using a series of model samples that contained low levels (0.5–5.0%) of recombinant humanized anti-HER2 antibody (rhumAb HER2) along with another unrelated recombinant humanized monoclonal antibody (rhumAb A). This systematic approach’s application in protein sequence variant analysis depends upon time and sensitivity constraints. An example of using this approach as a rapid screening assay is described in the first case study. For stable CHO clone selection for an early stage antibody project, comparison of peptide map UV profiles from the top four clone-derived rhumAb B samples quickly detected two sequence variants (M83R at 5% and P274Tat 42% protein levels) from two clones among the four. The second case study described in this work demonstrates how this approach can be applied to late stage antibody projects. A sequence variant, L413Q, present at 0.3% relative to the expected sequence of rhumAb C was identified by a Mascot-ETS for one out of four top producers. The incorporation of this systematic sequence variant analysis into clone selection and the peptide mapping procedure described herein have practical applications for the biotechnology industry, including possible detection of polymorphisms in endogenous proteins.Key words: recombinant monoclonal antibody, cell line development, sequence variants, HPLC-UV/MS/MS, tryptic peptide mapping, Mascot error tolerant search  相似文献   

2.
《MABS-AUSTIN》2013,5(6):761-774
Because of rapidly increasing market demand and rising cost pressure, the innovator of etanercept (Enbrel®) will inevitably face competition from biosimilar versions of the product. In this study, to elucidate the differences between the reference etanercept and its biosimilars, we characterized and compared the quality attributes of two commercially available, biosimilar TNF receptor 2-Fc fusion protein products. Biosimilar 1 showed high similarity to Enbrel® in critical quality attributes including peptide mapping, intact mass, charge variant, purity, glycosylation and bioactivity. In contrast, the intact mass and MS/MS analysis of biosimilar 2 revealed a mass difference indicative of a two amino acid residue variance in the heavy chain (Fc) sequences. Comprehensive glycosylation profiling confirmed that biosimilar 2 has significantly low sialylated N-oligosaccharides. Biosimilar 2 also displayed significant differences in charge attributes compared with the reference product. Interestingly, biosimilar 2 exhibited similar affinity and bioactivity levels compared with the reference product despite the obvious difference in primary structure and partial physiochemical properties. For a biosimilar development program, comparative analytical data can influence decisions about the type and amount of animal and clinical data needed to demonstrate biosimilarity. Because of the limited clinical experience with biosimilars at the time of their approval, a thorough knowledge surrounding biosimilars and a case-by-case approach are needed to ensure the appropriate use of these products.  相似文献   

3.
Because of rapidly increasing market demand and rising cost pressure, the innovator of etanercept (Enbrel®) will inevitably face competition from biosimilar versions of the product. In this study, to elucidate the differences between the reference etanercept and its biosimilars, we characterized and compared the quality attributes of two commercially available, biosimilar TNF receptor 2-Fc fusion protein products. Biosimilar 1 showed high similarity to Enbrel® in critical quality attributes including peptide mapping, intact mass, charge variant, purity, glycosylation and bioactivity. In contrast, the intact mass and MS/MS analysis of biosimilar 2 revealed a mass difference indicative of a two amino acid residue variance in the heavy chain (Fc) sequences. Comprehensive glycosylation profiling confirmed that biosimilar 2 has significantly low sialylated N-oligosaccharides. Biosimilar 2 also displayed significant differences in charge attributes compared with the reference product. Interestingly, biosimilar 2 exhibited similar affinity and bioactivity levels compared with the reference product despite the obvious difference in primary structure and partial physiochemical properties. For a biosimilar development program, comparative analytical data can influence decisions about the type and amount of animal and clinical data needed to demonstrate biosimilarity. Because of the limited clinical experience with biosimilars at the time of their approval, a thorough knowledge surrounding biosimilars and a case-by-case approach are needed to ensure the appropriate use of these products.  相似文献   

4.
This study shows that state-of-the-art liquid chromatography (LC) and mass spectrometry (MS) can be used for rapid verification of identity and characterization of sequence variants and posttranslational modifications (PTMs) for antibody products. A candidate biosimilar IgG1 monoclonal antibody (mAb) was compared in detail to a commercially available innovator product. Intact protein mass, primary sequence, PTMs and the micro-differences between the two mAbs were identified and quantified simultaneously. Although very similar in terms of sequences and modifications, a mass difference observed by LC-MS intact mass measurements indicated that they were not identical. Peptide mapping, performed with data independent acquisition LC-MS using an alternating low and elevated collision energy scan mode (LC-MSE), located the mass difference between the biosimilar and the innovator to a two amino acid residue variance in the heavy chain sequences. The peptide mapping technique was also used to comprehensively catalogue and compare the differences in PTMs of the biosimilar and innovator mAbs. Comprehensive glycosylation profiling confirmed that the proportion of individual glycans was different between the biosimilar and the innovator, although the number and identity of glycans were the same. These results demonstrate that the combination of accurate intact mass measurement, released glycan profiling and LC-MSE peptide mapping provides a set of routine tools that can be used to comprehensively compare a candidate biosimilar and an innovator mAb.Key words: biosimilar mAb, innovator mAb, molecular similarity, sequence variants, posttranslational modifications, N-linked glycosylation, chemical degradations, micro-heterogeneities, characterization, intact protein mass measurement, peptide mapping, glycan profiling, LC-MS, LC-fluorescence, MALDI MS  相似文献   

5.
《MABS-AUSTIN》2013,5(4):379-394
This study shows that state-of-the-art liquid chromatography (LC) and mass spectrometry (MS) can be used for rapid verification of identity and characterization of sequence variants and posttranslational modifications (PTMs) for antibody products. A candidate biosimilar IgG1 monoclonal antibody (mAb) was compared in detail to a commercially available innovator product. Intact protein mass, primary sequence, PTMs, and the micro-differences between the two mAbs were identified and quantified simultaneously. Although very similar in terms of sequences and modifications, a mass difference observed by LC-MS intact mass measurements indicated that they were not identical. Peptide mapping, performed with data independent acquisition LC-MS using an alternating low and elevated collision energy scan mode (LC-MSE), located the mass difference between the biosimilar and the innovator to a two amino acid residue variance in the heavy chain sequences. The peptide mapping technique was also used to comprehensively catalogue and compare the differences in PTMs of the biosimilar and innovator mAbs. Comprehensive glycosylation profiling confirmed that the proportion of individual glycans was different between the biosimilar and the innovator, although the number and identity of glycans were the same. These results demonstrate that the combination of accurate intact mass measurement, released glycan profiling, and LC-MSE peptide mapping provides a set of routine tools that can be used to comprehensively compare a candidate biosimilar and an innovator mAb.  相似文献   

6.
《MABS-AUSTIN》2013,5(3):285-298
A systematic analytical approach combining tryptic and chymotryptic peptide mapping with a Mascot Error Tolerant Search (ETS) has been developed to detect and identify low level protein sequence variants, i.e., amino acid substitutions, in recombinant monoclonal antibodies. The reversed-phase HPLC separation with ultraviolet (UV) detection and mass spectral acquisition parameters of the peptide mapping methods were optimized by using a series of model samples that contained low levels (0.5-5.0%) of recombinant humanized anti-HER2 antibody (rhumAb HER2) along with another unrelated recombinant humanized monoclonal antibody (rhumAb A). This systematic approach’s application in protein sequence variant analysis depends upon time and sensitivity constraints. An example of using this approach as a rapid screening assay is described in the first case study. For stable CHO clone selection for an early stage antibody project, comparison of peptide map UV profiles from the top four clone-derived rhumAb B samples quickly detected two sequence variants (M83R at 5% and P274T at 42% protein levels) from two clones among the four. The second case study described in this work demonstrates how this approach can be applied to late stage antibody projects. A sequence variant, L413Q, present at 0.3% relative to the expected sequence of rhumAb C was identified by a Mascot-ETS for one out of four top producers. The incorporation of this systematic sequence variant analysis into clone selection and the peptide mapping procedure described herein have practical applications for the biotechnology industry, including possible detection of polymorphisms in endogenous proteins.  相似文献   

7.
8.
Sequence variants, also known as unintended amino acid substitutions in the protein primary structure, are one of the critical quality attributes needed to be monitored during process development of monoclonal antibodies (mAbs). Here we report on analytical methods for detection and identification of a sequence variant in an IgG1 mAb expressed in Chinese hamster ovary (CHO) cells. The presence of the sequence variant was detected by an imaged capillary isoelectric focusing (ICIEF) assay, showing a new basic species in mAb charge variant profile. The new basic variant was fractionated and enriched by ion-exchange chromatography, analyzed by reduced light and heavy chain mass determination, and characterized by HPLC-UV/MS/MS of tryptic and endoproteinase Lys-C peptide maps. A Serine to Arginine sequence variant was identified at the heavy chain 441 position (S441R), and confirmed by using synthetic peptides. The relative level of the S441R variant was estimated to be in the range of 0.3-0.6% for several mAb batches analyzed via extracted ion chromatogram (EIC). This work demonstrates the effectiveness of using integrated analytical methods to detect and identify protein heterogeneity and the importance of monitoring product quality during mAb bioprocess development.  相似文献   

9.
依据乙型肝炎病毒(Hepatitis B virus;HBV)聚合酶基因序列研制HBV基因芯片,此芯片可分析HBV的7个基因型、4种血清型和HBV聚合酶基因rtV173、rtL180、rtM204和rtV207位点的突变。利用此芯片对A、B两组共计45例拉米夫定治疗12个月的患者进行服药前和服药后3、6、9、12个月的动态检测,其中C基因型39例,且血清型均为adr;B基因型6例,其血清型均为adw。在完成全程检测的38例患者中,17例ALT升高的A组出现1例拉米夫定耐药变异株,而21例ALT正常的B组出现4例变异株,且所有变异株均为rtM204 V/rtL180M,其中2例野生株和变异株共存。rtM204V变异最早在服药6个月时出现,随后出现rtL180M变异。10份PCR产物测序分析表明,芯片检测结果与测序结果基本一致,仅在rtL173位点出现1例差异。进一步分析HBV DNA变异与HBV DNA含量、ALT水平和HBeAg血清转换率的相关性,初步结果表明变异株的出现与治疗过程中的DNA反弹呈正相关,而与起始HBVDNA水平、ALT值无关联。HBV基因芯片可初步用于HBV DNA检测,可能是临床追踪评价抗病毒治疗效果的较好方法之一。  相似文献   

10.
目的:用HEK293细胞表达A型肉毒毒素(BoNT/A)中和抗体S25。方法:按哺乳动物偏好密码子设计合成S25可变区编码序列,κ链可变区序列构建到带有轻链恒定区的载体L293,重链可变区构建到带有重链恒定区的载体H293,轻、重链载体共转染至HEK293细胞,进行瞬时表达;用重链C端(HCC)及S25中和表位突变的HCC与细胞培养上清ELISA检测S25表达。结果:测序结果表明正确设计合成了S25可变区编码序列;ELISA结果显示分泌表达上清可以与抗原结合,而不能与S25中和表位突变的HCC结合。结论:按哺乳动物偏好密码子设计的S25编码序列可以用HEK293细胞进行表达,并且具有活性。  相似文献   

11.
Familial transthyretin amyloidosis (ATTR) is an autosomal dominant disorder associated with a variant form of the plasma carrier protein transthyretin (TTR). Amyloid fibrils consisting of variant TTR, wild-type TTR, and TTR fragments deposit in tissues and organs. The diagnosis of ATTR relies on the identification of pathologic TTR variants in plasma of symptomatic individuals who have biopsy proven amyloid disease. Previously, we have developed a mass spectrometry-based approach, in combination with direct DNA sequence analysis, to fully identify TTR variants. Our methodology uses immunoprecipitation to isolate TTR from serum, and electrospray ionization and matrix-assisted laser desorption/ionization mass spectrometry (MS) peptide mapping to identify TTR variants and posttranslational modifications. Unambiguous identification of the amino acid substitution is performed using tandem MS (MS/MS) analysis and confirmed by direct DNA sequence analysis. The MS and MS/MS analyses also yield information about posttranslational modifications. Using this approach, we have recently identified a novel pathologic TTR variant. This variant has an amino acid substitution (Phe --> Cys) at position 33. In addition, like the Cys10 present in the wild type and in this variant, the Cys33 residue was both S-sulfonated and S-thiolated (conjugated to cysteine, cysteinylglycine, and glutathione). These adducts may play a role in the TTR fibrillogenesis.  相似文献   

12.
13.
Frameshifts lead to complete alteration of the intended amino acid sequences, and therefore may affect the biological activities of protein therapeutics and pose potential immunogenicity risks. We report here the identification and characterization of a novel -1 frameshift variant in a recombinant IgG1 therapeutic monoclonal antibody (mAb) produced in Chinese hamster ovary cells during the cell line selection studies. The variant was initially observed as an atypical post-monomer fragment peak in size exclusion chromatography. Characterization of the fragment peak using intact and reduced liquid chromatography-mass spectrometry (LC-MS) analyses determined that the fragment consisted of a normal light chain disulfide-linked to an aberrant 26 kDa fragment that could not be assigned to any HC fragment even after considering common modifications. Further analysis using LC-MS/MS peptide mapping revealed that the aberrant fragment contained the expected HC amino acid sequence (1-232) followed by a 20-mer novel sequence corresponding to expression of heavy chain DNA sequence in the -1 reading frame. Examination of the DNA sequence around the frameshift initiation site revealed that a mononucleotide repeat GGGGGG located in the IgG1 HC constant region was most likely the structural root cause of the frameshift. Rapid identification of the frameshift allowed us to avoid use of a problematic cell line containing the frameshift as the production cell line. The frameshift reported here may be observed in other mAb products and the hypothesis-driven analytical approaches employed here may be valuable for rapid identification and characterization of frameshift variants in other recombinant proteins.  相似文献   

14.
15.
Out of all categories, monoclonal antibody (mAb) therapeutics attract the most interest due to their strong therapeutic potency and specificity. Six of the 10 top-selling drugs are antibody-based therapeutics that will lose patent protection soon. The European Medicines Agency has pioneered the regulatory framework for approval of biosimilar products and approved the first biosimilar antibodies by the end of 2013. As highly complex glycoproteins with a wide range of micro-variants, mAbs require extensive characterization through multiple analytical methods for structure assessment rendering manufacturing control and biosimilarity studies particularly product and time-consuming. Here, capillary zone electrophoresis coupled to mass spectrometry by a sheathless interface (CESI-MS) was used to characterize marketed reference mAbs and their respective biosimilar candidate simultaneously over different facets of their primary structure. CESI-MS/MS data were compared between approved mAbs and their biosimilar candidates to prove/disconfirm biosimilarity regarding recent regulation directives. Using only a single sample injection of 200 fmol, CESI-MS/MS data enabled 100% amino acids (AA) sequence characterization, which allows a difference of even one AA between 2 samples to be distinguished precisely. Simultaneously glycoforms were characterized regarding their structures and position through fragmentation spectra and glycoforms semiquantitative analysis was established, showing the capacity of the developed methodology to detect up to 16 different glycans. Other posttranslational modifications hotspots were characterized while their relative occurrence levels were estimated and compared to biosimilars. These results proved the value of using CESI-MS because the separation selectivity and ionization efficiency provided by the system allowed substantial improvement in the characterization workflow robustness and accuracy. Biosimilarity assessment could be performed routinely with a single injection of each candidate enabling improvements in the biosimilar development pipeline.  相似文献   

16.
《MABS-AUSTIN》2013,5(6):1464-1473
Out of all categories, monoclonal antibody (mAb) therapeutics attract the most interest due to their strong therapeutic potency and specificity. Six of the 10 top-selling drugs are antibody-based therapeutics that will lose patent protection soon. The European Medicines Agency has pioneered the regulatory framework for approval of biosimilar products and approved the first biosimilar antibodies by the end of 2013. As highly complex glycoproteins with a wide range of micro-variants, mAbs require extensive characterization through multiple analytical methods for structure assessment rendering manufacturing control and biosimilarity studies particularly product and time-consuming. Here, capillary zone electrophoresis coupled to mass spectrometry by a sheathless interface (CESI-MS) was used to characterize marketed reference mAbs and their respective biosimilar candidate simultaneously over different facets of their primary structure. CESI-MS/MS data were compared between approved mAbs and their biosimilar candidates to prove/disconfirm biosimilarity regarding recent regulation directives. Using only a single sample injection of 200 fmol, CESI-MS/MS data enabled 100% amino acids (AA) sequence characterization, which allows a difference of even one AA between 2 samples to be distinguished precisely. Simultaneously glycoforms were characterized regarding their structures and position through fragmentation spectra and glycoforms semiquantitative analysis was established, showing the capacity of the developed methodology to detect up to 16 different glycans. Other posttranslational modifications hotspots were characterized while their relative occurrence levels were estimated and compared to biosimilars. These results proved the value of using CESI-MS because the separation selectivity and ionization efficiency provided by the system allowed substantial improvement in the characterization workflow robustness and accuracy. Biosimilarity assessment could be performed routinely with a single injection of each candidate enabling improvements in the biosimilar development pipeline.  相似文献   

17.
18.
Proteins provide the molecular basis for cellular structure, catalytic activity, signal transduction, and molecular transport in biological systems. Recombinant protein expression is widely used to prepare and manufacture novel proteins that serve as the foundation of many biopharmaceutical products. However, protein translation bioprocesses are inherently prone to low-level errors. These sequence variants caused by amino acid misincorporation have been observed in both native and recombinant proteins. Protein sequence variants impact product quality, and their presence can be exacerbated through cellular stress, overexpression, and nutrient starvation. Therefore, the cell line selection process, which is used in the biopharmaceutical industry, is not only directed towards maximizing productivity, but also focuses on selecting clones which yield low sequence variant levels, thereby proactively avoiding potentially inauspicious patient safety and efficacy outcomes. Here, we summarize a number of hallmark studies aimed at understanding the mechanisms of amino acid misincorporation, as well as exacerbating factors, and mitigation strategies. We also describe key advances in analytical technologies in the identification and quantification of sequence variants, and some practical considerations when using LC-MS/MS for detecting sequence variants.  相似文献   

19.
20.
电喷雾离子化/质谱法(ESI/MS)在各种有机化合物、多肽、蛋白质(含糖蛋白)、核苷酸、糖、脂类及合成高分子物质等分析领域获得了广泛的应用,本文系统介绍了ESI/MS的基本原理,其联用技术,及其在生物大分子研究,包括肽图谱测定,糖分析和核苷酸分析中的应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号