首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Slik JW 《Oecologia》2004,141(1):114-120
In this study I investigated the effects of the extreme, 1997/98 El Niño related drought on tree mortality and understorey light conditions of logged and unlogged tropical rain forest in the Indonesian province of East Kalimantan (Borneo). My objectives were to test (1) whether drought had a significant effect on tree mortality and understorey light conditions, (2) whether this effect was greater in logged than in undisturbed forest, (3) if the expected change in tree mortality and light conditions had an effect on Macaranga pioneer seedling and sapling densities, and (4) which (a)biotic factors influenced tree mortality during the drought. The 1997/1998 drought led to an additional tree mortality of 11.2, 18.1, and 22.7% in undisturbed, old logged and recently logged forest, respectively. Mortality was highest in logged forests, due to extremely high mortality of pioneer Macaranga trees (65.4%). Canopy openness was significantly higher during the drought than during the non-drought year (6.0, 8.6 and 10.4 vs 3.7, 3.8 and 3.7 in undisturbed, old logged and recently logged forest, respectively) and was positively correlated with the number of dead standing trees. The increase in light in the understorey was accompanied by a 30 to 300-fold increase in pioneer Macaranga seedling densities. Factors affecting tree mortality during drought were (1) tree species successional status, (2) tree size, and (3) tree location with respect to soil moisture. Tree density and basal area per surface unit had no influence on tree mortality during drought. The results of this study show that extreme droughts, such as those associated with El Niño events, can affect the tree species composition and diversity of tropical forests in two ways: (1) by disproportionate mortality of certain tree species groups and tree size classes, and (2) by changing the light environment in the forest understorey, thereby affecting the recruitment and growth conditions of small and immature trees.  相似文献   

2.
Selective logging is one of the major drivers of tropical forest degradation, causing important shifts in species composition. Whether such changes modify interactions between species and the networks in which they are embedded remain fundamental questions to assess the ‘health’ and ecosystem functionality of logged forests. We focus on interactions between lianas and their tree hosts within primary and selectively logged forests in the biodiversity hotspot of Malaysian Borneo. We found that lianas were more abundant, had higher species richness, and different species compositions in logged than in primary forests. Logged forests showed heavier liana loads disparately affecting slow-growing tree species, which could exacerbate the loss of timber value and carbon storage already associated with logging. Moreover, simulation scenarios of host tree local species loss indicated that logging might decrease the robustness of liana–tree interaction networks if heavily infested trees (i.e. the most connected ones) were more likely to disappear. This effect is partially mitigated in the short term by the colonization of host trees by a greater diversity of liana species within logged forests, yet this might not compensate for the loss of preferred tree hosts in the long term. As a consequence, species interaction networks may show a lagged response to disturbance, which may trigger sudden collapses in species richness and ecosystem function in response to additional disturbances, representing a new type of ‘extinction debt’.  相似文献   

3.
Understanding what factors generate geographic variation in species richness is a fundamental goal of ecology and biogeography. Water and energy are considered as the major environmental factors influencing large-scale patterns of species richness, but their roles vary among taxa and regions. Pteridophytes are an ideal group of organisms for examining the relationship between species richness and their environment because the distribution of pteridophytes is usually in equilibrium with contemporary climate to a greater degree than those of seed plants and most terrestrial vertebrates partly due to the lightness of their spores, which is highly capable of long-distance dispersal by wind, and partly due to their single-spore reproduction strategy. Using correlation and regression analyses and structural equation modeling technique, we examine the relationship of pteridophyte species richness in 151 localities from across China with environmental factors representing energy, water, and energy–water balance. We found that pteridophyte species richness is correlated to water availability more strongly than to ambient energy. Furthermore, we found that of all environmental variables considered, energy–water balance has played the most important role in regulating pteridophyte species richness gradients in China.  相似文献   

4.
? Linking tree diversity to carbon storage can provide further motivation to conserve tropical forests and to design carbon-enriched plantations. Here, we examine the role of tree diversity and functional traits in determining carbon storage in a mixed-species plantation and in a natural tropical forest in Panama. ? We used species richness, functional trait diversity, species dominance and functional trait dominance to predict tree carbon storage across these two forests. Then we compared the species ranking based on wood density, maximum diameter, maximum height, and leaf mass per area (LMA) between sites to reveal how these values changed between different forests. ? Increased species richness, a higher proportion of nitrogen fixers and species with low LMA increased carbon storage in the mixed-species plantation, while a higher proportion of large trees and species with high LMA increased tree carbon storage in the natural forest. Furthermore, we found that tree species varied greatly in their absolute and relative values between study sites. ? Different results in different forests mean that we cannot easily predict carbon storage capacity in natural forests using data from experimental plantations. Managers should be cautious when applying functional traits measured in natural populations in the design of carbon-enriched plantations.  相似文献   

5.
Disturbance and productivity may influence and alter community structure by affecting the partitioning of resources among species. Here, we examined how evenness in the relative abundance of growth stages (seedlings, saplings and adults) of woody species is related to measures of productivity (i.e. total diameter breast high (dbh) and tree volume) and aspects of human disturbance (i.e. number of tree stumps, area covered by charcoal making holes and trail length) in a bamboo‐deciduous forest, northeastern of Thailand. Our results using stepwise multiple regressions showed that productivity (total dbh) explained a significant part of the variation in evenness only at the adult stage where evenness decreased with productivity. We found a decreased evenness of saplings with the area covered by charcoal making holes. Evenness of seedlings was not related to productivity or human disturbance variables and other environmental variables contribute more to explain the variation in evenness at this stage. Evenness was correlated consistently between the growth stages but the strength of relationships diminishes across the stages. Our results suggest that high productivity and human disturbance may facilitate competitive dominant species, affecting evenness in woody communities.  相似文献   

6.
7.
8.
The evidence of microclimatic edge effects through forest/open area ecotones is firm. How this affects the species composition near edges is less well understood and documented. In south-western South Africa shrub-dominated regularly burnt vegetation (i.e. fynbos) is the most common vegetation with indigenous temperate forests naturally occurring mostly in ravines on mountain slopes. The size and width of these forest patches varies considerably. In order to understand how the width of forest patches affects species composition of mosses and liverworts we investigated 20 forest patches of different width. In each forest patch we compiled a total species list, and collected data on selected environmental variables, for a plot of 10×20 m. No significant relationship was found between patch width and the number of either moss or liverwort species. However, the species composition of mosses (but not liverworts) changed along the gradient of patch width. The variation in number of species was large (8–29 mosses and 11–33 liverworts) among the plots and we propose that factors other than distance to the forest edge may be more important in structuring the bryophyte community of these ravine forests. One such factor that is likely to be important is the climatic difference among the plots. There is variation in features, such as precipitation, summer temperature, cloudiness, and the amount of fog, for which we do not have data but that could overrule the microclimatic differences due to edge effects.  相似文献   

9.
Large-scale synchronous variations in community dynamics are well documented for a vast array of organisms, but are considerably less understood for forest trees. Because of temporal variations in canopy gap dynamics, forest communities—even old-growth ones—are never at equilibrium at the stand scale. This paucity of equilibrium may also be true at the regional scale. Our objectives were to determine (1) if nonequilibrium dynamics caused by temporal variations in the formation of canopy gaps are regionally synchronized, and (2) if spatiotemporal variations in canopy gap formation affect the relative abundance of tree species in the understory. We examined these questions by analyzing variations in the suppression and release history of Acer saccharum Marsh. and Fagus grandifolia Ehrh. from 481 growth series of understory saplings taken from 34 mature stands. We observed that (1) the proportion of stems in release as a function of time exhibited a U-shaped pattern over the last 35 years, with the lowest levels occurring during 1975–1985, and that (2) the response to this in terms of species composition was that A. saccharum became more abundant at sites that had the highest proportion of stems in release during 1975–1985. We concluded that the understory dynamics, typically thought of as a stand-scale process, may be regionally synchronized.  相似文献   

10.
Global temperatures have risen over the last century, and are forecast to continue rising. Ectotherms may be particularly sensitive to changes in thermal regimes, and tropical ectotherms are more likely than temperate species to be influenced by changes in environmental temperature, because they may have evolved narrow thermal tolerances. Keelback snakes (Tropidonophis mairii) are tropical, oviparous reptiles. To quantify the effects of temperature on the morphology and physiology of hatchling keelbacks, clutches laid by wild-caught females were split and incubated at three temperatures, reflecting the average minimum, overall average and average maximum temperatures recorded at our study site. Upon hatching, the performance of neonates was examined at all three incubation temperatures in a randomized order over consecutive days. Hatchlings from the ‘hot’ treatment had slower burst swim speeds and swam fewer laps than hatchlings from the cooler incubation temperatures in all three test temperatures, indicating a low thermal optimum for incubation of this tropical species. There were no significant interactions between test temperature and incubation temperature across performance variables, suggesting phenotypic differences caused by incubation temperature did not acclimate this species to post-hatching conditions. Thus, keelback embryos appear evolutionarily adapted to development at cooler temperatures (relative to what is available in their habitat). The considerable reduction in hatchling viability and performance associated with a 3.5 °C increase in incubation temperature, suggests climate change may have significant population-level effects on this species. However, the offspring of three mothers exposed to the hottest incubation temperature were apparently resilient to high temperature, suggesting that this species may respond to selection imposed by thermal regime.  相似文献   

11.
Water and energy are closely connected and both are very important for human development. Wastewater treatment plants (WWTPs) are central to water–energy interactions as they consume energy to remove pollutants and thus reduce the human gray water footprint on the natural water environment. In this work, we quantified energy consumption in 9 different WWTPs in south China, with different treatment processes, objects, and capacities. The energy intensity in most of these WWTPs is in the range of 0.4–0.5 kWh/m3 in 2014. Footprint methodologies were used in this paper to provide insight into the environmental changes that result from WWTPs. A new indicator “gray water footprint reduction” is proposed based on the notion of gray water footprint to better assess the role of WWTPs in reducing human impacts on water resources. We find that higher capacity and appropriate technology of the WWTPs will result in higher gray water footprint reduction. On average, 6.78 m3 gray water footprint is reduced when 1 m3 domestic sewage is treated in WWTPs in China. 13.38 L freshwater are required to produce the 0.4 kWh electrical input needed for treating 1 m3 domestic wastewater, and 0.23 kg CO2 is emitted during this process. The wastewater characteristics, treatment technologies as well as management systems have a major impact on the efficiency of energy utilization in reducing gray water footprint via these WWTPs. The additional climate impact associated with wastewater treatment should be considered in China due to the enormous annual wastewater discharge. Policy suggestions are provided based on results in this work and the features of China's energy and water distribution.  相似文献   

12.
Variations in species richness and diversity at a local scale are affected by a number of complex and interacting variables, including both natural environmental factors and human-made changes to the local environment. Here we identified the most important determinants of woody species richness and diversity at different growth stages (i.e. adult, sapling and seedling) in a bamboo–deciduous forest in northeast Thailand. A total of 20 environmental and human disturbance variables were used to determine the variation in species richness and diversity. In total, we identified 125 adult, 111 sapling (within fifty 20 × 20-m plots) and 89 seedling species (within one hundred and twenty 1 × 1-m subplots). Overall results from stepwise multiple regression analyses showed that environmental variables were by far the most important in explaining the variation in species richness and diversity. Forest structure (i.e. number of bamboo clumps and canopy cover) was important in determining the adult species richness and diversity (R 2 = 0.48, 0.30, respectively), while topography (i.e. elevation) and human disturbance (i.e. number of tree stumps) were important in determining the sapling species richness and diversity (R 2 = 0.55, 0.39, respectively). Seedling species richness and diversity were negatively related to soil phosphorus. Based on our results, we suggest that the presence of bamboos should be incorporated in management strategies for maintaining woody species richness and diversity in these forest ecosystems. Specifically, if bamboos cover the forest floor at high densities, it may be necessary to actively control these species for successful tree establishment.  相似文献   

13.
The impact of rapid habitat loss and fragmentation on biodiversity is a major issue. However, we still lack an integrative understanding of how these changes influence biodiversity dynamics over time. In this study, we investigate the effects of these changes in terms of both niche-based and neutral dynamics. We hypothesize that habitat loss has delayed effects on neutral immigration–extinction dynamics, while edge effects and environmental heterogeneity in habitat patches have rapid effects on niche-based dynamics. We analyzed taxonomic and functional composition of 100 tree communities in a tropical dry forest landscape of New-Caledonia subject to habitat loss and fragmentation. We designed an original, process-based simulation framework, and performed Approximate Bayesian Computation to infer the influence of niche-based and neutral processes. Then, we performed partial regressions to evaluate the relationships between inferred parameter values of communities and landscape metrics (distance to edge, patch area, and habitat amount around communities), derived from either recent or past (65 yr ago) aerial photographs, while controlling for the effect of soil and topography. We found that landscape structure influences both environmental filtering and immigration. Immigration rate was positively related to past habitat amount surrounding communities. In contrast, environmental filtering was mostly affected by present landscape structure and mainly influenced by edge vicinity and topography. Our results highlight that landscape changes have contrasting spatio-temporal influences on niche-based and neutral assembly dynamics. First, landscape-level habitat loss and community isolation reduce immigration and increase demographic stochasticity, resulting in slow decline of local species diversity and extinction debt. Second, recent edge creation affects environmental filtering, incurring rapid changes in community composition by favoring species with edge-adapted strategies. Our study brings new insights about temporal impacts of landscape changes on biodiversity dynamics. We stress that landscape history critically influences these dynamics and should be taken into account in conservation policies.  相似文献   

14.
The recovery of vegetation cover is a process that has important implications for the conservation of biodiversity and ecosystem services. Generally, the recovery of vegetation cover is documented over large areas using remote sensing, and it is often assumed that ecosystem properties and processes recover along with remotely sensed canopy cover. Here we analyze and compare the structure, composition, and diversity of trees and shrubs among plots established in a stratified random sampling design over four remotely sensed canopy cover change (CCC) categories defined according to a gradient in the percent of canopy cover. Plots were located in the Lake Cuitzeo basin (Mexico), where canopy recovery associated with agricultural abandonment has occurred in recent decades (1975–2000). We found that diversity measures, basal area, tree and shrub density, ground-truthed canopy cover, and mean plant height increased with increasing CCC category. However, Shannon index (H′) was lower in the CCC category with the most closed canopy cover category than in plots apparently not affected by agriculture. Furthermore, ordination analyses showed that composition of dominant species were not associated with CCC categories. Our results suggest that canopy closure in our study area is not associated with the recovery of species diversity, and does not result in similar species dominance as in sites not affected by agriculture.  相似文献   

15.
Tree species-rich forests are hypothesised to be less susceptible to insect herbivores, but so far herbivory–diversity relationships have rarely been tested for tree saplings, and no such study has been published for deciduous forests in Central Europe. We expected that diverse tree communities reduce the probability of detection of host plants and increase abundance of predators, thereby reducing herbivory. We examined levels of herbivory suffered by beech (Fagus sylvatica L.) and maple saplings (Acer pseudoplatanus L. and Acer platanoides L.) across a tree species diversity gradient within Germany’s largest remaining deciduous forest area, and investigated whether simple beech or mixed stands were less prone to damage caused by herbivorous insects. Leaf area loss and the frequency of galls and mines were recorded for 1,040 saplings (>13,000 leaves) in June and August 2006. In addition, relative abundance of predators was assessed to test for potential top-down control. Leaf area loss was generally higher in the two species of maple compared to beech saplings, while only beech showed a decline in damage caused by leaf-chewing herbivores across the tree diversity gradient. No significant patterns were found for galls and mines. Relative abundance of predators on beech showed a seasonal response and increased on species-rich plots in June, suggesting higher biological control. We conclude that, in temperate deciduous forests, herbivory–tree diversity relationships are significant, but are tree species-dependent with bottom-up and top-down control as possible mechanisms. In contrast to maple, beech profits from growing in a neighbourhood of higher tree richness, which implies that species identity effects may be of greater importance than tree diversity effects per se. Hence, herbivory on beech appeared to be mediated bottom-up by resource concentration in the sampled forest stands, as well as regulated top-down through biocontrol by natural enemies. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorised users.  相似文献   

16.
This paper reports seasonal data regarding leaf litter for 14 deciduous broad-leaved species and one evergreen coniferous species as well as leaf area index (LAI) data for the 14 deciduous broad-leaved species in a cool-temperate deciduous broad-leaved forest in Japan. The seasonal leaf biomass of various tree species is important for accurately evaluating ecosystem functions such as photosynthesis and evapotranspiration under climate change. However, there is a lack of freely available, long-term data. We collected litterfall every 1 to 4 weeks from September or October to November or December each year from 2005 to 2014 in Takayama, Japan (36°08′46″N, 137°25′23″E, 1420 m a.s.l.). After sorting the litter into leaves (according to species categories), stems + branches, and “other”, we dried and weighed the litter groups. We also collected seasonal leaf data (number of leaves and leaf length and width) for each broad-leaved species, which we recorded every 1 to 4 weeks from April or May to October or November using multiple target shoots. To estimate the LAI in autumn for each deciduous broad-leaved species, we used a semi-empirical model of the vertical integration of leaf dry mass per unit leaf area. To estimate the LAI in spring and summer, we used the relationship between the LAI in autumn and the seasonal leaf data. Our data provide input, calibration, and validation parameters for determining LAI based on satellite remote-sensing observations or radiative transfer models and for use in ecosystem models.  相似文献   

17.
Photosystems must efficiently dissipate absorbed light energy under freezing conditions. To clarify the energy dissipation mechanisms, we examined energy transfer and dissipation dynamics in needles of the evergreen plant Taxus cuspidata by time-resolved fluorescence spectroscopy. In summer and autumn, the energy transfer processes were similar to those reported in other higher plants. However, in winter needles, fluorescence lifetimes became shorter not only in PSII but also in PSI, indicating energy dissipation in winter needles. In addition, almost the same fluorescence spectra were obtained with different excitation wavelengths. In contrast, the fluorescence spectrum showed a large difference due to excitation wavelength in spring needles. The fluorescence spectrum of spring needles in 550-nm excitation showed similar spectra to that of winter needles, however, red-chlorophyll fluorescence was not observed in chlorophyll excitation. These observations suggest that some complexes with some kind of red-shifted carotenoid and red-chlorophyll unlink from the core complex in spring. Seasonal changes of excitation energy dynamics are also discussed in relation to changes in thylakoid stacking.  相似文献   

18.
Abstract. The effect of a mistletoe, Phthirusa maritima , on the water, nitrogen and carbon balance of two mangrove host species, Conocarpus erectus and Coccoloba uvifera , was studied. Several daily cycles of water potential and its components (pressure-volume curves); leaf nitrogen content (Kjeldahl method); leaf conductance, transpiration rates and carbon assimilation (portable gas exchange system) were measured on mistletoe, infested and uninfested plants in the Caribbean coast of Venezuela. The mistletoe on both host species showed higher transpiration rates and lower CO2 assimilation rates, and therefore lower water use efficiencies. With respect to infested and uninfested plants, C. erectus did not show large differences in the parameters measured with the exception of assimilation rates which were significantly lower in the infested plants. On the other hand, C. uvifera did show differences in all parameters and, therefore, was affected to a greater degree by the mistletoe. The behaviour of mistletoeinfested and uninfested plants, with respect to habitats with different degrees of water stress and with respect to the salinity gradient in which these mangroves grow, is discussed.  相似文献   

19.
Smallholders’ agroforests may be valuable for conserving tropical trees through three main mechanisms. First, trees planted and/or retained by farmers in agricultural landscapes where wild stands were once found may be circa situm reservoirs of biodiversity. Second, farmland trees may support conservation in situ by providing an alternative source of product to reduce extraction from forest, and by acting as ‘corridors’ or ‘stepping stones’ that connect fragmented wild stands. Third, the additional value that planting assigns to trees may result in greater interest in including them in seed collections, field trials and field ‘genebanks’ that support ex situ conservation. Here, we critically review the evidence for these mechanisms, and highlight areas for research and for intervention so that agroforestry practices can better support conservation in each setting, with an emphasis on often neglected genetic-level considerations. Based on current global challenges to diversity, conservation will need to rely increasingly on a smallholder-farm circa situm approach, but concerns on long-term effectiveness need to be properly quantified and addressed. Connectivity between widely dispersed, low density trees in agricultural landscapes is an important factor determining the success of the circa situm approach, while improving farmers’ access to a diversity of tree germplasm that they are interested in planting is required. The circumstances in which agroforestry plantings can support in situ conservation need to be better defined, and research on the stability of active tree seed collections (how long are species and populations retained in them?) as ex situ reservoirs of biodiversity is needed.  相似文献   

20.
Regeneration patterns in relation to canopy species composition and site variables were analyzed in mixed oak forests of the Sierra de Manantlán in western Mexico with the aim of establishing an ecological basis for the design of management alternatives. Using ordination (canonical correspondence analysis) and classification (two-way indicator species analysis) methods, five different canopy types and three different seedling associations were revealed according to species composition, all of them dominated by one or more oak species. Red–far red ratio, slope, altitude, topography, canopy type and grazing intensity were the main variables that explained differences in species composition among the seedling associations. Oak seedlings were relatively scarce in the sampling plots, with the lowest frequency values of all species recorded except for those of Quercus crassipes Humb. & Bonpl., and also the lowest density values. The presence of a particular oak seedling species was strongly associated with a particular percentage of canopy openness; Quercus candicans Née, Quercus laurina Humb. & Bonpl. and Quercus rugosa Née were present in the plots with the least-open canopy (6.4%, 2.9 and 6.2%, respectively), while Quercus castanea Née and Quercus crassipes Humb. & Bonpl. were present in the plots with the most-open canopy (13 and 8.1%, respectively). Every oak seedling species was more frequent, although not dependent, on the canopy type where the same oak species dominated. Because of the great heterogeneity in species composition and the physiographical factors of mixed oak forests in the Sierra de Manantlán, we concluded that management alternatives must be prescribed for each ecological situation where the different oak species are growing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号