首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Eukaryotic genomes contain transposable elements (TE) that can move into new locations upon activation. Since uncontrolled transposition of TEs, including the retrotransposons and DNA transposons, can lead to DNA breaks and genomic instability, multiple mechanisms, including heterochromatin‐mediated repression, have evolved to repress TE activation. Studies in model organisms have shown that TEs become activated upon aging as a result of age‐associated deregulation of heterochromatin. Considering that different organisms or cell types may undergo distinct heterochromatin changes upon aging, it is important to identify pathways that lead to TE activation in specific tissues and cell types. Through deep sequencing of isolated RNAs, we report an increased expression of many retrotransposons in the old Drosophila fat body, an organ equivalent to the mammalian liver and adipose tissue. This de‐repression correlates with an increased number of DNA damage foci and decreased level of Drosophila lamin‐B in the old fat body cells. Depletion of the Drosophila lamin‐B in the young or larval fat body results in a reduction of heterochromatin and a corresponding increase in retrotransposon expression and DNA damage. Further manipulations of lamin‐B and retrotransposon expression suggest a role of the nuclear lamina in maintaining the genome integrity of the Drosophila fat body by repressing retrotransposons.  相似文献   

5.
6.
7.
8.
9.
10.
11.
12.
In Drosophila, PIWI proteins and bound PIWI‐interacting RNAs (piRNAs) form the core of a small RNA‐mediated defense system against selfish genetic elements. Within germline cells, piRNAs are processed from piRNA clusters and transposons to be loaded into Piwi/Aubergine/AGO3 and a subset of piRNAs undergoes target‐dependent amplification. In contrast, gonadal somatic support cells express only Piwi, lack signs of piRNA amplification and exhibit primary piRNA biogenesis from piRNA clusters. Neither piRNA processing/loading nor Piwi‐mediated target silencing is understood at the genetic, cellular or molecular level. We developed an in vivo RNAi assay for the somatic piRNA pathway and identified the RNA helicase Armitage, the Tudor domain containing RNA helicase Yb and the putative nuclease Zucchini as essential factors for primary piRNA biogenesis. Lack of any of these proteins leads to transposon de‐silencing, to a collapse in piRNA levels and to a failure in Piwi‐nuclear accumulation. We show that Armitage and Yb interact physically and co‐localize in cytoplasmic Yb bodies, which flank P bodies. Loss of Zucchini leads to an accumulation of Piwi and Armitage in Yb bodies, indicating that Yb bodies are sites of primary piRNA biogenesis.  相似文献   

13.
小RNA长度在20~32 nt之间,通过染色质修饰、mRNA降解和翻译抑制来调控基因表达。小RNA可以分为三类:小干扰RNA、微小RNA和piRNAs。小干扰RNA主要抵御转座子和病毒的侵袭。微小RNA的表达受发育水平调控且有组织特异性,在发育和细胞分化中起作用。piRNAs在生殖细胞和干细胞中表达,可使反转座子沉默。综述了这几种小RNA的定义与分类、生成机制、功能及其研究方法。  相似文献   

14.
15.
16.
Telomeres in Drosophila are composed of sequential non-LTR retrotransposons HeT-A, TART and TAHRE. Although they are repressed by the PIWI-piRNA pathway or heterochromatin in the germline, the regulation of these retrotransposons in somatic cells is poorly understood. In this study, we demonstrated that specific splice variants of Mod(mdg4) repress HeT-A by blocking subtelomeric enhancers in ovarian somatic cells. Among the variants, we found that the Mod(mdg4)-N variant represses HeT-A expression the most efficiently. Subtelomeric sequences bound by Mod(mdg4)-N block enhancer activity within subtelomeric TAS-R repeats. This enhancer-blocking activity is increased by the tandem association of Mod(mdg4)-N to repetitive subtelomeric sequences. In addition, the association of Mod(mdg4)-N couples with the recruitment of RNA polymerase II to the subtelomeres, which reinforces its enhancer-blocking function. Our findings provide novel insights into how telomeric retrotransposons are regulated by the specific variants of insulator proteins associated with subtelomeric sequences.  相似文献   

17.
18.
19.
Siomi MC  Saito K  Siomi H 《FEBS letters》2008,582(17):2473-2478
Transposable elements (TEs) are DNA elements found in the genomes of various organisms. TEs have been highly conserved during evolution, suggesting that they confer advantageous effects to their hosts. However, due to their ability to transpose into virtually any locus, TEs have the ability to generate deleterious mutations in the host genome. In response, a variety of different mechanisms have evolved to mitigate their activities. A main defense mechanism is RNA silencing, which is a gene silencing mechanism triggered by small RNAs. In this review, we address RNA silencing mechanisms that silence retrotransposons, a subset of TEs, and discuss how germline and somatic cells are equipped with different retrotransposon silencing mechanisms.  相似文献   

20.
A combination of cytogenetic and molecular analyses has shown that several different transposable elements are involved in the restructuring of Drosophila chromosomes. Two kinds of elements, P and hobo, are especially prone to induce chromosome rearrangements. The mechanistic details of this process are unclear, but, at least some of the time, it seems to involve ectopic recombination between elements inserted at different chromosomal sites; the available data suggest that these ectopic recombination events are much more likely to occure between elements in the same chromosome than between elements in different chromosomes. Other Drosophila transposons also appear to mediate chromosome restructuring by ectopic recombination; these include the retrotransposons BEL, roo, Docand I and the foldback element FB. In addition, two retrotransposons, HeT-A and TART, have been found to be associated specifically with the ends of Drosophila chromosomes. Very limited data indicate that transposon-mediated chromosome restructuring is occurring in natural populations of Drosophila. This suggests that transposable elements may help to shape the structure of the Drosophila genome and implies that they may have a similar role in other organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号