首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present a new method for the analysis of glycans enzymatically released from monoclonal antibodies (MAbs) employing a zwitterionic-type hydrophilic interaction chromatography (ZIC–HILIC) column coupled with electrospray ionization mass spectrometry (ESI–MS). Both native and reduced glycans were analyzed, and the developed procedure was compared with a standard HILIC procedure used in the pharmaceutical industry whereby fluorescent-labeled glycans are analyzed using a TSK Amide-80 column coupled with fluorescence detection. The separation of isobaric alditol oligosaccharides present in monoclonal antibodies and ribonuclease B is demonstrated, and ZIC–HILIC is shown to have good capability for structural recognition. Glycan profiles obtained with the ZIC–HILIC column and ESI–MS provided detailed information on MAb glycosylation, including identification of some less abundant glycan species, and are consistent with the profiles generated with the standard procedure. This new ZIC–HILIC method offers a simpler and faster approach for glycosylation analysis of therapeutic antibodies.  相似文献   

2.
Recombinant monoclonal antibodies (MAbs) have become one of the most rapidly growing classes of biotherapeutics in the treatment of human disease. MAbs are highly heterogeneous proteins, thereby requiring a battery of analytical technologies for their characterization. However, incompatibility between separation and subsequent detection is often encountered. Here we demonstrate the utility of a generic on-line liquid chromatography–mass spectrometry (LC-MS) method operated in a two-dimensional format toward the rapid characterization of MAb charge and size variants. Using a single chromatographic system capable of running two independent gradients, up to six fractions of interest from an ion exchange (IEC) or size exclusion (SEC) separation can be identified by trapping and desalting the fractions onto a series of reversed phase trap cartridges with subsequent on-line analysis by mass spectrometry. Analysis of poorly resolved and low-level peaks in the IEC or SEC profile was facilitated by preconcentrating fractions on the traps using multiple injections. An on-line disulfide reduction step was successfully incorporated into the workflow, allowing more detailed characterization of modified MAbs by providing chain-specific information. The system is fully automated, thereby enabling high-throughput analysis with minimal sample handling. This technology provides rapid data turnaround time, a much needed feature during product characterization and development of multiple biotherapeutic proteins.  相似文献   

3.
High-molecular weight aggregates such as antibody dimers and other side products derived from incorrect light or heavy chain association typically represent critical product-related impurities for bispecific antibody formats.

In this study, an approach employing ultra-pressure liquid chromatography size-exclusion separation combined with native electrospray ionization mass spectrometry for the simultaneous formation, identification and quantification of size variants in recombinant antibodies was developed. Samples exposed to storage and elevated temperature(s) enabled the identification of various bispecific antibody size variants. This test system hence allowed us to study the variants formed during formulation and bio-process development, and can thus be transferred to quality control units for routine in-process control and release analytics. In addition, native SEC-UV/MS not only facilitates the detailed analysis of low-abundant and non-covalent size variants during process characterization/validation studies, but is also essential for the SEC-UV method validation prior to admission to the market.  相似文献   


4.
The balance between chromatographic performance and mass spectrometric response has been evaluated using an automated series of experiments where separations are produced by the real-time automated blending of water with organic and acidic modifiers. In this work, the concentration effects of two acidic modifiers (formic acid and trifluoroacetic acid) were studied on the separation selectivity, ultraviolet, and mass spectrometry detector response, using a complex peptide mixture. Peptide retention selectivity differences were apparent between the two modifiers, and under the conditions studied, trifluoroacetic acid produced slightly narrower (more concentrated) peaks, but significantly higher electrospray mass spectrometry suppression. Trifluoroacetic acid suppression of electrospray signal and influence on peptide retention and selectivity was dominant when mixtures of the two modifiers were analyzed. Our experimental results indicate that in analyses where the analyzed components are roughly equimolar (e.g., a peptide map of a recombinant protein), the selectivity of peptide separations can be optimized by choice and concentration of acidic modifier, without compromising the ability to obtain effective sequence coverage of a protein. In some cases, these selectivity differences were explored further, and a rational basis for differentiating acidic modifier effects from the underlying peptide sequences is described.  相似文献   

5.
A method utilizing thermospray high-performance liquid chromatography/mass spectrometry for the separation and direct analysis of carnitine, acetylcarnitine, and propionylcarnitine is described. On-column analysis of mixtures of the acylcarnitines with their corresponding stable, isotope-labeled analogs at nanomolar concentrations has indicated that isotope dilution assays can be applied towards the analysis of carnitine and short-chain acylcarnitines present in biological samples.  相似文献   

6.
Metabolomics has been defined as the quantitative measurement of all low molecular weight metabolites (sugars, amino acids, organic acids, fatty acids and others) in an organism's cells at a specified time under specific environmental/biological conditions. Currently, there is considerable interest in developing a single method of derivatization and separation that satisfies the needs for metabolite analysis while recognizing the many chemical classes that constitute the metabolome. Chemical derivatization considerably increases the sensitivity and specificity of gas chromatography–mass spectrometry for compounds that are polar and have derivatizable groups. Microwave-assisted derivatization (MAD) of a set of standards spanning a wide range of metabolites of interest demonstrates the potential of MAD for metabolic profiling. A final protocol of 150 W power for 90 s was selected as the derivatization condition, based upon the study of each chemical class. A study of the generation of partially derivatized components established the conditions where this could potentially be a problem; the use of greater volumes of reagent ensured this would not arise. All compounds analyzed by comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry in a standard mixture showed good area ratio reproducibility against a naphthalene internal standard (RSD < 10% in all but one case). Concentrations tested ranged from 1 μg/mL to 1000 μg/mL, and the calibration curves for the standard mixtures were satisfactory with regression coefficients generally better than 0.998. The application to gas chromatography–quadrupole mass spectrometry and comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry for a typical reference standard of relevance to metabolomics is demonstrated.  相似文献   

7.
The pharmaceutical industry’s interest in monoclonal antibodies (mAbs) and their derivatives has spurred rapid growth in the commercial and clinical pipeline of these effective therapeutics. The complex micro-heterogeneity of mAbs requires in-depth structural characterization for critical quality attribute assessment and quality assurance. Currently, mass spectrometry (MS)-based methods are the gold standard in mAb analysis, primarily with a bottom-up approach in which immunoglobulins G (IgGs) and their variants are digested into peptides to facilitate the analysis. Comprehensive characterization of IgGs and the micro-variants remains challenging at the proteoform level. Here, we used both top-down and middle-down MS for in-depth characterization of a human IgG1 using ultra-high resolution Fourier transform MS. Our top-down MS analysis provided characteristic fingerprinting of the IgG1 proteoforms at unit mass resolution. Subsequently, the tandem MS analysis of intact IgG1 enabled the detailed sequence characterization of a representative IgG1 proteoform at the intact protein level. Moreover, we used the middle-down MS analysis to characterize the primary glycoforms and micro-variants. Micro-variants such as low-abundance glycoforms, C-terminal glycine clipping, and C-terminal proline amidation were characterized with bond cleavages higher than 44% at the subunit level. By combining top-down and middle-down analysis, 76% of bond cleavage (509/666 amino acid bond cleaved) of IgG1 was achieved. Taken together, we demonstrated the combination of top-down and middle-down MS as powerful tools in the comprehensive characterization of mAbs.  相似文献   

8.
9.
Ihling C  Sinz A 《Proteomics》2005,5(8):2029-2042
The basic problem of complexity poses a significant challenge for proteomic studies. To date two-dimensional gel electrophoresis (2-DE) followed by enzymatic in-gel digestion of the peptides, and subsequent identification by mass spectrometry (MS) is the most commonly used method to analyze complex protein mixtures. However, 2-DE is a slow and labor-intensive technique, which is not able to resolve all proteins of a proteome. To overcome these limitations gel-free approaches are developed based on high performance liquid chromatography (HPLC) and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). The high resolution and excellent mass accuracy of FT-ICR MS provides a basis for simultaneous analysis of numerous compounds. In the present study, a small protein subfraction of an Escherichia coli cell lysate was prepared by size-exclusion chromatography and proteins were analyzed using C4 reversed phase (RP)-HPLC for pre-separation followed by C18 RP nanoHPLC/nanoESI FT-ICR MS for analysis of the peptide mixtures after tryptic digestion of the protein fractions. We identified 231 proteins and thus demonstrated that a combination of two RP separation steps - one on the protein and one on the peptide level - in combination with high-resolution FT-ICR MS has the potential to become a powerful method for global proteomics studies.  相似文献   

10.
Oxidation of methionine residues in biopharmaceuticals is a common and often unwanted modification that frequently occurs during their manufacture and storage. It often results in a lack of stability and biological function of the product, necessitating continuous testing for the modification throughout the product shelf life. A major class of biopharmaceutical products are monoclonal antibodies (mAbs), however, techniques for their detailed structural analysis have until recently been limited. Hydrogen/deuterium exchange mass spectrometry (HXMS) has recently been successfully applied to the analysis of mAbs. Here we used HXMS to identify and localise the structural changes that occurred in a mAb (IgG1) after accelerated oxidative stress. Structural alterations in a number of segments of the Fc region were observed and these related to oxidation of methionine residues. These included a large change in the hydrogen exchange profile of residues 247–253 of the heavy chain, while smaller changes in hydrogen exchange profile were identified for peptides that contained residues in the interface of the CH2 and CH3 domains.  相似文献   

11.
The quantification of proteins (biopharmaceuticals or biomarkers) in complex biological samples such as blood plasma requires exquisite sensitivity and selectivity, as all biological matrices contain myriads of proteins that are all made of the same 20 proteinogenic amino acids, notwithstanding post-translational modifications. This review describes and compares the two main approaches, namely, ligand binding assays (LBAs) and liquid chromatography coupled to tandem mass spectrometry in the selected reaction monitoring (SRM) mode. While LBAs remain the most widely used approach, SRM assays are gaining interest due to their generally better analytical performance (precision and accuracy) and their capacity for multiplex analyses. This article focuses on the possible reasons for the discrepancies between results obtained by LBAs and SRM assays.  相似文献   

12.
Ion-pairing reversed-phased chromatography/mass spectrometry of heparin   总被引:1,自引:0,他引:1  
Heparin and heparin-derived components are widely applied anticoagulant drugs used for amongst other applications medical treatment of deep vein thrombosis and pulmonary embolism. Depolymerisation of native heparin results in complex mixtures of sulfated linear oligosaccharides that are usually not well characterised. In order to further characterise such mixtures, two on-line ion-pairing reverse-phased chromatography electrospray ionisation (ESI) mass spectrometry methods have been developed. One of the systems allows the determination of more than 200 components in a medium molecular weight heparin preparation, whereas the other system can be used to separate isomeric heparin oligosaccharides after previous separation according to size. This latter system allows semi-preparative isolation of isomeric heparin oligosaccharides. The experimental setup includes on-line cation exchange in order to prevent the ion-pairing reagent from entering the mass spectrometer.  相似文献   

13.
We have developed a method to isolate and enhance the detection of phosphopeptides using liquid chromatography (LC)/mass spectrometry on a tryptic-digested protein sample. The method uses an on-line two-dimensional chromatography approach that consists of strong cation exchange (SCX) followed by reversed-phase (RP) chromatography with mass spectrometric detection. At pH 2.6 or lower, tryptic phosphopeptides are not retained during the first-dimension SCX chromatography step. Thus the capture of these peptides in the flow-through by the second-dimension RP trap can dramatically reduce the complexity of the phosphopeptide chromatography, resulting in little or no suppression of the signal often caused by the coeluting nonphosphorylated peptides. The method provides higher phosphopeptide recovery and less nonspecific biding of acidic peptides than the commonly used enrichment methods, such as immobilized metal affinity chromatography. Since the widely adopted multidimensional LC strategy in shotgun proteomics uses a similar SCX-RP approach, the method can be adapted to detect and characterize phosphopeptides from a complex mixture in a single experiment. Limitations of the method are also discussed.  相似文献   

14.
Genome analyses have revealed that the Gram-positive bacterial species Listeria monocytogenes and L. innocua contain a large number of genes encoding surface proteins predicted to be covalently bound to the cell wall (41 and 34, respectively). The function of most of these proteins is unknown and they have not even been identified biochemically. Here, we report the first characterization of the Listeria cell wall proteome using a nonelectrophoretic approach. The material analyzed consisted of a peptide mixture obtained from a cell wall extract insoluble in boiling 4% SDS. This extract, containing peptidoglycan (intrinsically resistant to proteases) and strongly associated proteins, was digested with trypsin in a solution with 0.01% SDS, used to favor protein digestion throughout the peptidoglycan. The resulting complex peptide mixture was fractionated and analyzed by two-dimensional nanoliquid chromatography coupled to ion-trap mass spectrometry. A total of 30 protein species were unequivocally identified in cell wall extracts of the genome strains L. monocytogenes EGD-e (19 proteins) and L. innocua CLIP11262 (11 proteins). Among them, 20 proteins bearing an LPXTG motif recognized for covalent anchoring to the peptidoglycan were identified. Other proteins detected included peptidoglycan-lytic enzymes, a penicillin-binding protein, and proteins bearing an NXZTN motif recently proposed to direct protein anchoring to the peptidoglycan. The marked sensitivity of the method makes it highly attractive in the post-genome era for defining the cell wall proteome in any bacterial species. This information will be useful to study novel protein-peptidoglycan associations and to rapidly identify new targets in the surface of important bacterial pathogens.  相似文献   

15.
Monoclonal antibodies have been used increasingly as therapeutic agents to target various diseases. Although most monoclonal antibodies have only one N-linked glycosylation site in the Fc region, N-linked glycosylation sites in the Fab region have also been observed. Because glycosylation of a monoclonal antibody can have a significant impact on its effector function, efficacy, clearance, and immunogenicity, it is essential to assess the glycosylation profile during cell line and clone selection studies and to assess the impact of cell culture conditions on the glycoform distribution during process optimization studies to ensure that the antibody is being produced with appropriate and consistent glycosylation. This article describes a liquid chromatography-mass spectrometry-based approach, in combination with papain digestion and partial reduction, to obtain site-specific glycosylation profile information for a therapeutic monoclonal antibody with two N-linked glycosylation sites in the heavy chain.  相似文献   

16.
Bifidobacteria are Gram-positive prokaryotes that naturally colonize the human gut where they exert several health-promoting effects. The present paper reports the use of a strong cation exchange-reversed-phase-tandem mass spectrometry strategy to catalogue the most abundantly expressed proteins of a probiotic Bifidobacterium infantis strain. A global view of the B. infantis proteome was obtained. The bimodal representation of the proteins identified by mass spectrometry provides the first theoretical two-dimensional map of protein distribution for this organism. Among the 136 proteins identified by multidimensional protein identification technology (MudPIT) analysis, 118 showed the highest similarity with the translated sequences of B. longum genome, two proteins were similar to other Bifidobacterium species and the remaining 16 were similar to different genera. Specific biological activities have been assigned to 115 identified proteins, whereas 21 have been referred to the group of hypothetical proteins. The MudPIT approach allowed us to identify high mass and basic isoelectric point proteins that are generally challenging to visualize using the traditional two-dimensional electrophoresis technique. Redundancy in peptide and protein identification using the double chromatography technique was also evaluated.  相似文献   

17.
The detection of free sulfhydryls in proteins can reveal incomplete disulfide bond formation, indicate cysteine residues available for conjugation, and offer insights into protein stability and structure. Traditional spectroscopic methods of free sulfhydryl detection, such as Ellman’s reagent, generally require a relatively large amount of sample, preventing their use for the analysis of biotherapeutics early in the development cycle. These spectroscopic methods also cannot accurately determine the location of the free sulfhydryl, further limiting their utility. Mass spectrometry was used to detect free sulfhydryl residues in intact proteins after labeling with Maleimide-PEG2-Biotin. As little as 2% cysteine residues with free sulfhydryls (0.02 mol SH per mol protein) could be detected by this method. Following reduction, the free sulfhydryl abundance on antibody heavy and light chains could be measured. To determine free sulfhydryl location at peptide-level resolution, free sulfhydryls and cysteines involved in disulfide bonds were differentially labeled with N-ethylmaleimide and d5-N-ethylmaleimide, respectively. Following enzymatic digestion and nanoLC-MS, the abundance of free sulfhydryls at individual cysteine residues was quantified down to 2%. The method was optimized to avoid non-specific labeling, disulfide bond scrambling, and maleimide exchange and hydrolysis. This new workflow for free sulfhydryl analysis was used to measure the abundance and location of free sulfhydryls in 3 commercially available monoclonal antibody standards (NIST Monoclonal Antibody Reference Material (NIST), SILu?Lite SigmaMAb Universal Antibody Standard (Sigma-Aldrich) and Intact mAb Mass Check Standard (Waters)) and 1 small protein standard (β-Lactoglobulin A).  相似文献   

18.
We describe an improved assay for platelet-activating factor (PAF; 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine) using HPLC-tandem mass spectrometry (LC-MS/MS). The present method can readily detect as little as 1 pg (1.9 fmol) of PAF, a significant improvement over previously described LC-MS/MS methods, and gives a linear response up to 1,000 pg of PAF. Our method also overcomes the artifacts from isobaric lipids that have limited the usefulness of certain existing LC-MS/MS assays for PAF. In the course of these studies, we detected three novel lipid species in human neutrophils. One of the novel lipids appears to be a new molecular species of PAF, and the other two have chromatographic and mass spectrometric properties consistent with stearoyl-formyl-glycerophosphocholine and oleoyl-formyl-glycerophosphocholine. These observations identify previously unknown potential interferences in the measurement of PAF by LC-MS/MS. Moreover, our data suggest that the previously described palmitoyl-formyl-glycerophosphocholine is not unique but rather is a member of a new and poorly understood family of formylated lipids.  相似文献   

19.
Human saliva contains a large number of proteins and peptides (salivary proteome) that help maintain homeostasis in the oral cavity. Global analysis of human salivary proteome is important for understanding oral health and disease pathogenesis. In this study, large-scale identification of salivary proteins was demonstrated by using shotgun proteomics and two-dimensinal gel electrophoresis-mass spectrometry (2-DE-MS). For the shotgun approach, whole saliva proteins were prefractionated according to molecular weight. The smallest fraction, presumably containing salivary peptides, was directly separated by capillary liquid chromatography (LC). However, the large protein fractions were digested into peptides for subsequent LC separation. Separated peptides were analyzed by on-line electrospray tandem mass spectrometry (MS/MS) using a quadrupole-time of flight mass spectrometer, and the obtained spectra were automatically processed to search human protein sequence database for protein identification. Additionally, 2-DE was used to map out the proteins in whole saliva. Protein spots 105 in number were excised and in-gel digested; and the resulting peptide fragments were measured by matrix-assisted laser desorption/ionization-mass spectrometry and sequenced by LC-MS/MS for protein identification. In total, we cataloged 309 proteins from human whole saliva by using these two proteomic approaches.  相似文献   

20.
Nanoscale liquid chromatography coupled to electrospray ionization mass spectrometry was used to identify the nature of the ligand that binds noncovalently to siderocalin (lipocalin 2). The folded state siderocalin-ligand complex was separated from free, unfolded siderocalin using reversed phase chromatography, and the molecular weight of the siderocalin ligand was then determined from the deconvoluted molecular weights of the complex and of the free protein. The ligand was identified as dihydroxybenzoyl-serine, a breakdown product of enterobactin, an iron-chelating compound ("siderophore") synthesized in bacteria. These results demonstrate that, in some cases, electrostatic noncovalent protein complexes can survive the denaturing conditions of reversed phase liquid chromatography and the gas phase transfer occurring during electrospray ionization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号