首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Xenopus follicles are endowed with specific receptors for ATP, ACh, and AII, transmitters proposed as follicular modulators of gamete growth and maturation in several species. Here, we studied ion‐current responses elicited by stimulation of these receptors and their activation mechanisms using the voltage‐clamp technique. All agonists elicited Cl? currents that depended on coupling between oocyte and follicular cells and on an increase in intracellular Ca2+ concentration ([Ca2+]i), but they differed in their activation mechanisms and in the localization of the molecules involved. Both ATP and ACh generated fast Cl? (FCl) currents, while AII activated an oscillatory response; a robust Ca2+ influx linked specifically to FCl activation elicited an inward current (Iiw,Ca) which was carried mainly by Cl? ions, through channels with a sequence of permeability of SCN? > I? > Br? > Cl?. Like FCl, Iiw,Ca was not dependent on oocyte [Ca2+]i; instead both were eliminated by preventing [Ca2+]i increase in the follicular cells, and also by U73122 and 2‐APB, drugs that inhibit the phospolipase C (PLC) pathway. The results indicated that FCl and Iiw,Ca were produced by the expected, PLC‐stimulated Ca2+‐release and Ca2+‐influx, respectively, and by the opening of ICl(Ca) channels located in the follicular cells. Given their pharmacological characteristics and behavior in conditions of divalent cation deprivation, Ca2+‐influx appeared to be driven through store‐operated, calcium‐like channels. The AII response, which is also known to require PLC activation, did not activate Iiw,Ca and was strictly dependent on oocyte [Ca2+]i increase; thus, ATP and ACh receptors seem to be expressed in a population of follicular cells different from that expressing AII receptors, which were coupled to the oocyte through distinct gap‐junction channels. J. Cell. Physiol. 227: 3457–3470, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

2.
Alternans of cardiac repolarization is associated with arrhythmias and sudden death. At the cellular level, alternans involves beat-to-beat oscillation of the action potential (AP) and possibly Ca(2+) transient (CaT). Because of experimental difficulty in independently controlling the Ca(2+) and electrical subsystems, mathematical modeling provides additional insights into mechanisms and causality. Pacing protocols were conducted in a canine ventricular myocyte model with the following results: 1) CaT alternans results from refractoriness of the sarcoplasmic reticulum Ca(2+) release system; alternation of the L-type calcium current has a negligible effect; 2) CaT-AP coupling during late AP occurs through the sodium-calcium exchanger and underlies AP duration (APD) alternans; 3) increased Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) activity extends the range of CaT and APD alternans to slower frequencies and increases alternans magnitude; its decrease suppresses CaT and APD alternans, exerting an antiarrhythmic effect; and 4) increase of the rapid delayed rectifier current (I(Kr)) also suppresses APD alternans but without suppressing CaT alternans. Thus CaMKII inhibition eliminates APD alternans by eliminating its cause (CaT alternans) while I(Kr) enhancement does so by weakening CaT-APD coupling. The simulations identify combined CaMKII inhibition and I(Kr) enhancement as a possible antiarrhythmic intervention.  相似文献   

3.
Quantitative time-resolved measurements of cytosolic Ca2+ release by photolysis of caged InsP3 have been made in single rat submandibular cells using patch clamp whole-cell recording to measure the Ca2+-activated Cl and K+ currents. Photolytic release of InsP3 from caged InsP3 at 100 Joules caused transient inward (VH = 60 mV) and outward (VH = 0 mV) currents, which were nearly symmetric in their time course. The inward current was reduced when pipette Cl concentration was decreased, and the outward current was suppressed by K+ channel blockers, indicating that they were carried by Cl and K+, respectively. Intracellular pre-loading of the InsP3 receptor antagonist heparin or the Ca2+ chelator EGTA clearly prevented both inward and outward currents, indicating that activation of Ca2+-dependent Cl and K+ currents underlies the inward and the outward currents. At low flash intensities, InsP3 caused Ca2+ release which normally activated the K+ and Cl currents in a mono-transient manner. At higher intensities, however, InsP3 induced an additional delayed outward K+ current (IK(delay)). IK(delay) was independent of the initial K+ current, independent of extracellular Ca2+, inhibited by TEA, and gradually prolongated by repeated flashes. The photolytic release of Ca2+ from caged Ca2+ did not mimic the IK(delay). It is suggested that Ca2+ releases from the InsP3-sensitive pools in an InsP3 concentration-dependent manner. Low concentrations of InsP3 induce the transient Ca2+-dependent Cl and K+ currents, which reflects the local Ca2+ release, whereas high concentrations of InsP3 induce a delayed Ca2+-dependent K+ current, which may reflect the Ca2+ wave propagation. J. Cell. Physiol. 174:387–397, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

4.
5.
In cardiomyocytes, Ca2+ entry through voltage-dependent Ca2+ channels (VDCCs) binds to and activates RyR2 channels, resulting in subsequent Ca2+ release from the sarcoplasmic reticulum (SR) and cardiac contraction. Previous research has documented the molecular coupling of small-conductance Ca2+-activated K+ channels (SK channels) to VDCCs in mouse cardiac muscle. Little is known regarding the role of RyRs-sensitive Ca2+ release in the SK channels in cardiac muscle. In this study, using whole-cell patch clamp techniques, we observed that a Ca2+-activated K+ current (IK,Ca) recorded from isolated adult C57B/L mouse atrial myocytes was significantly decreased by ryanodine, an inhibitor of ryanodine receptor type 2 (RyR2), or by the co-application of ryanodine and thapsigargin, an inhibitor of the sarcoplasmic reticulum calcium ATPase (SERCA) (p<0.05, p<0.01, respectively). The activation of RyR2 by caffeine increased the IK,Ca in the cardiac cells (p<0.05, p<0.01, respectively). We further analyzed the effect of RyR2 knockdown on IK,Ca and Ca2+ in isolated adult mouse cardiomyocytes using a whole-cell patch clamp technique and confocal imaging. RyR2 knockdown in mouse atrial cells transduced with lentivirus-mediated small hairpin interference RNA (shRNA) exhibited a significant decrease in IK,Ca (p<0.05) and [Ca2+]i fluorescence intensity (p<0.01). An immunoprecipitated complex of SK2 and RyR2 was identified in native cardiac tissue by co-immunoprecipitation assays. Our findings indicate that RyR2-mediated Ca2+ release is responsible for the activation and modulation of SK channels in cardiac myocytes.  相似文献   

6.
We describe a novel two‐photon (2P) laser scanning microscopy (2PLSM) protocol that provides ratiometric transmural measurements of membrane voltage (Vm) via Di‐4‐ANEPPS in intact mouse, rat and rabbit hearts with subcellular resolution. The same cells were then imaged with Fura‐2/AM for intracellular Ca2+ recordings. Action potentials (APs) were accurately characterized by 2PLSM vs. microelectrodes, albeit fast events (<1 ms) were sub‐optimally acquired by 2PLSM due to limited sampling frequencies (2.6 kHz). The slower Ca2+ transient (CaT) time course (>1ms) could be accurately described by 2PLSM. In conclusion, Vm ‐ and Ca2+‐sensitive dyes can be 2P excited within the cardiac muscle wall to provide AP and Ca2+ signals to ~400 µm. (© 2013 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

7.
AimsThiamine is an important cofactor present in many biochemical reactions, and its deprivation can lead to heart dysfunction. Little is known about the influence of thiamine deprivation on the electrophysiological behavior of the isolated heart cells and information about thiamine deficiency in heart morphology is controversial. Thus, we decided to investigate the major repolarizing conductances and their influence in the action potential (AP) waveform as well as the changes in the heart structure in a set of thiamine deficiency in rats.Main methodsUsing the patch-clamp technique, we investigated inward (IK1) and outward K+ currents (Ito), T-type and L-type Ca2+ currents and APs. To evaluate heart morphology we used hematoxylin and eosin in transversal heart sections.Key findingsThiamine deficiency caused a marked decrease in left ventricle thickness, cardiomyocyte number, cell length and width, and membrane capacitance. When evaluating Ito we did not find difference in current amplitude; however an acceleration of Ito inactivation was observed. IK1 showed a reduction in the amplitude and slope conductance, which implicated a less negative resting membrane potential in cardiac myocytes isolated from thiamine-deficient rats. We did not find any difference in L-type Ca2+ current density. T-type Ca2+ current was not observed. In addition, we did not observe significant changes in AP repolarization.SignificanceBased on our study we can conclude that thiamine deficiency causes heart hypotrophy and not heart hypertrophy. Moreover, we provided evidence that there is no major electrical remodeling during thiamine deficiency, a feature of heart failure models.  相似文献   

8.
It has been known for more than three decades that outward Kir currents (IK1) increase with increasing extracellular K+ concentration ([K+]o). Although this increase in IK1 can have significant impacts under pathophysiological cardiac conditions, where [K+]o can be as high as 18 mm and thus predispose the heart to re-entrant ventricular arrhythmias, the underlying mechanism has remained unclear. Here, we show that the steep [K+]o dependence of Kir2.1-mediated outward IK1 was due to [K+]o-dependent inhibition of outward IK1 by extracellular Na+ and Ca2+. This could be accounted for by Na+/Ca2+ inhibition of IK1 through screening of local negative surface charges. Consistent with this, extracellular Na+ and Ca2+ reduced the outward single-channel current and did not increase open-state noise or decrease the mean open time. In addition, neutralizing negative surface charges with a carboxylate esterifying agent inhibited outward IK1 in a similar [K+]o-dependent manner as Na+/Ca2+. Site-directed mutagenesis studies identified Asp114 and Glu153 as the source of surface charges. Reducing K+ activation and surface electrostatic effects in an R148Y mutant mimicked the action of extracellular Na+ and Ca2+, suggesting that in addition to exerting a surface electrostatic effect, Na+ and Ca2+ might inhibit outward IK1 by inhibiting K+ activation. This study identified interactions of K+ with Na+ and Ca2+ that are important for the [K+]o dependence of Kir2.1-mediated outward IK1.  相似文献   

9.
The presence of Ca2+-activated Cl currents (ICl(Ca)) in vascular smooth muscle cells (VSMCs) is well established. ICl(Ca) are supposedly important for arterial contraction by linking changes in [Ca2+]i and membrane depolarization. Bestrophins and some members of the TMEM16 protein family were recently associated with ICl(Ca). Two distinct ICl(Ca) are characterized in VSMCs; the cGMP-dependent ICl(Ca) dependent upon bestrophin expression and the ‘classical’ Ca2+-activated Cl current, which is bestrophin-independent. Interestingly, TMEM16A is essential for both the cGMP-dependent and the classical ICl(Ca). Furthermore, TMEM16A has a role in arterial contraction while bestrophins do not. TMEM16A’s role in the contractile response cannot be explained however only by a simple suppression of the depolarization by Cl channels. It is suggested that TMEM16A expression modulates voltage-gated Ca2+ influx in a voltage-independent manner and recent studies also demonstrate a complex role of TMEM16A in modulating other membrane proteins.  相似文献   

10.
Freshly dissociated cells from the stomach muscularis of the toad Bufo marinus have been employed to carry out a systematic set of electrophysiological studies on the membrane properties of smooth muscle. The existence of Ca2+-activated K+ channels became apparent during the first studies under current clamp. In subsequent studies under voltage clamp, a Ca2+-activated, TEA-sensitive outward current was evident, and it was more than an order of magnitude larger than any other current observed in the cells. The channel responsible, at least in part, for this large outward current has been identified on the basis of single-channel records, and some of its main characteristics have been studied. It is similar in many respects to the large-conductance, Ca2+-activated K+ channel seen in other preparations. This channel has now been found in a considerable diversity of smooth muscle types.  相似文献   

11.
Ionic channels regulated by extracellular Ca2+ concentration ([Ca2+]0) were examined in freshly isolated rabbit osteoclasts. K+ current was suppressed by intracellular and extracellular Cs+ ions. In this condition, high [Ca2+]0 evoked an outwardly rectifying current with a reversal potential of about −25 mV. When the concentration of extracellular Cl ions was altered, the reversal potential of the outwardly rectifying current shifted as predicted by the Nernst equation. 4′,4-diisothiocyanostilbene-2′,2-disulphonic acid (DIDS) inhibited the outwardly rectifying current. These results indicated that this current was carried through Cl channels. Cd2+ or Ni2+ caused a transient activation of the Cl current in contrast to the sustained activation elicited by Ca2+. Intracellular 20 mM ethylene glycol-bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid (EGTA) inhibited the divalent cation-induced Cl current. Either when the osmolarity of extracellular medium was increased, or when 100 μM cAMP was dissolved in the patch pipette solution, high [Ca2+]0 still elicited the Cl current, indicating that the divalent cation-induced Cl current was carried through Ca2+-activated Cl channels. Under perforated whole cell clamp extracellular divalent cations evoked the Cl current, indicating that the activation of Cl current did not arise from possible leakage of divalent cations from the extracellular medium under the whole cell clamp condition. This experiment further excluded a possible activation of volume-sensitive Cl channels under whole cell clamp. Intracellular application of guanosine 5′-O-(3-thiotriphosphate) (GTPγS) activated the Cl current and it was inhibited by intracellular 20 mM EGTA, suggesting that the activation of Cl current was mediated through a G protein, and that an increase in [Ca2+]i was critical for the activation of Cl channels. A protein phosphatase inhibitor, okadaic acid (100 nM), caused an irreversible activation of the Cl current, suggesting that protein phosphatase 1 or 2A was involved in the regulation of Ca2+-activated Cl channels. © 1996 Wiley-Liss, Inc.  相似文献   

12.
Beat-to-beat alternation in the cardiac intracellular Ca (Cai) transient can drive action potential (AP) duration alternans, creating a highly arrhythmogenic substrate. Although a steep dependence of fractional sarcoplasmic reticulum (SR) Ca release on SR Ca load has been shown experimentally to promote Cai alternans, theoretical studies predict that other factors are also important. Here we present an iterated map analysis of the coordinated effects of SR Ca release, uptake, and leak on the onset of Cai alternans. Predictions were compared to numerical simulations using a physiologically realistic AP model as well as to AP clamp experiments in isolated patch-clamped rabbit ventricular myocytes exposed to 1), the Ca channel agonist BayK8644 (100 nM) to increase SR Ca load and release fraction, 2), overexpression of an adenoviral SERCA2a construct to increase SR Ca uptake, and 3), low-dose FK506 (20 μM) or ryanodine (1 μM) to increase SR Ca leak. Our findings show that SR Ca release, uptake, and leak all have independent direct effects that promote (release and leak) or suppress (uptake) Cai alternans. However, since each factor affects the other by altering SR Ca load, the net balance of their direct and indirect effects determines whether they promote or suppress alternans. Thus, BayK8644 promotes, whereas Ad-SERCA2a overexpression, ryanodine, and FK506 suppress, Cai alternans under AP clamp conditions.  相似文献   

13.
In recent years, the contribution of I(f), an important pacemaker current, and intracellular Ca2+ release (ICR) from sarcoplasmic reticulum to pacemaking and arrhythmia has been intensively studied. However, their functional roles in embryonic heart remain uncertain. Using patch clamp, Ca2+ imaging, and RT‐PCR, we found that I(f) regulated the firing rate in early and late stage embryonic ventricular cells, as ivabradine (30 µM), a specific blocker of I(f), slowed down action potential (AP) frequency. This inhibitory effect was even stronger in late stage cells, though I(f) was down‐regulated. In contrast to I(f), ICR was found to be indispensable for the occurrence of APs in ventricular cells of different stages, because abolishment of ICR with ryanodine and 2‐aminoethoxydiphenyl borate (2‐APB), specific blockers of ryanodine receptors (RyRs) and inositol trisphosphate receptors (IP3Rs), completely abolished APs. In addition, we noticed that RyR‐ and IP3R‐mediated ICR coexisted in early‐stage ventricular cells and RyRs functionally dominated. While at late stage RyRs, but not IP3Rs, mediated ICR. In both early and late stage ventricular cells, Na‐Ca exchanger current (INa/Ca) mediated ICR‐triggered depolarization of membrane potential and resulted in the initiation of APs. We also observed that different from I(f), which presented as the substantial component of the earlier diastolic depolarization current, application of ryanodine, and/or 2‐APB slowed the late phase of diastolic depolarization. Thus, we conclude that in murine embryonic ventricular cells I(f) regulates firing rate, while RyRs and IP3Rs (early stage) or RyRs (late stage)‐mediated ICR determines the occurrence of APs. J. Cell. Biochem. 114: 1852–1862, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

14.
A Ca2+-activated (I Cl,Ca) and a swelling-activated anion current (I Cl,vol) were investigated in Ehrlich ascites tumor cells using the whole cell patch clamp technique. Large, outwardly rectifying currents were activated by an increase in the free intracellular calcium concentration ([Ca2+] i ), or by hypotonic exposure of the cells, respectively. The reversal potential of both currents was dependent on the extracellular Cl concentration. I Cl,Ca current density increased with increasing [Ca2+] i , and this current was abolished by lowering [Ca2+] i to <1 nm using 1,2-bis-(o-aminophenoxy)ethane-N,N,N′,N′-tetra-acetic acid (BAPTA). In contrast, activation of I Cl,vol did not require an increase in [Ca2+] i . The kinetics of I Cl,Ca and I Cl,vol were different: at depolarized potentials, I Cl,Ca as activated in a [Ca2+] i - and voltage-dependent manner, while at hyperpolarized potentials, the current was deactivated. In contrast, I Cl,vol exhibited time- and voltage-dependent deactivation at depolarized potentials and reactivation at hyperpolarized potentials. The deactivation of I Cl,vol was dependent on the extracellular Mg2+ concentration. The anion permeability sequence for both currents was I > Cl > gluconate. I Cl,Ca was inhibited by niflumic acid (100 μm), 5-Nitro-2-(3-phenylpropylamino)benzoic acid (NPPB, 100 μm) and 4,4′-diisothiocyano-2,2′-stilbenedisulfonic acid (DIDS, 100 μm), niflumic acid being the most potent inhibitor. In contrast, I Cl,vol was unaffected by niflumic acid (100 μm), but abolished by tamoxifen (10 μm). Thus, in Ehrlich cells, separate chloride currents, I Cl,Ca and I Cl,vol, are activated by an increase in [Ca2+] i and by cell swelling, respectively. Received: 12 November 1997/Revised: 5 February 1998  相似文献   

15.
Combined patch-clamp and Fura-2 measurements were performed on chinese hamster ovary (CHO) cells co-expressing two channel proteins involved in skeletal muscle excitation-contraction (E-C) coupling, the ryanodine receptor (RyR)-Ca2+ release channel (in the membrane of internal Ca2+ stores) and the dihydropyridine receptor (DHPR)-Ca2+ channel (in the plasma membrane). To ensure expression of functional L-type Ca2+ channels, we expressed α2, β, and γ DHPR subunits and a chimeric DHPR α1 subunit in which the putative cytoplasmic loop between repeats II and III is of skeletal origin and the remainder is cardiac. There was no clear indication of skeletal-type coupling between the DHPR and the RyR; depolarization failed to induce a Ca2+ transient (CaT) in the absence of extracellular Ca2+ ([Ca2+]o). However, in the presence of [Ca2+]o, depolarization evoked CaTs with a bell-shaped voltage dependence. About 30% of the cells tested exhibited two kinetic components: a fast transient increase in intracellular Ca2+ concentration ([Ca2+]i) (the first component; reaching 95% of its peak <0.6 s after depolarization) followed by a second increase in [Ca2+]i which lasted for 5–10 s (the second component). Our results suggest that the first component primarily reflected Ca2+ influx through Ca2+ channels, whereas the second component resulted from Ca2+ release through the RyR expressed in the membrane of internal Ca2+ stores. However, the onset and the rate of Ca2+ release appeared to be much slower than in native cardiac myocytes, despite a similar activation rate of Ca2+ current. These results suggest that the skeletal muscle RyR isoform supports Ca2+-induced Ca2+ release but that the distance between the DHPRs and the RyRs is, on average, much larger in the cotransfected CHO cells than in cardiac myocytes. We conclude that morphological properties of T-tubules and/or proteins other than the DHPR and the RyR are required for functional “close coupling” like that observed in skeletal or cardiac muscle. Nevertheless, some of our results imply that these two channels are potentially able to directly interact with each other.  相似文献   

16.
The transient Ca2+ and Ca2+-dependent Cl? currents in the plasma membrane of voltage-clamped cells of the freshwater alga Chara corallina were studied. We used our own earlier proposed method, which utilized a rapid (~10 ms) injection of Ca2+ ions into the cell during the deactivation period of calcium channels after their activation with a positive voltage pulse (injection with a “tail” Ca2+ current). This procedure makes it possible to determine the amplitude of the Ca2+ component in the transient current as well as the amplitude and kinetics of the Cl? component, dependent on the Ca2+ submembrane concentration. The calculated results, which used a cell model that takes the diffusion of Ca2+, the Ca2+-buffering properties of the cytoplasm, and the nonlinear dependence of i Cl on [Ca2+]cyt, as well as the presence of chloroplasts into account, were in good agreement with the actual behavior of transient current in the experiments. It was demonstrated that the duration of the slow stage of [Ca2+]cyt relaxation to the resting level (~10?7 M) (which is related to the function of Ca2+-ATPases), was ~102 s. This suggests that the slow stage determines the duration of the refractory period after generation of the action potential.  相似文献   

17.
Stimulation of airway myocytes by contractile agents such as acetylcholine (ACh) activates a Ca2+-activated Cl current (IClCa) which may play a key role in calcium homeostasis of airway myocytes and hence in airway reactivity. The aim of the present study was to model IClCa in airway smooth muscle cells using a computerised model previously designed for simulation of cardiac myocyte functioning. Modelling was based on a simple resistor-battery permeation model combined with multiple binding site activation by calcium. In order to validate the model, a combination of equations, used to mimic [Ca2+]i response to ACh stimulation, were incorporated into the model. The results indicate that the model developed in this article accounts for experimental recordings and electrophysiological characteristics of this current in airway smooth muscle cells, with parameter values consistent with those calculated from experimental data. Such a model may thus be used to predict IClCa functioning, though additional experimental data from airway myocytes would be useful to more accurately determine some parameter values of the model.  相似文献   

18.
In the present study, the whole-cell voltage clamp technique was used in order to record the T- and L-type Ca2+ currents in single heart cells of newborn and young normal and hereditary cardiomyopathic hamsters. Our results showed that the I/V relationship curve as well as the kinetics of the L-type Ca2+ currents (ICa(L)) in both normal and cardiomyopathic heart cells were the same. However, the proportion of myocytes from normal heart hamster that showed L-type ICa was less than that of heart cells from cardiomyopathic hamster. The I/V relationship curve of the T-type ICa (ICa(T)) was the same in myocytes of both normal and cardiomyopathic hamsters. The main differences between ICa(T) of cardiomyopathic and normal hamster are a larger window current and the proportion of ventricular myocytes that showed this type of current in cardiomyopathic hamster. The high density of ICa(T) as well as the large window current and proportion of myocytes showing ICa(T) may explain in part Ca2+ overload observed in cardiomyopathic heart cells of the hamster.  相似文献   

19.
Using the voltage-clamp technique, we investigated transmembrane ion currents in isolated smooth muscle cells of the guinea pigtaenia coli. In our study, we identified and studied a charibdotoxin-sensitive component of Ca2+-dependent K+ current carried through the channels of high conductance (in most publications called “big conductance,”I BK(Ca)). This component was completely blocked by 100 nM charibdotoxin and by tetraethylammonium in concentrations as low as 1 mM.I BK(Ca) demonstrated fast kinetics of inactivation, which nearly coincided with that of Ca2+ current. In addition to the dependence on Ca2+ concentration, this current also showed voltage-dependent properties: with a rise in the level of depolarization its amplitude increased. In many cells, depolarizing shifts in the membrane potential evoke spontaneous outward currents. Such currents probably represent the secondary effect of cyclic Ca2+ release from the caffeine-sensitive intracellular stores that result in short-term activation of charibdotoxin-sensitive Ca2+-dependent K+ channels.  相似文献   

20.
Ca2+ alternans (Ca-Alts) are alternating beat-to-beat changes in the amplitude of Ca2+ transients that frequently occur during tachycardia, ischemia, or hypothermia that can lead to sudden cardiac death. Ca-Alts appear to result from a variation in the amount of Ca2+ released from the sarcoplasmic reticulum (SR) between two consecutive heartbeats. This variable Ca2+ release has been attributed to the alternation of the action potential duration, delay in the recovery from inactivation of RYR Ca2+ release channel (RYR2), or an incomplete Ca2+ refilling of the SR. In all three cases, the RYR2 mobilizes less Ca2+ from the SR in an alternating manner, thereby generating an alternating profile of the Ca2+ transients. We used a new experimental approach, fluorescence local field optical mapping (FLOM), to record at the epicardial layer of an intact heart with subcellular resolution. In conjunction with a local cold finger, a series of images were recorded within an area where the local cooling induced a temperature gradient. Ca-Alts were larger in colder regions and occurred without changes in action potential duration. Analysis of the change in the enthalpy and Q10 of several kinetic processes defining intracellular Ca2+ dynamics indicated that the effects of temperature change on the relaxation of intracellular Ca2+ transients involved both passive and active mechanisms. The steep temperature dependency of Ca-Alts during tachycardia suggests Ca-Alts are generated by insufficient SERCA-mediated Ca2+ uptake into the SR. We found that Ca-Alts are heavily dependent on intra-SR Ca2+ and can be promoted through partial pharmacologic inhibition of SERCA2a. Finally, the FLOM experimental approach has the potential to help us understand how arrhythmogenesis correlates with the spatial distribution of metabolically impaired myocytes along the myocardium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号