共查询到20条相似文献,搜索用时 15 毫秒
1.
Rapid production of recombinant human IgG with improved antibody dependent cell‐mediated cytotoxicity (ADCC) effector function is presented. The technique employs transient expression of IgG in suspension growing HEK‐293F cells in the presence of the glycosidase inhibitor kifunensine. The procedure takes ~7 days, provided that expression plasmids encoding the IgG of interest are available. Kifunensine inhibits the N‐linked glycosylation pathway of HEK‐293F cells in the endoplasmatic reticulum, resulting in IgG with oligomannose type glycans lacking core‐fucose. IgG1 transiently produced in kifunensine‐ treated HEK‐293F cells has improved affinity for the FcγRIIIA molecule as measured in an ELISA based assay, and almost eightfold enhanced ADCC using primary peripheral blood mononuclear effector cells. Biotechnol. Bioeng. 2010; 105: 350–357. © 2009 Wiley Periodicals, Inc. 相似文献
2.
IgG2 subclass antibodies have unique properties that include low effector function and a rigid hinge region. Although some IgG2 subclasses have been clinically tested and approved for therapeutic use, they have a higher propensity than IgG1 for aggregation, which can curtail or abolish their biological activity and enhance their immunogenicity. In this regard, acid‐induced aggregation of monoclonal antibodies during purification and virus inactivation must be prevented. In the present study, we replaced the constant domain of IgG2 with that of IgG1, using anti‐2,4‐dinitrophenol (DNP) IgG2 as a model antibody, and investigated whether that would confer greater stability. While the anti‐DNP IgG2 antibody showed significant aggregation at low pH, this was reduced for the IgG2 antibody containing the IgG1 CH2 domain. Substituting three amino acids within the CH2 domain—namely, F300Y, V309L, and T339A (IgG2_YLA)—reduced aggregation at low pH and increased CH2 transition temperature, as determined by differential scanning calorimetric analysis. IgG2_YLA exhibited similar antigen‐binding capacity to IgG2, low affinity for FcγRIIIa, and low binding ability to C1q. The same YLA substitution also reduced the aggregation of panitumumab, another IgG2 antibody, at low pH. Our engineered human IgG2 antibody showed reduced aggregation during bioprocessing and provides a basis for designing improved IgG2 antibodies for therapeutic applications. 相似文献
3.
The present study analyzed serum IgG subclass antibody reaction to major antigenic bands of Clonorchis sinensis to investigate improvement of its serodiagnosis. Of the four subclass antibodies, IgG1 and IgG2 antibodies were produced but not specific, IgG3 antibody was least produced, and IgG4 antibody was prominent and specific. The serum IgG antibody reaction to any of 43-50, 34-37, 26-28, and 8 kDa bands was found in 65.5% of 168 egg positive cases while IgG4 antibody reaction was found in 22.0% of them. The positive rates of IgG and IgG4 antibodies were directly correlated with the intensity of infection. All of the sera from heavily infected cases over EPG 5,000 showed positive reaction for specific IgG and IgG4 antibodies. The specific serum IgG4 antibody disappeared within 6 months after treatment. The bands of 35 kDa and 67 kDa cross-reacted with IgG antibodies but not with IgG4 antibodies in sera of other trematode infections. The present findings suggest that serum IgG4 antibody reaction to 8 kDa band is specific but not sensitive. Any method to increase its sensitivity is required for improved serodiagnosis. 相似文献
4.
Human IgG comprises four subclasses with different biological functions. The IgG3 subclass has a unique character, exhibiting high effector function and Fab arm flexibility. However, it is not used as a therapeutic drug owing to an enhanced susceptibility to proteolysis. Antibody aggregation control is also important for therapeutic antibody development. To date, there have been few reports of IgG3 aggregation during protein expression and the low pH conditions needed for purification and virus inactivation. This study explored the potential of IgG3 antibody for therapeutics using anti‐CD20 IgG3 as a model to investigate aggregate formation. Initially, anti‐CD20 IgG3 antibody showed substantial aggregate formation during expression and low pH treatment. To circumvent this phenomenon, we systematically exchanged IgG3 constant domains with those of IgG1, a stable IgG. IgG3 antibody with the IgG1 CH3 domain exhibited reduced aggregate formation during expression. Differential scanning calorimetric analysis of individual amino acid substitutions revealed that two amino acid mutations in the CH3 domain, N392K and M397V, reduced aggregation and increased CH3 transition temperature. The engineered human IgG3 antibody was further improved by additional mutations of R435H to obtain IgG3KVH to achieve protein A binding and showed similar antigen binding as wild‐type IgG3. IgG3KVH also exhibited high binding activity for FcγRIIIa and C1q. In summary, we have successfully established an engineered human IgG3 antibody with reduced aggregation during bioprocessing, which will contribute to the better design of therapeutic antibodies with high effector function and Fab arm flexibility. 相似文献
5.
Tremendous knowledge has been gained in the understanding of various modifications of IgG antibodies, driven mainly by the fact that antibodies are one of the most important groups of therapeutic molecules and because of the development of advanced analytical techniques. Recombinant monoclonal antibody (mAb) therapeutics expressed in mammalian cell lines and endogenous IgG molecules secreted by B cells in the human body share some modifications, but each have some unique modifications. Modifications that are common to recombinant mAb and endogenous IgG molecules are considered to pose a lower risk of immunogenicity. On the other hand, modifications that are unique to recombinant mAbs could potentially pose higher risk. The focus of this review is the comparison of frequently observed modifications of recombinant monoclonal antibodies to those of endogenous IgG molecules. 相似文献
6.
We report a chimeric monoclonal antibody (mAb) directed to a neo-epitope that is exposed in the IgG lower hinge following proteolytic cleavage. The mAb, designated 2095–2, displays specificity for IdeS-generated F(ab’) 2 fragments, but not for full-length IgG or for closely-related F(ab’) 2 fragments generated with other proteases. A critical component of the specificity is provided by the C-terminal amino acid of the epitope corresponding to gly-236 in the IgG1 (also IgG4) hinge. By its ability to bind to IdeS-cleaved anti-CD20 mAb, mAb 2095–2 fully restored antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) against WIL2-S cells to the otherwise inactive anti-CD20 IgG1 F(ab’) 2 fragment. Similarly, 2095–2 reinstated ADCC against MDA-MB-231 cells to an anti-CD142 IgG1 F(ab’) 2 fragment. mAb 2095–2 was also capable of eliciting both CDC and ADCC to IgG4 F(ab’) 2 fragments, an IgG subclass that has weaker ADCC and CDC when intact relative to intact IgG1. The in vitro cell-based efficacy of 2095–2 was extended to the in vivo setting using platelets as a cell clearance surrogate. In a canine model, the co-administration of 2095–2 together with IdeS-generated, platelet-targeting anti-CD41/61 F(ab’) 2 fragment not only restored platelet clearance, but did so at a rate and extent of clearance that exceeded that of intact anti-CD41/61 IgG at comparable concentrations. To further explore this unexpected amplification effect, we conducted a rat study in which 2095–2 was administered at a series of doses in combination with a fixed dose of anti-CD41/61 F(ab’) 2 fragments. Again, the combination, at ratios as low as 1:10 (w/w) 2095–2 to F(ab’) 2, proved more effective than the anti-CD41/61 IgG1 alone. These findings suggest a novel mechanism for enhancing antibody-mediated cell-killing effector functions with potential applications in pathologic settings such as tumors and acute infections where protease activity is abundant. 相似文献
7.
We report a chimeric monoclonal antibody (mAb) directed to a neo-epitope that is exposed in the IgG lower hinge following proteolytic cleavage. The mAb, designated 2095–2, displays specificity for IdeS-generated F(ab’) 2 fragments, but not for full-length IgG or for closely-related F(ab’) 2 fragments generated with other proteases. A critical component of the specificity is provided by the C-terminal amino acid of the epitope corresponding to gly-236 in the IgG1 (also IgG4) hinge. By its ability to bind to IdeS-cleaved anti-CD20 mAb, mAb 2095–2 fully restored antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) against WIL2-S cells to the otherwise inactive anti-CD20 IgG1 F(ab’) 2 fragment. Similarly, 2095–2 reinstated ADCC against MDA-MB-231 cells to an anti-CD142 IgG1 F(ab’) 2 fragment. mAb 2095–2 was also capable of eliciting both CDC and ADCC to IgG4 F(ab’) 2 fragments, an IgG subclass that has weaker ADCC and CDC when intact relative to intact IgG1. The in vitro cell-based efficacy of 2095–2 was extended to the in vivo setting using platelets as a cell clearance surrogate. In a canine model, the co-administration of 2095–2 together with IdeS-generated, platelet-targeting anti-CD41/61 F(ab’) 2 fragment not only restored platelet clearance, but did so at a rate and extent of clearance that exceeded that of intact anti-CD41/61 IgG at comparable concentrations. To further explore this unexpected amplification effect, we conducted a rat study in which 2095–2 was administered at a series of doses in combination with a fixed dose of anti-CD41/61 F(ab’) 2 fragments. Again, the combination, at ratios as low as 1:10 (w/w) 2095–2 to F(ab’) 2, proved more effective than the anti-CD41/61 IgG1 alone. These findings suggest a novel mechanism for enhancing antibody-mediated cell-killing effector functions with potential applications in pathologic settings such as tumors and acute infections where protease activity is abundant. 相似文献
8.
Tremendous knowledge has been gained in the understanding of various modifications of IgG antibodies, driven mainly by the fact that antibodies are one of the most important groups of therapeutic molecules and because of the development of advanced analytical techniques. Recombinant monoclonal antibody (mAb) therapeutics expressed in mammalian cell lines and endogenous IgG molecules secreted by B cells in the human body share some modifications, but each have some unique modifications. Modifications that are common to recombinant mAb and endogenous IgG molecules are considered to pose a lower risk of immunogenicity. On the other hand, modifications that are unique to recombinant mAbs could potentially pose higher risk. The focus of this review is the comparison of frequently observed modifications of recombinant monoclonal antibodies to those of endogenous IgG molecules. 相似文献
9.
Novel biotherapeutic glycoproteins, like recombinant monoclonal antibodies (mAbs) are widely used for the treatment of numerous diseases. The N-glycans attached to the constant region of an antibody have been demonstrated to be crucial for the biological efficacy. Even minor modifications of the N-glycan structure can dictate the potency of IgG effector functions such as the antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC). Here, we present the development of a glycoengineered CHO-K1 host cell line (HCL), stably expressing β1,4-N-Acetylglucoseaminyltransferase III (GnT-III) and α-mannosidase II (Man-II), for the expression of a-fucosylated antibodies with enhanced Fc-mediated effector function. Glycoengineered HCLs were generated in a two-step strategy, starting with generating parental HCLs by stable transfection of CHO-K1 cells with GnT-III and Man-II. In a second step, parental HCLs were stably transfected a second time with these two transgenes to increase their copy number in the genetic background. Generated glycoengineered CHO-K1 cell lines expressing two different mAbs deliver antibody products with a content of more than 60% a-fucosylated glycans. In-depth analysis of the N-glycan structure revealed that the majority of the Fc-attached glycans of the obtained mAbs were of complex bisected type. Furthermore, we showed the efficient use of FcγRIIIa affinity chromatography as a novel method for the fast assessment of the mAbs a-fucosylation level. By testing different cultivation conditions for the pre-glycoengineered recombinant CHO-K1 clones, we identified key components essential for the production of a-fucosylated mAbs. The prevalent effect could be attributed to the trace element manganese, which leads to a strong increase of a-fucosylated complex- and hybrid-type glycans. In conclusion, the novel pre-glycoengineered CHO-K1 HCL can be used for the production of antibodies with high ratios of a-fucosylated Fc-attached N-glycans. Application of our newly developed FcγRIIIa affinity chromatography method during cell line development and use of optimized cultivation conditions can ultimately support the efficient development of a-fucosylated mAbs. 相似文献
10.
Accumulating data are showing that the humoral immune response against tumors could favor tumor progression. However, no
B lymphocyte pathology has been reported in cancer. Using anti-IgM Ab we nonspecifically depleted B cells in tumor-bearing
mice, a treatment that resulted in significant reduction of tumor burden. We analyzed the B lymphocyte phenotype of abdominal
lymph nodes and peripheral blood from advanced colon cancer patients by flow cytometry, and compared the B cell phenotype
with that found in samples from normal donors. In both lymph nodes and peripheral blood of cancer patients, abnormal populations
of B lymphocytes appeared that express an increased CD21 and/or sTn antigens on their cell surface. All patients showed a
reduction of CD19 + cells. In a limited clinical test, we analyzed the effects of a partial B cell depletion with Rituximab. The treated patients
did not develop any side-effects; the CD21-hyperpositive lymphocytes were reduced, but the proportion of sTn-positive lymphocytes
remained unaffected. Apparent reduction of the tumor burden was reported in 50% of the patients when the treatment was ended.
Received: 13 May 1999 / Accepted: 4 August 1999 相似文献
11.
IntroductionSpondyloarthritis (SpA), an interrelated group of rheumatic diseases, has been suggested to be triggered by bacterial infections prior to the development of an autoimmune response that causes inflammation of the spinal and peripheral joints. Because human heat shock protein 60 (HSP60), recently renamed HSPD1, and bacterial HSP60 are highly homologous, immunological cross-reactivity has been proposed as a mechanism of disease initiation. However, previous investigations of the humoral immune response to HSP60 in SpA patients have lacked determination of immunoglobulin G (IgG) subclasses and patient follow-up. In this study, we have focused on these parameters in a cohort of axial SpA patients with a well-established set of clinical characteristics, including MRI changes and human leukocyte antigen B27. MethodsIgG subclass antibodies (IgG1, IgG2, IgG3 and IgG4) against recombinant HSP60 of three reactive arthritis-related bacteria; human HSP60; and the microorganisms Chlamydia trachomatis and C. pneumoniae were determined by ELISA. Serum samples collected from 2004 to 2006 and in 2010 and 2011 from 39 axial SpA patients were analyzed and compared with samples from 39 healthy controls. The Mann-Whitney U test and Wilcoxon matched pairs test were used to compare the antibody levels in different and paired groups, respectively. P < 0.01 was considered significant. The Spearman nonparametric correlation was used to determine correlation between antibody levels and between antibody levels and the disease parameters. ResultsElevated levels of IgG1 and IgG3 to human HSP60 and IgG1 to HSP60 of Salmonella enterica Enteritidis were observed in SpA patients compared with healthy controls at both time points. The antibody levels were almost constant over time for IgG1, whereas high levels of IgG3 to human HSP60 tended to decrease over time. The antibody response to human HSP60 was predominantly of the IgG3 subclass, and patients with high levels of IgG3 to this antigen had low levels of IgG1, indicating an inverse association. Different IgG subclasses were produced against bacterial and human HSP60 in the same serum sample, IgG1 and IgG3, respectively, indicating that there was no cross-reaction. ConclusionsA significant association was observed between axial SpA and the presence of IgG1/IgG3 antibodies to human HSP60 and of IgG1 to S. enterica Enteritidis and C. trachomatis. Generation of antibodies to human HSP60 was independent of the presence of antibodies to bacterial HSP60. No association was observed between clinical and MRI changes with antibodies over time. Altogether, such antibodies do not reflect the disease activity in these patients.This study has been approved by the Regional Research Ethics Committee of Central Jutland, Denmark. Trial registration numbers: 20050046 and 20100083 相似文献
12.
The cross-reactivity of five different rabbit polyclonal antibodies to human IgG and IgG subclass (IgG1, IgG2, IgG3, and IgG4)
was determined by competitive ELISA with nine nonhuman primate species including five apes, three Old World monkeys, and one
New World monkey. As similar to those previously reported, the reactivity of anti-human IgG antibody with plasma from different
primate species was closely related with phylogenic distance from human. Every anti-human IgG subclass antibody showed low
cross-reactivity with plasma from Old World and New World monkeys. The plasma from all apes except for gibbons ( Hylobates spp.) showed 60 to 100% of cross-reactivity with anti-human IgG2 and IgG3 antibodies. On the other hand, chimpanzee ( Pan troglodytes and Pan paniscus) and orangutan ( Pongo pygmaeus) plasma showed 100% cross-reactivity with anti-human IgG1 antibody, but gorilla ( Gorilla gorilla) and gibbon plasma showed no cross-reactivity. The chimpanzee and gorilla plasma cross-reacted with anti-human IgG4 antibody
at different reactivity, 100% in chimpanzee and 50% in gorilla, but no cross-reactivity was observed in orangutan and gibbon
plasma. These results suggest the possibilities that the divergence of “human-type” IgG subclasses might occur at the time
of divergence of Homo sapience from Hylobatidae, and that the molecular evolution of IgG1 as well as IgG4 is different from that of IgG2 and IgG3 in great apes, this is
probably caused by different in development of immune function in apes during the course of evolution. 相似文献
13.
A small fraction of human milk IgG antibodies is shown to possess polysaccharide kinase activity for the first time. Unlike all known kinases, IgG antibodies can use as phosphate donor not only [gamma-(32)P]ATP, but also directly [(32)P]ortho-phosphate. Human milk IgGs therefore possess high affinity to ortho-phosphate (K(m) = 9-71 microM), which is a more effective substrate than ATP. IgG antibodies possessing polysaccharide kinase activity are yet another example of natural abzymes possessing not hydrolytic, but synthetic enzymatic activity. 相似文献
14.
BACKGROUND: Duodenal ulcer in adults chronically infected with Helicobacter pylori is associated with a polarized T-helper cell type 1 (Th1) mucosal immune response, with a predominantly immunoglobulin G2 (IgG2) systemic specific response. It has been suggested that children colonized by H. pylori also produce a mucosal Th1 response, but there are few studies that have measured IgG subclass responses in children with duodenal ulcer. MATERIALS AND METHODS: Seven children with endoscopically proven duodenal ulcer and H. pylori infection and 18 children with biopsy proven H. pylori infection but no duodenal ulcer had relative concentrations of IgG subclass responses (IgGsc) against H. pylori antigens measured by ELISA. Eighteen IgG seropositive adults acted as controls. The range of antigens recognised by IgG1 and IgG2 subclass responses were investigated by Western blots. RESULTS: There were no differences in mean IgGsc responses between children with or without duodenal ulcer. Adults produced an IgG2 predominant response. Western blots showed no qualitative differences in antigens recognised by IgG1 or IgG2. CONCLUSION: Children with duodenal ulcer, in contrast to adults, produce an IgGsc response consistent with a mucosal Th2 response to H. pylori regardless of the presence of duodenal ulceration. This suggests that disease causation amongst children with H. pylori associated duodenal ulceration may not be dependant upon a mucosal Th1 biased response. 相似文献
15.
N‐linked Fc glycosylation of IgG1 monoclonal antibody therapeutics can directly influence their mechanism of action by impacting IgG effector functions such as antibody‐dependent cell‐mediated cytotoxicity (ADCC) and complement‐dependent cytotoxicity (CDC). Therefore, identification and detailed characterization of Fc glycan critical quality attributes (CQAs) provides important information for process design and control. A two‐step approach was used to identify and characterize the Fc glycan CQAs for an IgG1 Mab with effector function. First, single factor experiments were performed to identify glycan critical quality attributes that influence ADCC and CDC activities. Next, a full‐factorial design of experiment (DOE) to characterize the possible interactions and relative effect of these three glycan species on ADCC, CDC, and FcγRIIIa binding was employed. Additionally, the DOE data were used to develop models to predict ADCC, CDC, and FcγRIIIa binding of a given configuration of the three glycan species for this IgG1 molecule. The results demonstrate that for ADCC, afuco mono/bi has the largest effect, followed by HM and β‐gal, while FcγRIIIa binding is affected by afuco mono/bi and β‐gal. CDC, in contrast, is affected by β‐gal only. This type of glycan characterization and modeling can provide valuable information for development, manufacturing support and process improvements for IgG products that require effector function for efficacy. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1181–1192, 2016 相似文献
16.
Glycosylation in the Fc region of antibodies has been shown to play an important role in antibody function. In the current study, glycosylation of human monoclonal antibodies was metabolically modulated using a potent alpha-mannosidase I inhibitor, kifunensine, resulting in the production of antibodies with oligomannose-type N-glycans. Growing Chinese hamster ovary cells for 11 days in batch culture with a single treatment of kifunensine was sufficient to elicit this effect without any significant impact on cell viability or antibody production. Antibodies expressed in the presence of kifunensine at a concentration as low as 60 ng/mL contained mainly oligomannose-type glycans and demonstrated increased ADCC activity and affinity for FcgammaRIIIA, but reduced C1q binding. Although the kifunensine-mediated shift to oligomannose-type glycans could, in theory, result in rapid clearance of the antibody through increased mannose receptor binding, the serum levels of antibody in mice were not significantly altered up to 168 h following injection. The use of kifunensine provides a simple and rapid method for the production of antibodies with increased ADCC without the time-consuming need to re-engineer either the antibody molecule or the host cell line. 相似文献
17.
金黄色葡萄球菌蛋白A(Staphylococcal protein A,SpA)和链球菌蛋白G(Streptococcal protein G,SpG)是细菌产生的特异结合宿主抗体的细菌免疫球蛋白结合蛋白(Immunoglobulin(Ig)-binding proteins,IBPs)的代表分子。SpA和SpG均包含由多个序列高度同源的结合结构域重复组成的抗体结合区,各单结构域都具有完全的结合IgG的功能。为研究这些单结构域随机组合能否产生具有新结合特性的组合分子,将SpA的A、B、C、D、E以及SpG的B2、B3共7个单结合结构域随机组合构建成噬菌体展示文库后,应用人IgG1、2、3、4为诱饵分子对该文库进行4轮筛选,获得了SpA天然分子中不存在的单结构域排列组合分子D-C。在筛选过程中,阴性对照噬菌体的逐渐减少、展示两个结构域以上的噬菌体比例不断增多,尤其是D-C组合的选择性富集和其随机连接肽的严格筛选都显示了筛选的有效性和D-C组合的重要性。噬菌体ELISA进一步证实D-C与人IgG四亚类的结合能力远强于天然SpA分子。该研究应用分子进化技术首次获得了一种与人IgG四亚类具有结合优势的新型组合分子D-C,不仅可为IgG纯化、制备、检测等方面的应用提供新的候选分子,还为细菌IBP结构功能的进一步研究提供新的手段。 相似文献
19.
Therapeutic non-hinge-modified IgG4 molecules form bispecific hybrid antibodies with endogenous human IgG4 molecules via a process known as Fab-arm exchange (or called half molecule exchange). Analysis of the bispecific hybrids is critical for studies of half molecule exchange. A number of analytical methods are available to detect IgG4 hybrids. These methods mostly necessitate labeling or alteration of the model IgG4 molecules, or rely on time-consuming immunoassays and mass spectrometry. In addition, these methods do not allow isolation of hybrid antibodies. We report here the only analytical method to date that relies on chromatographic separation for detection of hybrids formed from intact antibodies in their native forms using pembrolizumab as an example. This method employs a mixed-mode chromatography using a Sepax Zenix SEC-300 column to separate a bispecific hybrid from the parental antibodies. The simultaneous quantitative monitoring of the newly formed hybrid and parental antibodies was achieved by UV absorption and/or protein fluorescence. The bispecific hybrid antibodies were purified with the same method for further biochemical characterization. The method has allowed monitoring of half molecule exchange between a human serum IgG4 and a tested IgG4 molecule, and has been implemented for the analysis of in vitro as well as in vivo samples. 相似文献
20.
Osteosarcoma is the commonest malignant tumour of the bones. The presence of micrometastases at the time of primary diagnosis
is associated with poor prognosis. Despite developments in surgery and aggressive chemotherapy, about 50% of the patients
still succumb to the disease. Thus, there is a need to develop alternative treatment modalities. One such strategy is to use
antibodies with improved effector functions. The two monoclonal antibodies, TP-1 and TP-3, recognize a tumour-associated antigen
on human osteosarcoma cells. In the present study, we describe the cloning of the TP-1 variable genes, and the production
of complete chimeric mouse/human monoclonal antibodies. Constructs containing the constant genes from human IgG1, IgG3 or
a mutant IgG3 with a shortened hinge region, called m15, were expressed in the mouse myeloma cell line, NS0. The m15 mutant
has been shown to be very potent in triggering complement-mediated lysis. Our goal was to investigate whether this mutant
could overcome the complement protection on human osteosarcoma cells, which is generally present on all human cells. We found
that the target cells expressed several membrane-bound complement inhibitors, and that masking of these inhibitors rendered
the cells sensitive to lysis. The m15 mutant exhibited greater lytic activity than both IgG3 and IgG1, although it could not
cause extensive killing of the target cells alone.
Received: 21 January 1999 / Accepted: 3 June 1999 相似文献
|