共查询到20条相似文献,搜索用时 0 毫秒
1.
Bradley M. Coleman Rebecca M. Nisbet Sen Han Roberto Cappai Danny M. Hatters Andrew F. Hill 《Biochemical and biophysical research communications》2009,380(3):564-1308
Prion diseases are associated with the misfolding of the host-encoded cellular prion protein (PrPC) into a disease associated form (PrPSc). Recombinant PrP can be refolded into either an α-helical rich conformation (α-PrP) resembling PrPC or a β-sheet rich, protease resistant form similar to PrPSc. Here, we generated tetracysteine tagged recombinant PrP, folded this into α- or β-PrP and determined the levels of FlAsH fluorescence. Insertion of the tetracysteine tag at three different sites within the 91-111 epitope readily distinguished β-PrP from α-PrP upon FlAsH labeling. Labelling of tetracysteine tagged PrP in the α-helical form showed minimal fluorescence, whereas labeling of tagged PrP in the β-sheet form showed high fluorescence indicating that this region is exposed upon conversion. This highlights a region of PrP that can be implicated in the development of diagnostics and is a novel, protease free mechanism for distinguishing PrPSc from PrPC. This technique may also be applied to any protein that undergoes conformational change and/or misfolding such as those involved in other neurodegenerative disorders including Alzheimer’s, Huntington’s and Parkinson’s diseases. 相似文献
2.
Methods for studying prion protein (PrP) metabolism and the formation of protease-resistant PrP in cell culture and cell-free systems 总被引:2,自引:0,他引:2
Caughey B Raymond GJ Priola SA Kocisko DA Race RE Bessen RA Lansbury PT Chesebro B 《Molecular biotechnology》1999,13(1):45-55
Transmissible spongiform encephalopathies (TSE) or prion diseases result in aberrant metabolism of prion protein (PrP) and
the accumulation of a protease-resistant, insoluble, and possibly infectious form of PrP, PrP-res. Studies of PrP biosynthesis,
intracellular trafficking, and degradation has been studied in a variety of tissue culture cells. Pulse-chase metabolic labeling
studies in scrapie-infected cells indicated that PrP-res is made posttranslationally from an apparently normal protease sensitive
precursor, PrP-sen, after the latter reaches the cell surface. Cell-free reactions have provided evidence that PrP-res itself
can induce the conversion of PrP-sen to PrP-res in a highly species- and strain-specific manner. These studies have shed light
on the mechanism of PrP-res formation and suggest molecular bases for TSE species barrier effects and agent strain propagation. 相似文献
3.
4.
The progression of the transmissible spongiform encephalopathies (TSEs) is characterized in part by accumulation of a proteinase K-resistant form of the prion protein, which has been converted from the endogenous, proteinase K-sensitive form. This conversion reaction provides a target for possible anti-TSE strategies. We have adapted a cell-free conversion reaction to a high-throughput, solid-phase format that can be used to screen possible therapeutic compounds for inhibitory activity or to illuminate inhibition and conversion mechanisms. The solid-phase assay was compatible with reactions performed under a variety of conditions. Using this assay, we report that phthalocyanine tetrasulfonate, a known modulator of conversion, inhibited conversion by interfering with binding between the protease-sensitive and the protease-resistant forms of the prion protein. A biotinylated form of the protease-sensitive prion protein was successfully converted to the protease-resistant isoform in the solid-phase assay, indicating that biotinylation provides a nonisotopic labeling strategy for large-scale screens. 相似文献
5.
Griffoni C Toni M Spisni E Bianco M Santi S Riccio M Tomasi V 《Cell biochemistry and biophysics》2003,38(3):287-304
Studies on the transmission from man to animals of Creutzfeld-Jacob disease (CJD) led Prusiner to identify a proteinaceous
infectious particle lacking nucleic acid, which was called prion. The identification of the infectious prion (PrPsc) then
led to the discovery of the normal cellular counterpart (PrPc). One of the still enigmatic aspects regarding prion diseases
is actually how, where, and when the transformation PrPc/PrPsc is occurring, this being due to the result of a large extent
to the fact that so far most studies have been dedicated to the formation and transmission of PrPsc, whereas the understanding
of physiologic roles of PrPc are in their infancy. In this review, we hope to identify the most reliable hypotheses for future
experiments on PrPc. This is relevant not only for the understanding of PrPc functions but also to unravel the enigmatic nature
of PrPc/PrPsc conversion. 相似文献
6.
The present paper aims at exploring the elongation of the PrP106-126 fibril under acid environments through molecular dynamics simulation. It shows that influenced by the edge strands of the fibril, single PrP106-126 peptide forms beta-sheet and becomes a new element of the fibril. Under acidic condition, single PrP106-126 fragment presents a much larger variety of conformations than it does under neural condition. However, acidic condition does not largely affect the stability of the PrP106-126 fibril. Consequently, the speed of the fibril elongation can be dramatically increased by lowering the pH value of the solution. The pH values are adjusted by either altering the protonation state of the residues or adding hydronium ions or hydroxyl ions. 相似文献
7.
Kornblatt JA Marchal S Rezaei H Kornblatt MJ Balny C Lange R Debey MP Hui Bon Hoa G Marden MC Grosclaude J 《Biochemical and biophysical research communications》2003,305(3):518-522
The cellular prion protein (PrP(c)) forms complexes with plasminogen. Here, we show that the PrP(c) in this complex is cleaved to yield fragments of PrP(c). The cleavage is accelerated by plasmin but does not appear to be dependent on it. 相似文献
8.
Sakudo A Wu G Onodera T Ikuta K 《Biochemical and biophysical research communications》2008,365(1):164-169
An abnormal isoform of prion protein (PrPSc), which is composed of the same amino acids as cellular PrP (PrPC) and has proteinase K (PK)-resistance, hypothetically converts PrPC into PrPSc. To investigate the region important for PrPSc production, we examined the levels of PrPSc in PrP gene-deficient cells (HpL3-4) expressing PrPC deleted of various regions including the octapeptide repeat region (OR) or hydrophobic region (HR). After Chandler or Obihiro prion infection, PrPSc was produced in HpL3-4 cells expressing wild-type PrPC or PrPC deleted of HR at an early stage and further reduced to below the detectable level, whereas cells expressing PrPC deleted of OR showed no PrPSc production. The results suggest that OR of PrPC is required for the early step of efficient PrPSc production. 相似文献
9.
Purification and properties of the cellular prion protein from Syrian hamster brain. 总被引:6,自引:0,他引:6 下载免费PDF全文
K. M. Pan N. Stahl S. B. Prusiner 《Protein science : a publication of the Protein Society》1992,1(10):1343-1352
The cellular prion protein (PrPC) is encoded by a chromosomal gene, and its scrapie isoform (PrPSc) features in all aspects of the prion diseases. Prior to the studies reported here, purification of PrPC has only been accomplished using immunoaffinity chromatography yielding small amounts of protein. Brain homogenates contain two PrPC forms designated PrPC-I and -II. These proteins were purified from a microsomal fraction by detergent extraction and separated by immobilized Cu2+ ion affinity chromatography. PrPC-II appears to be generated from PrPC-I by limited proteolysis of the N-terminus. Fractions enriched for PrPC-I were purified further by cation-exchange chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Greater than 90% of the final product migrated as a broad band of M(r) 33-35 kDa as judged by silver staining after SDS-PAGE. Digestion of PrPC-I with peptide-N-glycosidase (PNGase) compressed the band and shifted its mobility giving an M(r) of 27 kDa. The protocol described should be amenable to large-scale preparation of PrPC, enabling physical comparisons of PrPC and PrPSc. 相似文献
10.
Yamazaki K Yamada E Kanaji Y Yanagisawa T Kato Y Sato K Takano K Sakasegawa Y Kaneko K 《Biochemical and biophysical research communications》2003,305(4):1034-1039
The cellular isoform of prion protein (PrP(C)) is a cell-surface glycosyl-phosphatidylinositol-anchored protein which is ubiquitously expressed on the cell membrane. It may function as a cell receptor or as a cell adhesion molecule. Thyroid follicles, obtained from patients with Graves' disease at thyroidectomy, were cultured in F-12/RPMI-1640 medium supplemented with 0.5% fetal bovine serum and bovine thyroid stimulating hormone (bTSH). Northern blot analyses revealed that bTSH increased the steady-state expression levels of PrP mRNA in a time- and dose-dependent manner. This increase was reproduced by dibutyryl-cAMP and 12-decanoylphorbol-13-acetate. The mRNA expression was greater in thyroid follicles in suspension culture than in thyrocytes cultured in a monolayer. These findings suggest that TSH stimulates PrP mRNA expression in thyrocytes through the protein kinase A and C pathways. The greater mRNA expression in thyroid follicles than in monolayer cells suggests that PrP(C) may be involved in structure formation or maintenance of thyroid follicles. 相似文献
11.
The function of PrP(C), the cellular prion protein (PrP), is still unknown. Like other glycophosphatidylinositol-anchored proteins, PrP resides on Triton-insoluble, cholesterol-rich membranous microdomains, termed rafts. We have recently shown that the activity and subcellular localization of the neuronal isoform of nitric oxide synthase (nNOS) are impaired in adult PrP(0/0) mice as well as in scrapie-infected mice. In this study, we sought to determine whether PrP and nNOS are part of the same functional complex and, if so, to identify additional components of such a complex. To this aim, we looked for proteins that coimmunoprecipitated with PrP in the presence of detergents either that completely dissociate rafts, to identify stronger interactions, or that preserve the raft structure, to identify weaker interactions. Using this detergent-dependent immunoprecipitation protocol we found that PrP interacts strongly with dystroglycan, a transmembrane protein that is the core of the dystrophin-glycoprotein complex (DGC). Additional results suggest that PrP also interacts with additional members of the DGC, including nNOS. PrP coprecipitated only with established presynaptic proteins, consistent with recent findings suggesting that PrP is a presynaptic protein. 相似文献
12.
《Bioorganic & medicinal chemistry》2014,22(6):1960-1972
Purpose: Previous studies showed that lowering PrPC concomitantly reduced PrPSc in the brains of mice inoculated with prions. We aimed to develop assays that measure PrPC on the surface of human T98G glioblastoma and IMR32 neuroblastoma cells. Using these assays, we sought to identify chemical hits, confirmed hits, and scaffolds that potently lowered PrPC levels in human brains cells, without lethality, and that could achieve drug concentrations in the brain after oral or intraperitoneal dosing in mice. Methods: We utilized HTS ELISA assays to identify small molecules that lower PrPC levels by ⩾30% on the cell surface of human glioblastoma (T98G) and neuroblastoma (IMR32) cells. Results: From 44,578 diverse chemical compounds tested, 138 hits were identified by single point confirmation (SPC) representing 7 chemical scaffolds in T98G cells, and 114 SPC hits representing 6 scaffolds found in IMR32 cells. When the confirmed SPC hits were combined with structurally related analogs, >300 compounds (representing 6 distinct chemical scaffolds) were tested for dose–response (EC50) in both cell lines, only studies in T98G cells identified compounds that reduced PrPC without killing the cells. EC50 values from 32 hits ranged from 65 nM to 4.1 μM. Twenty-eight were evaluated in vivo in pharmacokinetic studies after a single 10 mg/kg oral or intraperitoneal dose in mice. Our results showed brain concentrations as high as 16.2 μM, but only after intraperitoneal dosing. Conclusions: Our studies identified leads for future studies to determine which compounds might lower PrPC levels in rodent brain, and provide the basis of a therapeutic for fatal disorders caused by PrP prions. 相似文献
13.
14.
Giese A Levin J Bertsch U Kretzschmar H 《Biochemical and biophysical research communications》2004,320(4):1240-1246
It is well established that the prion protein (PrP) contains metal ion binding sites with specificity for copper. Changes in copper levels have been suggested to influence incubation time in experimental prion disease. Therefore, we studied the effect of heavy metal ions (Cu(2+), Mn(2+), Ni(2+), Co(2+), and Zn(2+)) in vitro in a model system that utilizes changes in the concentration of SDS to induce structural conversion and aggregation of recombinant PrP. To quantify and characterize PrP aggregates, we used fluorescently labelled PrP and cross-correlation analysis as well as scanning for intensely fluorescent targets in a confocal single molecule detection system. We found a specific strong pro-aggregatory effect of Mn(2+) at low micromolar concentrations that could be blocked by nanomolar concentration of Cu(2+). These findings suggest that metal ions such as copper and manganese may also affect PrP conversion in vivo. 相似文献
15.
It was shown previously that truncated molecules of prion protein can be found in brains of patients with some types of transmissible spongiform encephalopathy. One such molecule, PrP226*, is a fragment of prion protein, truncated at Tyr226. It was found to be present in aggregates, from which it can be released using chaotropic salts. In this study we investigated the distribution of PrP226* in Creutzfeldt–Jakob disease affected human brain, employing the mAb V5B2, specifically recognizing this fragment. The results show that PrP226* is not evenly distributed among different regions of human brain. Among brain regions analyzed, the fragment was found most likely to be accumulated in the cerebellum. Its distribution correlates with the distribution of PrPSc. 相似文献
16.
Hachiya NS Watanabe K Sakasegawa Y Kaneko K 《Biochemical and biophysical research communications》2004,313(3):818-823
By utilizing double-labeled fluorescent cellular prion protein (PrPC), we revealed that the NH2-terminal and COOH-terminal PrPC fragments exhibit distinct distribution patterns in mouse neuroblastoma neuro2a (N2a) cells and HpL3-4, a hippocampal cell line established from prnp gene-ablated mice [Nature 400 (1999) 225]. Of note, the NH2-terminal PrPC fragment, which predominantly localized in the intracellular compartments, congregated in the cytosol after the treatment with a microtubule depolymerizer (nocodazole). Truncated PrPC with the amino acid residues 1-121, 1-111, and 1-91 in mouse (Mo) PrP exhibited a proper distribution profile, whereas those with amino acid residues 1-52 and 1-33 did not. These data indicate the microtubules-associated intracellular localization of the NH2-terminal PrPC fragment containing at least the 1-91 amino acid residues. 相似文献
17.
Familial prion disorders are believed to result from spontaneous conversion of mutant prion protein (PrPM) to the pathogenic isoform (PrPSc). While most familial cases are heterozygous and thus express the normal (PrPC) and mutant alleles of PrP, the role of PrPC in the pathogenic process is unclear. Plaques from affected cases reveal a heterogeneous picture; in some cases only PrPM is detected, whereas in others both PrPC and PrPM are transformed to PrPSc. To understand if the coaggregation of PrPC is governed by PrP mutations or is a consequence of the cellular compartment of PrPM aggregation, we coexpressed PrPM and PrPC in neuroblastoma cells, the latter tagged with green fluorescent protein (PrPC-GFP) for differentiation. Two PrPM forms (PrP231T, PrP217R/231T) that aggregate spontaneously in the endoplasmic reticulum (ER) were generated for this analysis. We report that PrPC-GFP aggregates when coexpressed with PrP231T or PrP217R/231T, regardless of sequence homology between the interacting forms. Furthermore, intracellular aggregates of PrP231T induce the accumulation of a C-terminal fragment of PrP, most likely derived from a potentially neurotoxic transmembrane form of PrP (CtmPrP) in the ER. These findings have implications for prion pathogenesis in familial prion disorders, especially in cases where transport of PrPM from the ER is blocked by the cellular quality control. 相似文献
18.
HAN Jun ZHANG Jin YAO Hailan WANG Xiaofan LI Feng CHEN Lan GAO Chen GAO Jianmei NIE Kai ZHOU Wei DONG Xiaoping 《中国科学C辑(英文版)》2006,49(5)
Microtubule-associated protein tau is considered to play roles in many neurodegenerative diseases including some transmissible spongiform encephalopathies. To address the possible molecular linkage of prion protein (PrP) and tau, a GST-fusion segment of human tau covering the three-repeat region and various PrP segments was used in the tests of GST pull-down and immunoprecipitation. We found tau protein interacted with various style prion proteins such as native prion protein (PrPC) or protease-resistant isoform (prpSc). Co-localization signals of tau and PrP were found in the CHO cell tranfected with both PrP and tau gene. The domain of interaction with tau was located at N-terminal of PrP (residues 23 to 91). The evidence of molecular interactions between PrP and tau protein highlights a potential role of tau in the biological function of PrP and the pathogenesis of TSEs. 相似文献
19.
THERPA: A small molecule database related to prion protein regulation and prion diseases progression
Prion diseases are fatal neurodegenerative disorders that affect humans and animals. Although various small molecules have been evaluated for application in the treatment of prion diseases, none have been shown to be efficacious. Expanding our knowledge of these molecules is important for understanding of the complex mechanisms of prion diseases. To improve access to the scattered information on small molecules related to prion diseases, we built a database of therapeutic molecules associated with prion diseases (THERPA, therpa.pythonanywhere.com). THERPA includes 119 small molecules and their 283 relationships with prion diseases. THERPA is an interactive visual database and useful for improving search efficiency which can help researchers identify intrinsic small molecules that can be used for developing therapeutics for prion diseases. 相似文献
20.
Jun Han Jin Zhang Hailan Yao Xiaofan Wang Feng Li Lan Chen Chen Gao Jianmei Gao Kai Nie Wei Zhou Xiaoping Dong 《中国科学:生命科学英文版》2006,49(5):473-479
Microtubule-associated protein tau is considered to play roles in many neurodegenera-tive diseases including some transmissible spongiform encephalopathies.To address the possible molecular linkage of prion protein(PrP) and tau,a GST-fusion segment of human tau covering the three-repeat region and various PrP segments was used in the tests of GST pull-down and immuno-precipitation.We found tau protein interacted with various style prion proteins such as native prion protein(PrPC) or protease-resistant isoform(PrPSc) .Co-localization signals of tau and PrP were found in the CHO cell tranfected with both PrP and tau gene.The domain of interaction with tau was located at N-terminal of PrP(residues 23 to 91) .The evidence of molecular interactions between PrP and tau protein highlights a potential role of tau in the biological function of PrP and the pathogenesis of TSEs. 相似文献