首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
Cysteine-conjugated antibody-drug conjugates (ADCs) are manufactured using controlled partial reduction and conjugation chemistry with drug payloads that typically occur in intervals of 0, 2, 4, 6, and 8. Control of heterogeneity is of particular importance to the quality of ADC product because drug loading and distribution can affect the safety and efficacy of the ADC. Liquid chromatography ultra-violet (LC-UV)-based methods can be used to acquire the drug distribution profiles of cysteine-conjugated ADCs when analyzed using hydrophobic interaction chromatography (HIC). However, alternative analysis techniques are often required for structural identification when conjugated drugs do not possess discrete ultra-violet absorbance properties for precise assessment of the drug-to-antibody ratio (DAR). In this study, multidimensional chromatography was used as an efficient method for combining non-compatible techniques, such as HIC, with analysis by mass spectrometry (LC/LC/QTOF-MS) for rapid on-line structural elucidation of species observed in HIC distribution profiles of cysteine-conjugated ADCs. The methodology was tested using an IgG1 mAb modified by cysteine conjugation with a non-toxic drug mimic. Structural elucidation of peaks observed in the HIC analysis (1st dimension) were successfully identified based on their unique sub-unit masses via mass spectrometry techniques once dissociation occurred under denaturing reversed phase conditions (2nd dimension). Upon identification, the DAR values were determined to be 2.83, 4.44, and 5.97 for 3 drug load levels (low-, medium-, and high-loaded ADC batches), respectively, based on relative abundance from the LC-UV data. This work demonstrates that multidimensional chromatography coupled with MS, provides an efficient approach for on-line biotherapeutic characterization to ensure ADC product quality.  相似文献   

2.
《MABS-AUSTIN》2013,5(6):1036-1044
Cysteine-conjugated antibody-drug conjugates (ADCs) are manufactured using controlled partial reduction and conjugation chemistry with drug payloads that typically occur in intervals of 0, 2, 4, 6, and 8. Control of heterogeneity is of particular importance to the quality of ADC product because drug loading and distribution can affect the safety and efficacy of the ADC. Liquid chromatography ultra-violet (LC-UV)-based methods can be used to acquire the drug distribution profiles of cysteine-conjugated ADCs when analyzed using hydrophobic interaction chromatography (HIC). However, alternative analysis techniques are often required for structural identification when conjugated drugs do not possess discrete ultra-violet absorbance properties for precise assessment of the drug-to-antibody ratio (DAR). In this study, multidimensional chromatography was used as an efficient method for combining non-compatible techniques, such as HIC, with analysis by mass spectrometry (LC/LC/QTOF-MS) for rapid on-line structural elucidation of species observed in HIC distribution profiles of cysteine-conjugated ADCs. The methodology was tested using an IgG1 mAb modified by cysteine conjugation with a non-toxic drug mimic. Structural elucidation of peaks observed in the HIC analysis (1st dimension) were successfully identified based on their unique sub-unit masses via mass spectrometry techniques once dissociation occurred under denaturing reversed phase conditions (2nd dimension). Upon identification, the DAR values were determined to be 2.83, 4.44, and 5.97 for 3 drug load levels (low-, medium-, and high-loaded ADC batches), respectively, based on relative abundance from the LC-UV data. This work demonstrates that multidimensional chromatography coupled with MS, provides an efficient approach for on-line biotherapeutic characterization to ensure ADC product quality.  相似文献   

3.
Analysis of catecholamines (epinephrine, norepinephrine and dopamine) in plasma and urine is used for diagnosis and treatment of catecholamine-producing tumors. Current analytical techniques for catecholamine quantification are laborious, time-consuming and technically demanding. Our aim was to develop an automated on-line solid phase extraction method coupled to high performance liquid chromatography–tandem mass spectrometry (XLC–MS/MS) for the quantification of free catecholamines in urine. Five microlitre urine equivalent was pre-purified by automated on-line solid phase extraction, using phenylboronic acid complexation. Reversed phase (pentafluorophenylpropyl column) chromatography was applied. Mass spectrometric detection was operated in multiple reaction monitoring mode using a quadrupole tandem mass spectrometer with positive electrospray ionization. Urinary reference intervals were set in 24-h urine collections of 120 healthy subjects. XLC–MS/MS was compared with liquid chromatography with electrochemical detection (HPLC–ECD). Total run-time was 14 min. Intra- and inter-assay analytical variations were <10%. Linearity was excellent (R2 > 0.99). Quantification limits were 1.47 nmol/L, 15.8 nmol/L and 11.7 nmol/L for epinephrine, norepinephrine and dopamine, respectively. XLC–MS/MS correlated well with HPLC–ECD (correlation coefficient >0.98). Reference intervals were 1–10 μmol/mol, 10–50 μmol/mol and 60–225 μmol/mol creatinine for epinephrine, norepinephrine and dopamine, respectively. Advantages of the XLC–MS/MS catecholamine method include its high analytical performance by selective PBA affinity and high specificity and sensitivity by unique MS/MS fragmentation.  相似文献   

4.
An analytical method based on high-performance liquid chromatography (HPLC) combined with fluorescence detection (FL) has been developed for the simultaneous determination of fumonisin B1 (FB1) and its totally hydrolized metabolite aminopentol-1 (AP1) in pig liver. The sample preparation is based on a single solid phase extraction (SPE). o-Phthalaldehyde (OPA) was used for pre-column derivatization before the programmed reversed-phase analysis on phenylhexyl column. The developed method shows good repeatibility for inter- and intra-day precision as well as adequate linearity of calibration curves (r2 was 0.9855 for FB1 and 0.9831 for AP1). Average recoveries from the matrix were 93.6% for FB1 and 95.3% for AP1. The limit of quantification (LOQ) in swine liver was 75 microg/kg for FB1 and 42 microg/kg for AP1.  相似文献   

5.
6.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号