共查询到20条相似文献,搜索用时 15 毫秒
1.
Chronic wasting disease (CWD) is a prion disease of captive and free-ranging deer (Odocoileus spp), elk (Cervus elaphus nelsonii) and moose (Alces alces shirasi). Unlike in most other prion diseases, in CWD prions are shed in urine and feces, which most likely contributes to the horizontal transmission within and between cervid species. To date, CWD ante-mortem diagnosis is only possible by immunohistochemical detection of protease resistant prion protein (PrPSc) in tonsil or recto-anal mucosa-associated lymphoid tissue (RAMALT) biopsies, which requires anesthesia of animals. We report on detection of CWD prions in urine collected from pre-symptomatic deer and in fecal extracts by using real time quaking-induced conversion (RT-QuIC). This assay can be useful for non-invasive pre-symptomatic diagnosis and surveillance of CWD. 相似文献
2.
Kaitlyn Wagner Robyn Pierce Elizabeth Gordon Arielle Hay Avery Lessard Glenn C. Telling Jennifer R. Ballard Julie A. Moreno Mark D. Zabel 《The Journal of biological chemistry》2022,298(4)
Chronic wasting disease (CWD) is an invariably fatal prion disease affecting cervid species worldwide. Prions can manifest as distinct strains that can influence disease pathology and transmission. CWD is profoundly lymphotropic, and most infected cervids likely shed peripheral prions replicated in lymphoid organs. However, CWD is a neurodegenerative disease, and most research on prion strains has focused on neurogenic prions. Thus, a knowledge gap exists comparing neurogenic prions to lymphogenic prions. In this study, we compared prions from the obex and lymph nodes of naturally exposed white-tailed deer to identify potential biochemical strain differences. Here, we report biochemical evidence of strain differences between the brain and lymph node from these animals. Conformational stability assays, glycoform ratio analyses, and immunoreactivity scanning across the structured domain of the prion protein that refolds into the amyloid aggregate of the infectious prion reveal significantly more structural and glycoform variation in lymphogenic prions than neurogenic prions. Surprisingly, we observed greater biochemical differences among neurogenic prions than lymphogenic prions across individuals. We propose that the lymphoreticular system propagates a diverse array of prions from which the brain selects a more restricted pool of prions that may be quite different than those from another individual of the same species. Future work should examine the biological and zoonotic impact of these biochemical differences and examine more cervids from multiple locations to determine if these differences are conserved across species and locations. 相似文献
3.
Erin R. Silbernagel Nicole K. Skelton Cheryl L. Waldner Trent K. Bollinger 《The Journal of wildlife management》2011,75(6):1453-1461
Although it is known that chronic wasting disease (CWD) can be transmitted by both direct animal-to-animal contact and contact with contaminated environments, the relative role of each mechanism in the spread of CWD in free-ranging populations has yet to be defined. We investigated patterns of interaction between mule deer (Odocoileus hemionus) in order to understand how factors such as season and landscape may influence patterns of disease spread in these populations. Using location data from male and female Global Positioning System (GPS)-collared mule deer in 5 study areas located in and around a CWD-endemic zone in southern Saskatchewan, Canada, we quantified close proximity events, or events involving both spatial and temporal overlap of individuals. We defined close proximity events as occurrences in which 2 deer were located <25 m apart at the same point in time. We looked at seasonal variation in the probability of close proximity events, as well as landscape factors associated with these events when compared to areas of shared space use, or spatial overlap alone. Overall probability of an individual GPS-collared deer being located in close proximity to another GPS-collared deer was 0.092 (n = 107). The early gestation (16 Dec–31 Mar) and late gestation (1 Apr–15 May) seasons had the highest probability of close proximity events occurring, and same-sex pairs were more likely to be found in close proximity than between-sex pairs during all seasons aside from the rut (1 Nov–15 Dec). High probability of close proximity events during the gestation seasons agrees with the tendency of mule deer to aggregate into large groups during late winter and suggests that this may be an important time period for CWD transmission to occur. Close proximity events occurred more in cropland and wetland than expected based on availability, whereas close proximity events occurred less than expected in grassland. The opposite was true for spatial overlap between individuals, which occurred more than expected in areas of low elevation and rugged terrain and in grassland or shrub–wood habitats. These results suggest that cropland may be a higher risk habitat for direct and indirect CWD transmission between individuals and that, although coulees and other areas of rugged topography are less likely to be associated with close proximity events, those areas may be more likely to contain environmental contamination in CWD-affected areas due to common use by multiple deer. © 2011 The Wildlife Society. 相似文献
4.
Nicholas J. Haley Davin M. Henderson Sarah Wycoff Joanne Tennant Edward A. Hoover Dan Love 《朊病毒》2018,12(2):93-108
Chronic wasting disease (CWD) is a transmissible spongiform encephalopathy (TSE) affecting members of the cervid species, and is one of the few TSEs with an expanding geographic range. Diagnostic limitations, efficient transmission, and the movement of infected animals are important contributing factors in the ongoing spread of disease. Managing CWD in affected populations has proven difficult, relying on population reduction in the case of wild deer and elk, or quarantine and depopulation in farmed cervids. In the present study, we evaluated the effectiveness of managing endemic CWD in a closed elk herd using antemortem sampling combined with both conventional and experimental diagnostic testing, and selective, targeted culling of infected animals. We hypothesized that the real-time quaking-induced conversion (RT-QuIC) assay, a developing amplification assay, would offer greater detection capabilities over immunohistochemistry (IHC) in the identification of infected animals using recto-anal mucosa associated lymphoid tissue (RAMALT). We further sought to develop a better understanding of CWD epidemiology in elk with various PRNP alleles, and predicted that CWD prevalence would decrease with targeted culling. We found that RT-QuIC identified significantly more CWD-positive animals than IHC using RAMALT tissues (121 vs. 86, respectively, out of 553 unique animals), and that longstanding disease presence was associated with an increasing frequency of less susceptible PRNP alleles. Prevalence of CWD increased significantly over the first two years of the study, implying that refinements in our management strategy are necessary to reduce the prevalence of CWD in this herd. 相似文献
5.
Nucleic acid sequences of the prion gene (PRNP) were examined and genotypes compiled for 76 white-tailed deer from northern Illinois, which previously tested positive for chronic wasting disease (CWD), and 120 negative animals selected to control for geographic location and age. Nine nucleotide polymorphisms, seven silent and two coding, were found in the sampled population. All observed polymorphisms except two of very low frequency were observed in both negative and positive animals, although five polymorphic loci had significantly different distributions of alleles between infected and non-infected individuals. Nucleotide base changes 60C/T, 285A/C, 286G/A, and 555C/T were observed with higher than expected frequencies in CWD negative animals suggesting disease resistance, while 153C/T was observed more than expected in positive animals, suggesting susceptibility. The two coding polymorphisms, 285A/C (Q95H) and 286G/A (G96S), have been described in white-tailed deer populations sampled in Colorado and Wisconsin. Frequency distributions of coding polymorphisms in Wisconsin and Illinois deer populations were different, an unexpected result considering the sampled areas are less than 150 km apart. The total number of polymorphisms per animal, silent or coding, was negatively correlated to disease status. The potential importance of silent polymorphisms (60C/T, 153C/T, 555C/T), either individually or cumulatively, in CWD disease status has not been previously reported. 相似文献
6.
《朊病毒》2013,7(2):153-162
Chronic wasting disease (CWD) is a major concern for the management of North American cervid populations. This fatal prion disease has led to declines in populations which have high CWD prevalence and areas with both high and low infection rates have experienced economic losses in wildlife recreation and fears of potential spill-over into livestock or humans. Research from human and veterinary medicine has established that the prion protein gene (Prnp) encodes the protein responsible for transmissible spongiform encephalopathies (TSEs). Polymorphisms in the Prnp gene can lead to different prion forms that moderate individual susceptibility to and progression of TSE infection. Prnp genes have been sequenced in a number of cervid species including those currently infected by CWD (elk, mule deer, white-tailed deer, moose) and those for which susceptibility is not yet determined (caribou, fallow deer, sika deer). Over thousands of sequences examined, the Prnp gene is remarkably conserved within the family Cervidae; only 16 amino acid polymorphisms have been reported within the 256 amino acid open reading frame in the third exon of the Prnp gene. Some of these polymorphisms have been associated with lower rates of CWD infection and slower progression of clinical CWD. Here we review the body of research on Prnp genetics of North American cervids. Specifically, we focus on known polymorphisms in the Prnp gene, observed genotypic differences in CWD infection rates and clinical progression, mechanisms for genetic TSE resistance related to both the cervid host and the prion agent and potential for natural selection for CWD-resistance. We also identify gaps in our knowledge that require future research. 相似文献
7.
8.
《朊病毒》2013,7(6):449-462
ABSTRACTThe sequence of the prion protein gene (PRNP) affects susceptibility to spongiform encephalopathies, or prion diseases in many species. In white-tailed deer, both coding and non-coding single nucleotide polymorphisms have been identified in this gene that correlate to chronic wasting disease (CWD) susceptibility. Previous studies examined individual nucleotide or amino acid mutations; here we examine all nucleotide polymorphisms and their combined effects on CWD. A 626 bp region of PRNP was examined from 703 free-ranging white-tailed deer. Deer were sampled between 2002 and 2010 by hunter harvest or government culling in Illinois and Wisconsin. Fourteen variable nucleotide positions were identified (4 new and 10 previously reported). We identified 68 diplotypes comprised of 24 predicted haplotypes, with the most common diplotype occurring in 123 individuals. Diplotypes that were found exclusively among positive or negative animals were rare, each occurring in less than 1% of the deer studied. Only one haplotype (C, odds ratio 0.240) and 2 diplotypes (AC and BC, odds ratios of 0.161 and 0.108 respectively) has significant associations with CWD resistance. Each contains mutations (one synonymous nucleotide 555C/T and one nonsynonymous nucleotide 286G/A) at positions reported to be significantly associated with reduced CWD susceptibility. Results suggest that deer populations with higher frequencies of haplotype C or diplotypes AC and BC might have a reduced risk for CWD infection – while populations with lower frequencies may have higher risk for infection. Understanding the genetic basis of CWD has improved our ability to assess herd susceptibility and direct management efforts within CWD infected areas. 相似文献
9.
10.
11.
《朊病毒》2013,7(1):52-61
Scrapie of sheep and chronic wasting disease (CWD) of cervids are transmissible prion diseases. Milk and placenta have been identified as sources of scrapie prions but do not explain horizontal transmission. In contrast, CWD prions have been reported in saliva, urine and feces, which are thought to be responsible for horizontal transmission. While the titers of CWD prions have been measured in feces, levels in saliva or urine are unknown. Because sheep produce ~17 L/day of saliva, and scrapie prions are present in tongue and salivary glands of infected sheep, we asked if scrapie prions are shed in saliva. We inoculated transgenic (Tg) mice expressing ovine prion protein, Tg(OvPrP) mice, with saliva from seven Cheviot sheep with scrapie. Six of seven samples transmitted prions to Tg(OvPrP) mice with titers of -0.5 to 1.7 log ID50 U/ml. Similarly, inoculation of saliva samples from two mule deer with CWD transmitted prions to Tg(ElkPrP) mice with titers of -1.1 to -0.4 log ID50 U/ml. Assuming similar shedding kinetics for salivary prions as those for fecal prions of deer, we estimated the secreted salivary prion dose over a 10-mo period to be as high as 8.4 log ID50 units for sheep and 7.0 log ID50 units for deer. These estimates are similar to 7.9 log ID50 units of fecal CWD prions for deer. Because saliva is mostly swallowed, salivary prions may reinfect tissues of the gastrointestinal tract and contribute to fecal prion shedding. Salivary prions shed into the environment provide an additional mechanism for horizontal prion transmission. 相似文献
12.
Chronic wasting disease (CWD) is a prion disease found in deer, elk and moose in North America and since recently, wild reindeer in Norway. Caribou are at-risk to encounter CWD in areas such as Alberta, Canada, where the disease spreads toward caribou habitats. CWD susceptibility is modulated by species-specific polymorphisms in the prion protein gene (Prnp). We sequenced Prnp of woodland caribou from 9 Albertan populations. In one population (Chinchaga) a significantly higher frequency of the 138N allele linked to reduced CWD susceptibility was observed. These data are relevant for developing CWD management strategies including conservation of threatened caribou populations. 相似文献
13.
Tracy A. Nichols Terry R. Spraker Thomas Gidlewski Bruce Cummings Dana Hill Qingzhong Kong 《朊病毒》2016,10(3):228-250
Chronic wasting disease (CWD), the only known wildlife prion disease, affects deer, elk and moose. The disease is an ongoing and expanding problem in both wild and captive North American cervid populations and is difficult to control in part due to the extreme environmental persistence of prions, which can transmit disease years after initial contamination. The role of exogenous factors in CWD transmission and progression is largely unexplored. In an effort to understand the influence of environmental and dietary constituents on CWD, we collected and analyzed water and soil samples from CWD-negative and positive captive cervid facilities, as well as from wild CWD-endozootic areas. Our analysis revealed that, when compared with CWD-positive sites, CWD-negative sites had a significantly higher concentration of magnesium, and a higher magnesium/copper (Mg/Cu) ratio in the water than that from CWD-positive sites. When cevidized transgenic mice were fed a custom diet devoid of Mg and Cu and drinking water with varied Mg/Cu ratios, we found that higher Mg/Cu ratio resulted in significantly longer survival times after intracerebral CWD inoculation. We also detected reduced levels of inflammatory cytokine gene expression in mice fed a modified diet with a higher Mg/Cu ratio compared to those on a standard rodent diet. These findings indicate a role for dietary Mg and Cu in CWD pathogenesis through modulating inflammation in the brain. 相似文献
14.
Understanding factors that influence the spread of wildlife diseases can assist in designing effective surveillance programs and appropriate management strategies. Chronic wasting disease (CWD), a fatal prion disease of cervids, was detected in south-central Wisconsin in 2002 and over time has been identified increasingly farther west in the state leading to concerns about CWD spreading to Iowa. Our objective was to characterize genetic connectivity between white-tailed deer (Odocoileus virginianus) populations in eastern Iowa and western Wisconsin to assess the risk of CWD-infected deer dispersing to Iowa. We hypothesized that the Mississippi River, which separates the states, may restrict the movement of deer and thus disease. We genotyped hunter-harvested female deer collected from both states at 12 nuclear microsatellite loci (n = 249) and sequenced a portion of the mitochondrial DNA (mtDNA) control region (n = 173). Microsatellite data indicated there was low genetic differentiation (ΦPT = 0.005) between states and weak spatial genetic structure across the study area as a whole. Verifying expectations that dispersal in deer is male-biased, maternally inherited mtDNA data showed stronger spatial structuring across the study area and greater genetic differentiation between the states (ΦPT = 0.052) such that clustering analysis grouped the majority of deer from Iowa and Wisconsin into separate clusters. The low level of genetic differentiation between deer in northeast Iowa and southwest Wisconsin, primarily the result of dispersing males who have greater CWD prevalence than females, indicates that the Mississippi River is unlikely to prohibit the westward spread of CWD, and underscores the importance of continued CWD surveillance in Iowa. © 2011 The Wildlife Society. 相似文献
15.
Blanchong JA Samuel MD Scribner KT Weckworth BV Langenberg JA Filcek KB 《Biology letters》2008,4(1):130-133
Predicting the spread of wildlife disease is critical for identifying populations at risk, targeting surveillance and designing proactive management programmes. We used a landscape genetics approach to identify landscape features that influenced gene flow and the distribution of chronic wasting disease (CWD) in Wisconsin white-tailed deer. CWD prevalence was negatively correlated with genetic differentiation of study area deer from deer in the area of disease origin (core-area). Genetic differentiation was greatest, and CWD prevalence lowest, in areas separated from the core-area by the Wisconsin River, indicating that this river reduced deer gene flow and probably disease spread. Features of the landscape that influence host dispersal and spatial patterns of disease can be identified based on host spatial genetic structure. Landscape genetics may be used to predict high-risk populations based on their genetic connection to infected populations and to target disease surveillance, control and preventative activities. 相似文献
16.
《朊病毒》2013,7(3-4):204-215
ABSTRACTManaging and controlling the spread of diseases in wild animal populations is challenging, especially for social and mobile species. Effective management benefits from information about disease susceptibility, allowing limited resources to be focused on areas or populations with a higher risk of infection. Chronic wasting disease (CWD), a transmissible spongiform encephalopathy that affects cervids, was detected in Colorado in the late 1960s. CWD was detected in Illinois and Wisconsin in 2002 and has since spread through many counties. Specific nucleotide variations in the prion protein gene (PRNP) sequence have been associated with reduced susceptibility to CWD in white-tailed deer. Though genetic resistance is incomplete, the frequency of deer possessing these mutations in a population is an important factor in disease spread (i.e. herd immunity). In this study we sequenced 625 bp of the PRNP gene from a sampling of 2433 deer from Illinois and Wisconsin. In north-central Illinois where CWD was first detected, counties had a low frequency of protective haplotypes (frequency <0.20); whereas in northwestern Illinois counties, where CWD cases have only more recently been detected, the frequency of protective haplotypes (frequency >0.30) was much higher (p < 0.05). Protective haplotype frequencies varied significantly among infected and uninfected geographic areas. The frequency of protective PRNP haplotypes may contribute to population level susceptibility and may shape the way CWD has spread through Illinois. Analysis of PRNP haplotype distribution could be a useful tool to assess CWD risk and allocate resources to contain and reduce the spread of infection. 相似文献
17.
Sireesha Manne Naveen Kondru Tracy Nichols Aaron Lehmkuhl Bruce Thomsen Rodger Main 《朊病毒》2017,11(6):415-430
Prion diseases are transmissible spongiform encephalopathies (TSEs) characterized by fatal, progressive neurologic diseases with prolonged incubation periods and an accumulation of infectious misfolded prion proteins. Antemortem diagnosis is often difficult due to a long asymptomatic incubation period, differences in the pathogenesis of different prions, and the presence of very low levels of infectious prion in easily accessible samples. Chronic wasting disease (CWD) is a TSE affecting both wild and captive populations of cervids, including mule deer, white-tailed deer, elk, moose, muntjac, and most recently, wild reindeer. This study represents a well-controlled evaluation of a newly developed real-time quaking-induced conversion (RT-QuIC) assay as a potential CWD diagnostic screening test using rectal biopsy sections from a depopulated elk herd. We evaluated 69 blinded samples of recto-anal mucosa-associated lymphoid tissue (RAMALT) obtained from USDA Veterinary Services. The results were later un-blinded and statistically compared to immunohistochemical (IHC) results from the USDA National Veterinary Services Laboratories (NVSL) for RAMALT, obex, and medial retropharyngeal lymph node (MRPLN). Comparison of RAMALT RT-QuIC assay results with the IHC results of RAMALT revealed 92% relative sensitivity (95% confidence limits: 61.52–99.8%) and 95% relative specificity (95% confidence limits: 85.13–99%). Collectively, our results show a potential utility of the RT-QuIC assay to advance the development of a rapid, sensitive, and specific prion diagnostic assay for CWD prions. 相似文献
18.
Beata Sikorska Agata Gajos Andrzej Bogucki Emil Zielonka Christina Sigurdson 《朊病毒》2017,11(6):431-439
We report here on the ultrastructure of amyloid plaques in chronic wasting disease (CWD) transmitted to Tg20 transgenic mice overexpressing prion protein (PrPc). We identified three main types of amyloid deposits in mCWD: large amyloid deposits, unicentric plaques similar to kuru plaques in human prion diseases and multicentric plaques reminiscent of plaques typical of GSS. The most unique type of plaques were large subpial amyloid deposits. They were composed of large areas of amyloid fibrils but did not form ?star-like” appearances of unicentric plaques. All types of plaques were totally devoid of dystrophic neuritic elements. However, numerous microglial cells invaded them. The plaques observed by confocal laser microscope were of the same types as those analyzed by electron microscopy. Neuronal processes surrounding the plaques did not show typical features of neuroaxonal dystrophy. 相似文献
19.
20.
Amy C Kelly Nohra E Mateus-Pinilla Jay Diffendorfer Emily Jewell Marilyn O Ruiz John Killefer Paul Shelton Tom Beissel Jan Novakofski 《朊病毒》2008,2(1):28-36
Nucleic acid sequences of the prion gene (PRNP) were examined and genotypes compiled for 76 white-tailed deer from northern Illinois, which previously tested positive for chronic wasting disease (CWD), and 120 negative animals selected to control for geographic location and age. Nine nucleotide polymorphisms, seven silent and two coding, were found in the sampled population. All observed polymorphisms except two of very low frequency were observed in both negative and positive animals, although five polymorphic loci had significantly different distributions of alleles between infected and non-infected individuals. Nucleotide base changes 60C/T, 285A/C, 286G/A and 555C/T were observed with higher than expected frequencies in CWD negative animals suggesting disease resistance, while 153C/T was observed more than expected in positive animals, suggesting susceptibility. The two coding polymorphisms, 285A/C (Q95H) and 286G/A (G96S), have been described in white-tailed deer populations sampled in Colorado and Wisconsin. Frequency distributions of coding polymorphisms in Wisconsin and Illinois deer populations were different, an unexpected result considering the sampled areas are less than 150 km apart. The total number of polymorphisms per animal, silent or coding, was negatively correlated to disease status. The potential importance of silent polymorphisms (60C/T, 153C/T, 555C/T), either individually or cumulatively, in CWD disease status has not been previously reported.Key words: CWD, PRNP, synonymous polymorphism, cumulative polymorphisms, haplotype 相似文献