首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An effective way of inducing both mucosal and systemic immune responses to protect against Actinobacillus pleuropneumoniae serotype 2 Korean isolate was examined in mice by oral immunization using Saccharomyces cerevisiae expressing the ApxIIA protein. The immunogenicity of the yeast-derived ApxIIA antigen was confirmed by the challenge test and ApxIIA-specific IgG antibody response assay. The group subcutaneously immunized with the protein extracted from the yeast expressing ApxIIA showed a higher survival rate after challenging with A. pleuropneumoniae serotype 2 isolate and IgG antibody level in serum than the group injected with that prepared from the yeast harboring vector only. Feeding the yeast expressing ApxIIA to mice induced both systemic and mucosal immune responses against the antigen. ApxIIA-specific IgA antibody titers and the number of IgA-secreting cells of mice vaccinated with S. cerevisiae expressing ApxIIA dose-dependently increased from the third immunization in both intestine and lung (P<0.01). A similar tendency of ApxIIA-specific IgG antibody responses was observed in the sera. The protective efficacy of the oral immunization was then evaluated by a challenge with a minimal lethal dose (MLD, 4.5 x 10(7) CFU/ml) of the A. pleuropneumoniae serotype 2 isolate. Fifty percent of the 30 mg administered group and 30% of the 15 mg administered group survived while none of the mice in the control groups survived after 36 h. These results suggest that feeding animals the yeast expressing the antigen can be an effective strategy to induce protective immune responses against A. pleuropneumoniae infection.  相似文献   

2.
3.
《Phytomedicine》2015,22(2):271-276
A growing body of research indicates that oral administration of bacteria (such as probiotics) can exhibit a protective effect against influenza A (H1N1) viral infection in mice. In the present study, we used a mouse model to examine whether oral administration of Immulina®, a commercial extract from the cyanobacteria Arthrospira (Spirulina) platensis, can reduce the severity of illness resulting from influenza A (H1N1) viral infection. The main active compounds within Immulina® are bacterial Braun-type lipoproteins that activate innate immune cells through a toll-like receptor (TLR) 2-dependent pathway. Mice that were fed Immulina® for 30 days before and 21 days after infection with influenza A (H1N1) virus exhibited a statistically significant reduction in the severity of infection. Compared to the control group, Immulina®-fed mice exhibited less weight loss, increased appetite, decreased clinical signs of disease, and lower lung histopathology scores. The results from the present study adds to the increasing evidence that oral administration of bacterial components that activate innate immune cells, whether derived from a bacterial preparation (probiotics or cyanobacteria) or from plant material containing endophytic bacteria, can exhibit a protective effect against influenza A (H1N1) viral infection.  相似文献   

4.
A plant based high fidelity vaccine production system is being developed with emphasis on producing antigens capable of being orally delivered in multivalent or subunit plant packets. Plant-based edible vaccines may provide an attractive, safe and inexpensive alternative to conventional vaccine production. Edible plant tissues are not normally antigenic in nature. However, foreign antigens from common infectious organisms like hepatitis-B virus (HBV) can be produced along with naturally occurring storage proteins in DNA-transformed plants. Upon administration via the oral route, these transgenic plant tissues may mobilize the protective humoral and mucosal immune responses to challenge the natural infectious agent. When tobacco, carrot and rice plants were transformed with the truncated version of the HBV nucleocapsid gene expression construct, non-infective hepatitis B viral core particles were observed via electron microscopy. A second plant codon-optimised HBV expression construct was designed that included the extensin signal sequence for augmented HBV particle accumulation. Upon transformation of tobacco plants with the codon-optimised construct, over 4 times more transgenic plants with high levels of expression of the HBV nucleocapsid protein were generated in comparison with a similar vector containing the unmodified wild-type HBV gene codon sequence. Further analysis via Western blotting confirmed the presence of the viral antigen in the total protein extracts from transgenic tobacco leaves and seeds. Electron microscopy showed that the expressed protein self-assembled into viral-like particles of 25–30 nm in diameter. To develop an edible subunit vaccine in plant seeds, a third plant transformation construct was used for the synthesis of the human cytomegalovirus glycoprotein B (HCMV gB) subunit. The gB protein derived from tobacco seeds retained critical structural features including epitopes for neutralizing antibodies and was targeted to the protein storage vesicles of tobacco seed endosperm. Two different strains of mice were orally immunized with tobacco seeds containing low concentrations of HCMV gB, with varying dosages, but without adjuvant. No anti-gB response was detected in intestinal or serum samples. However, a systemic immune response to normal tobacco seed proteins was observed in both strains of mice. While higher expression levels of antigens in seeds must be achieved, seeds may provide an effective and immunostimulatory vehicle for delivering edible vaccines to the intestinal mucosa. One of the outstanding challenges includes defining optimum conditions of antigen presentation, dosage and immunization schedules that will induce strong mucosal and/or systemic immune responses in heterogeneous populations. Here we review the different strategies being employed to produce specific oral antigens in plant tissues.  相似文献   

5.
As Brucella infections occur mainly through mucosal surfaces, the development of mucosal administered vaccines could be radical for the control of brucellosis. In this work we evaluated the potential of Brucella abortus 19 kDa outer membrane protein (U-Omp19) as an edible subunit vaccine against brucellosis. We investigated the protective immune response elicited against oral B. abortus infection after vaccination of mice with leaves from transgenic plants expressing U-Omp19; or with plant-made or E. coli-made purified U-Omp19. All tested U-Omp19 formulations induced protection against Brucella when orally administered without the need of adjuvants. U-Omp19 also induced protection against a systemic challenge when parenterally administered. This built-in adjuvant ability of U-Omp19 was independent of TLR4 and could be explained at least in part by its capability to activate dendritic cells in vivo. While unadjuvanted U-Omp19 intraperitoneally administered induced a specific Th1 response, following U-Omp19 oral delivery a mixed specific Th1-Th17 response was induced. Depletion of CD4(+) T cells in mice orally vaccinated with U-Omp19 resulted in a loss of the elicited protection, indicating that this cell type mediates immune protection. The role of IL-17 against Brucella infection has never been explored. In this study, we determined that if IL-17A was neutralized in vivo during the challenge period, the mucosal U-Omp19 vaccine did not confer mucosal protection. On the contrary, IL-17A neutralization during the infection did not influence at all the subsistence and growth of this bacterium in PBS-immunized mice. All together, our results indicate that an oral unadjuvanted vaccine based on U-Omp19 induces protection against a mucosal challenge with Brucella abortus by inducing an adaptive IL-17 immune response. They also indicate different and important new aspects i) IL-17 does not contribute to reduce the bacterial burden in non vaccinated mice and ii) IL-17 plays a central role in vaccine mediated anti-Brucella mucosal immunity.  相似文献   

6.
Lin L  Bei W  Sha Y  Liu J  Guo Y  Liu W  Tu S  He Q  Chen H 《FEMS microbiology letters》2007,274(1):55-62
The apxIC and apxIIC genes of the Actinobacillus pleuropneumoniae serovar 1 strain SLW01, encoding the ApxI- and ApxII-activating proteins, respectively, were deleted successively by a method involving sucrose counterselection. The resulting strain, SLW03, contained no foreign DNA and could secrete unactivated ApxIA and ApxIIA RTX toxins with complete antigenicity. Strain SLW03 was attenuated at least 1000-fold in Balb/C mice and caused no adverse effects in pigs at doses of up to 1 x 10(9) CFU mL(-1). SLW03 was able to induce a significant immune response and provide complete protection from clinical signs upon homologous (serovar 1) and heterologous (serovar 9) challenge of A. pleuropneumoniae. Pigs vaccinated via the intranasal (i.n.) route had significantly higher serum titers and fewer pulmonary lesions than pigs vaccinated via the intramuscular route postchallenge. These results suggest that the mutant strain SLW03 could be used as a candidate live vaccine that can induce reliable cross-serovar protection following i.n. immunization.  相似文献   

7.
Yuan F  Liu J  Guo Y  Tan C  Fu S  Zhao J  Chen H  Bei W 《Current microbiology》2011,63(6):574-580
Actinobacillus pleuropneumoniae is a Gram-negative pathogen that causes porcine pleuropneumonia. The pathogenicity of A. pleuropneumoniae is strongly correlated with the production of active repeat-in-toxin (RTX) proteins such as ApxIVA. We evaluated the contribution of a potential ApxIVA activator, ORF1, to the virulence and immunogenicity of A. pleuropneumoniae in pigs. The orf1 gene in A. pleuropneumoniae SLW03 (serovar 1, ΔapxICΔapxIIC) was deleted, producing strain SLW05 (ΔapxICΔapxIICΔorf1). The virulence of strains SLW03 and SLW05 was compared in pigs. Clinical signs and pulmonary lesions induced by strain SLW05 were slighter than that of strain SLW03 (P < 0.05). The immunogenicity and protective efficacy of strains SLW03 and SLW05 were similar. All pigs immunized with strain SLW03 or SLW05 developed high antibody titers against ApxIA, ApxIIA, and ApxIVA before challenge. Two weeks after a second immunization, pigs were challenged intratracheally with either a fully virulent A. pleuropneumoniae serovar 1 or serovar 3 strain. Vaccination with strains SLW03 or SLW05 provided significantly greater protection compared to the negative control (P < 0.01). Immunized pigs displayed significantly fewer clinical signs and lower lung lesion scores than non-immunized pigs. These results suggested that ORF1 plays an important role in the development of ApxIVA toxicity. Furthermore, strain SLW05 is a highly attenuated strain able to induce protective immunity against A. pleuropneumoniae infection.  相似文献   

8.
Although the human immunodeficiency virus (HIV) causes one of the most important infectious diseases worldwide, attempts to develop an effective vaccine remain elusive. Designing recombinant proteins capable of eliciting significant and protective mammalian immune responses remain a priority. Moreover, large-scale production of proteins of interest at affordable cost remains a challenge for modern biotechnology. In this study, a synthetic gene encoding a C4V3 recombinant protein, known to induce systemic and mucosal immune responses in mammalian systems, has been introduced into tobacco chloroplasts to yield high levels of expression. Integration of the transgene into the tobacco plastome has been verified by Southern blot hybridization. The recombinant C4V3 protein is also detected in tobacco chloroplasts by confocal microscopy. Reactivity of the heterologous protein with both an anti-C4V3 rabbit serum as well as sera from HIV positive patients have been assayed using Western blots. When administered by the oral route in a four-weekly dose immunization scheme, the plant-derived C4V3 has elicited both systemic and mucosal antibody responses in BALB/c mice, as well as CD4+ T cell proliferation responses. These findings support the viability of using plant chloroplasts as biofactories for HIV candidate vaccines, and could serve as important vehicles for the development of a plant-based candidate vaccine against HIV.  相似文献   

9.
Parenteral and oral administration of autoantigens can induce immune tolerance in autoimmune diseases. Prophylactic therapy based on oral administration of human autoantigens is not, however, feasible when sufficient quantities of candidate autoantigens are not available. Transgenic plants that express high levels of recombinant proteins would allow large quantities of autoantigens to be produced at relatively low costs. In addition, transgenic food would provide a simple and direct method of delivering autoantigens. The production and the characterization of transgenic tobacco and carrot plants expressing human GAD65, a major autoantigen in human insulin-dependent diabetes mellitus (IDDM), is reported. Immunogold labeling and electron microscopy of transgenic tobacco tissue shows the selective targeting of human GAD65 to chloroplast tylacoids and mitochondria. In planta expressed GAD65 has a correct immunoreactivity with IDDM-associated autoantibodies and retains enzymatic activity, a finding that suggests a correct protein folding. In transgenic tobacco and carrot the expression levels of human GAD65 varies between 0.01% and 0.04% of total soluble proteins. Transgenic edible plant organs are now available to study the feasibility of inducing immune tolerance in IDDM animals by oral administration of GAD65.  相似文献   

10.
猪传染性胸膜肺炎是由胸膜肺炎放线杆菌引起的一种高度接触传染疾病,严重阻碍着全球养猪业的发展,疫苗接种是控制该病的有效措施。为提高胸膜肺炎放线杆菌弱毒疫苗的免疫效力,以及探索胸膜肺炎放线杆菌弱毒疫苗作为呼吸系统病原疫苗载体的可行性,通过穿梭质粒pJFF224-XN将完整的apxIA基因导入apxIIC基因缺失突变株HB04C-中,构建了含有apxIA和apxIIA基因的弱毒疫苗菌株HB04C2(apxIIC-/apxIIA+/apxIA+)。通过对HB04C2的生物学特性分析发现,穿梭质粒可稳定传代,并表达ApxIA,其生长特性未受穿梭质粒的影响。将HB04C2以气管接种方式免疫仔猪,可产生针对ApxIA和ApxIIA的抗体。二免后2周以高致病性的血清1型胸膜肺炎放线杆菌攻毒,该弱毒疫苗可提供良好的免疫保护效果。  相似文献   

11.
This work demostrates that nonrecombinant Lactococcus lactis NZ, administered by the oral route at the proper dose, is able to improve resistance against pneumococcal infection. Lactococcus lactis NZ oral administration was able to improve pathogen lung clearance, increased survival of infected mice, and reduced lung injuries. This effect was related to an upregulation of the respiratory innate and specific immune responses. Administration of L. lactis NZ improved production of bronchoalveolar lavage (BAL) fluid TNF-alpha, enhanced recruitment of neutrophils into the alveolar spaces, and induced a higher activation of BAL phagocytes compared with the control group. Lactococcus lactis NZ administered orally stimulated the IgA cycle, increased IgA+ cells in intestine and bronchus, and improved production of BAL IL-4 and IL-10 during infection. Moreover, mice treated with L. lactis NZ showed higher levels of BAL anti-pneumococcal IgA and IgG. Taking into consideration that orally administered L. lactis NZ stimulates both the innate and the specific immune responses in the respiratory tract and that bacterial and viral antigens have been efficiently produced in this strain, L. lactis NZ is an excellent candidate for the development of an effective pneumococcal oral vaccine.  相似文献   

12.
Human papillomavirus-like particles (HPV VLPs) have shown considerable promise as a parenteral vaccine for the prevention of cervical cancer and its precursor lesions. Parenteral vaccines are expensive to produce and deliver, however, and therefore are not optimal for use in resource-poor settings, where most cervical HPV disease occurs. Transgenic plants expressing recombinant vaccine immunogens offer an attractive and potentially inexpensive alternative to vaccination by injection. For example, edible plants can be grown locally and can be distributed easily without special training or equipment. To assess the feasibility of an HPV VLP-based edible vaccine, in this study we synthesized a plant codon-optimized version of the HPV type 11 (HPV11) L1 major capsid protein coding sequence and introduced it into tobacco and potato. We show that full-length L1 protein is expressed and localized in plant cell nuclei and that expression of L1 in plants is enhanced by removal of the carboxy-terminal nuclear localization signal sequence. We also show that plant-expressed L1 self-assembles into VLPs with immunological properties comparable to those of native HPV virions. Importantly, ingestion of transgenic L1 potato was associated with activation of an anti-VLP immune response in mice that was qualitatively similar to that induced by VLP parenteral administration, and this response was enhanced significantly by subsequent oral boosting with purified insect cell-derived VLPs. Thus, papillomavirus L1 protein can be expressed in transgenic plants to form immunologically functional VLPs, and ingestion of such material can activate potentially protective humoral immune responses.  相似文献   

13.
We have produced a functional heat labile enterotoxin (LT-) B subunit of Escherichia coli in maize. LT-B is a multimeric protein that presents an ideal model for an edible vaccine, displaying stability in the gut and inducing mucosal and systemic immune responses. Transgenic maize was engineered to synthesize the LT-B polypeptides, which assembled into oligomeric structures with affinity for GM1 gangliosides. We orally immunized BALB/c mice by feeding transgenic maize meal expressing LT-B or non-transgenic maize meal spiked with bacterial LT-B. Both treatments stimulated elevated IgA and IgG antibodies against LT-B and the closely related cholera toxin B subunit (CT-B) in serum, and elevated IgA in fecal pellets. The transgenic maize induced a higher anti-LT-B and anti-CT-B mucosal and serum IgA response compared to the equivalent amount of bacterial LT-B spiked into maize. Following challenge by oral administration of the diarrhea inducing toxins LT and CT, transgenic maize-fed mice displayed reduced fluid accumulation in the gut compared to non-immunized mice. Moreover, the gut to carcass ratio of immunized mice was not significantly different from the PBS (non-toxin) challenged control group. We concluded that maize-synthesized LT-B had features of the native bacterial LT-B such as molecular weight, GM1 binding ability, and induction of serum and mucosal immunity. We have demonstrated that maize, a major food and feed ingredient, can be efficiently transformed to produce, accumulate, and store a fully assembled and functional candidate vaccine antigen.  相似文献   

14.
小鼠模型用作口服痢疾活菌苗效力指标的意义   总被引:1,自引:0,他引:1  
小鼠皮下免疫、腹腔攻击模型作为验证减毒痢疾活菌苗效力的指标已沿用多年,但其能否代表痢疾菌苗的效力还有待商榷。实验选用口服痢疾活菌苗FS,以不同活菌含量来验证模型的意义。实验表明,菌体皮下免疫均能产生类似的保护效果,与活;菌含量无关,血清学试验也论证了同样观点,而人体试验表明,菌苗的保护效果与活菌数密切相关,故认为小鼠皮下免疫、腹腔攻击模型不能准确反应痢疾菌苗的保护效果。  相似文献   

15.
Nasal administration is an effective route for a needle-free vaccine. However, nasally administered Ags have the potential to reach the CNS directly from the nasal cavity, thus raising safety concerns. In this study, we performed real-time quantitative tracking of a nasal vaccine candidate for botulism, which is a nontoxic subunit fragment of Clostridium botulinum type A neurotoxin (BoHc/A) effective in the induction of the toxin-neutralizing immune response, by using (18)F-labeled BoHc/A-positron-emission tomography, an in vivo molecular imaging method. This method provides results that are consistent with direct counting of [(18)F] radioactivity or the traditional [(111)In]-radiolabel method in dissected tissues of mice and nonhuman primates. We found no deposition of BoHc/A in the cerebrum or olfactory bulb after nasal administration of (18)F-labeled BoHc/A in both animals. We also established a real-time quantitative profile of elimination of this nasal vaccine candidate and demonstrated that it induces highly protective immunity against botulism in nonhuman primates. Our findings demonstrate the efficiency and safety of a nasal vaccine candidate against botulism in mice and nonhuman primates using in vivo molecular imaging.  相似文献   

16.
将猪胸膜肺炎放线杆菌血清3型分离株的ApxⅡA、ApxⅢA、ApxⅣA基因和血清5型分离株的ApxⅠA基因分别克隆到原核表达载体pGEX-5x-3,并在大肠杆菌BL21中进行表达.SDS-PAGE结果表明重组菌表达的最佳条件为诱导时间2小时和IPTG终浓度1mmol/L.通过硫酸铵盐析和Sephadex G-200凝胶过滤层析纯化表达产物.Western blot检测结果显示表达产物具有免疫活性.按照不同组合将表达产物与弗氏佐剂等比例混合,制备3种亚单位疫苗.并在30日龄和45日龄免疫小白鼠,在60日龄分别用血清1、3、5、7和10型胸膜肺炎放线杆菌攻毒.血清1、5和7型胸膜肺炎放线杆菌攻毒后,3种亚单位疫苗分别提供58.4%、66.6%和91.7%的保护率.试验结果表明重组蛋白具有免疫保护作用,且含有四种融合蛋白的亚单位疫苗免疫保护效果最佳.  相似文献   

17.
To determine whether a protective immune response could be elicited by oral delivery of a recombinant live bacterial vaccine, Helicobacter pylori urease subunit B (UreB) was expressed for extracellular expression in food-grade bacterium Lactococcus lactis . The UreB-producing strains were then administered orally to mice, and the immune response to UreB was examined. Orally vaccinated mice produced a significant UreB-specific serum immunoglobulin G (IgG) response. Specific anti-UreB IgA responses could be detected in the feces of mice immunized with the secreting lactococcal strain. Mice vaccinated orally were significantly protected against gastric Helicobacter infection following a challenge with H. pylori strain SS1. In conclusion, mucosal vaccination with L. lactis expressing UreB produced serum IgG and UreB-specific fecal IgA, and prevented gastric infection with H. pylori .  相似文献   

18.

Background

There is a strong need for a recombinant subunit vaccine against fowl cholera. We used a reverse vaccinology approach to identify putative secreted or cell surface associated P. multocida proteins that may represent potential vaccine candidate antigens.

Principal Findings

A high-throughput cloning and expression protocol was used to express and purify 71 recombinant proteins for vaccine trials. Of the 71 proteins tested, only one, PlpE in denatured insoluble form, protected chickens against fowl cholera challenge. PlpE also elicited comparable levels of protection in mice. PlpE was localized by immunofluorescence to the bacterial cell surface, consistent with its ability to elicit a protective immune response. To explore the role of PlpE during infection and immunity, a plpE mutant was generated. The plpE mutant strain retained full virulence for mice.

Conclusion

These studies show that PlpE is a surface exposed protein and was the only protein of 71 tested that was able to elicit a protective immune response. However, PlpE is not an essential virulence factor. This is the first report of a denatured recombinant protein stimulating protection against fowl cholera.  相似文献   

19.
A preparation of nonliving parasite antigens containing both soluble and particulate components of frozen-and-thawed invasive larvae was used to immunize C57BL/6J mice against challenge Schistosoma mansoni infection. The method of antigen presentation was observed to be critical to the ability of this preparation to induce protective immunity, because intradermal administration in conjunction with a bacterial adjuvant (BCG) resulted in strong protection against challenge parasites (51% reduction in worm burden in six experiments), whereas i.v. injection of the same antigenic preparation was completely ineffective. Induction of resistance was accompanied by specific immune responsiveness toward schistosome antigens. Protection correlated more closely with sensitization for specific delayed hypersensitivity than with elicitation of circulating antibodies to larval surface antigens or immediate hypersensitivity in these models. These results suggest that it will be possible to design a defined vaccine against S. mansoni infection, but that identification of the route of antigen presentation that most effectively elicits relevant immune effector mechanisms will be crucial to the success of any vaccination protocol involving nonliving antigens.  相似文献   

20.
为研究针对结核分枝杆菌潜伏感染的DNA疫苗,基于质粒A39构建了p-VAX1-Ag85B-Rv3425-Rv2029c-PPE26 (V569)质粒DNA,并对其免疫原性及保护性进行初步研究。免疫性评价试验共分6组:PBS、p-VAX1-Ag85B(A)、p-VAX1-Ag85B-Rv3425(A3)、A39、V569和BCG,采用左后腿肌内注射C57BL/6小鼠,用流式细胞术和酶联免疫吸附试验(enzyme linked immunosorbent assay,ELISA)分别检测细胞免疫和体液免疫水平;构建斑马鱼-海分枝杆菌潜伏感染模型,将PBS、A、A3、A39、BCG、V569分别通过腹腔注射免疫斑马鱼后,每日注射地塞米松10ug诱导海分枝杆菌复发感染,对斑马鱼肝脏进行菌落计数并绘制生存曲线。结果显示,与BCG组相比,V569能引发实验小鼠强烈的细胞免疫反应(IFN-γ高水平分泌),外周血CD4/CD8 T细胞比例明显增加。在斑马鱼-海分枝杆菌潜伏感染复发模型中,与BCG 免疫组相比,V569免疫斑马鱼后可显著减少其肝脏中海分枝杆菌数量,斑马鱼存活情况得到显著改善,表明V569 DNA疫苗可能是一种抗结核潜伏感染的候选DNA疫苗。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号