首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aposematic organisms are not predicted to show high levels of warning signal diversity because they are expected to be under stabilizing selection to decrease costs of ‘educating’ predators about their unpalatability. However, systematic changes in warning signals (polytypism) can be expected if they represent adaptations to local predators. The aposematic strawberry poison frog (Oophaga pumilio) is red throughout its mainland distribution in Costa Rica and Panamá, but displays high levels of warning signal diversity in the Bocas del Toro Archipelago of Panamá. Both coloration and spot pattern vary in a polytypic sense. Sexual selection contributes to maintaining the polytypism, but little work has investigated the potential influence of predation. We used unspotted models of O. pumilio to determine if predation might help explain the color polytypism on Isla Colón in the Bocas del Toro Archipelago of Panamá. We tested whether attack rates differed among the red mainland morph, green/yellow Isla Colón morph, and the brown control. We found that frog color significantly predicted being attacked. The local green Isla Colón models were attacked more than foreign red or brown models. No difference in attack rate existed between red and brown control models. Our results suggest that the red mainland morph possesses a more effective warning signal, even when it is not the local morph. Honest signaling of unpalatability, neophobia, and the use of search images by local predators are potential explanations. Similarity of the brown model to other local poison frogs might explain the lower attack rate compared to previous work. The attack rate was lower on Isla Colón compared to mainland Costa Rica, which supports the hypothesis that less overall predation in the Bocas del Toro Archipelago may contribute to the overall warning signal diversity in O. pumilio there by relaxing selection for aposematic traits.  相似文献   

2.
Aposematic signals represent one of the most accessible traits to evaluate the interaction of natural and sexual selection on signal evolution. Here we investigate the contributions of these two selective forces on the aposematic signal evolution of the highly polytypic strawberry poison frog, Oophaga pumilio, of Bocas del Toro, Panama. Previous research has shown that the brightness of O. pumilio warning coloration can inform predators of the toxicity levels associated with different populations of the archipelago. Other studies suggest that sexual selection may be influencing warning signal brightness within populations via female mate choice (Isla Solarte, Isla Bastimentos, and Aquacate Peninsula populations) and male–male competition (Isla Solarte). Here we present two non-exclusive scenarios for how natural and sexual selection interact to drive phenotypic variation across this archipelago: (1) predators impose a selective regime whereby populations above a toxicity-brightness threshold are at liberty to diversify via sexual selection and below which populations are constrained to maintain a stricter resemblance to a more cryptic population mean, and (2) synergistic/additive effects of inter- and intrasexual selection drive the evolution of brighter males within populations above this toxicity threshold. We investigate whether aposematic patterns of divergence across the archipelago relative to the common mainland phenotype meet these predictions using existing data on O. pumilio morph toxicity measures and overall conspicuousness estimates to an avian predator. Using standardized z-scores to evaluate the range of trait values, we find that indeed the population representative of the common mainland phenotype (Almirante) represents an intermediate level of both toxicity and conspicuousness, and that derived Bocas del Toro populations vary in each of those components in directions predicted by the proposed scenarios. Furthermore, we find greater divergence towards conspicuousness than crypsis, a pattern suggestive of sexual and natural selection acting synergistically in morphs with high toxicity.  相似文献   

3.
Selective predation of aposematic signals is expected to promote phenotypic uniformity. But while these signals may be uniform within a population, numerous species display impressive variations in warning signals among adjacent populations. Predators from different localities who learn to avoid distinct signals while performing intense selection on others are thus expected to maintain such a geographic organization. We tested this assumption by placing clay frog models, representing distinct color morphs of the Peruvian poison dart frog Ranitomeya imitator and a nonconspicuous frog, reciprocally between adjacent localities. In each locality, avian predators were able to discriminate between warning signals; the adjacent exotic morph experienced up to four times more attacks than the local one and two times more than the nonconspicuous phenotype. Moreover, predation attempts on the exotic morph quickly decreased to almost nil, suggesting rapid learning. This experiment offers direct evidence for the existence of different predator communities performing localized homogenizing selection on distinct aposematic signals.  相似文献   

4.
Natural selection is widely noted to drive divergence of phenotypic traits. Predation pressure can facilitate morphological divergence, for example the evolution of both cryptic and conspicuous coloration in animals. In this context Dendrobatid frogs have been used to study evolutionary forces inducing diversity in protective coloration. The polytypic strawberry poison frog (Oophaga pumilio) shows strong divergence in aposematic coloration among populations. To investigate whether predation pressure is important for color divergence among populations of O. pumilio we selected four mainland populations and two island populations from Costa Rica and Panama. Spectrometric measurements of body coloration were used to calculate color and brightness contrasts of frogs as an indicator of conspicuousness for the visual systems of several potential predators (avian, crab and snake) and a conspecific observer. Additionally, we conducted experiments using clay model frogs of different coloration to investigate whether the local coloration of frogs is better protected than non-local color morphs, and if predator communities vary among populations. Overall predation risk differed strongly among populations and interestingly was higher on the two island populations. Imprints on clay models indicated that birds are the main predators while attacks of other predators were rare. Furthermore, clay models of local coloration were equally likely to be attacked as those of non-local coloration. Overall conspicuousness (and brightness contrast) of local frogs was positively correlated with attack rates by birds across populations. Together with results from earlier studies we conclude that conspicuousness honestly indicates toxicity to avian predators. The different coloration patterns among populations of strawberry poison frogs in combination with behavior and toxicity might integrate into equally efficient anti-predator strategies depending on local predation and other ecological factors.  相似文献   

5.
Behavioral ecologists and evolutionary biologists have long studied how predators respond to prey items novel in color and pattern. Because a predatory response is influenced by both the predator’s ability to detect the prey and a post-detection behavioral response, variation among prey types in conspicuousness may confound inference about post-prey-detection predator behavior. That is, a relatively high attack rate on a given prey type may result primarily from enhanced conspicuousness and not predators’ direct preference for that prey. Few studies, however, account for such variation in conspicuousness. In a field experiment, we measured predation rates on clay replicas of two aposematic forms of the poison dart frog Dendrobates pumilio, one novel and one familiar, and two cryptic controls. To ask whether predators prefer or avoid a novel aposematic prey form independently of conspicuousness differences among replicas, we first modeled the visual system of a typical avian predator. Then, we used this model to estimate replica contrast against a leaf litter background to test whether variation in contrast alone could explain variation in predator attack rate. We found that absolute predation rates did not differ among color forms. Predation rates relative to conspicuousness did, however, deviate significantly from expectation, suggesting that predators do make post-detection decisions to avoid or attack a given prey type. The direction of this deviation from expectation, though, depended on assumptions we made about how avian predators discriminate objects from the visual background. Our results show that it is important to account for prey conspicuousness when investigating predator behavior and also that existing models of predator visual systems need to be refined.  相似文献   

6.
Aposematism is the use of warning signals to advertise unpleasant or dangerous defences to potential predators. As the effectiveness of this strategy depends on predator learning, little variation is expected in aposematic warning signals, as similar signals facilitate predator learning. However, warning signals are frequently variable in aposematic species. Such variability could arise as a result of geographic variation in the interpretation that local predators give warning signals. We tested this divergent learning hypothesis in the polytypic poison frog Andinobates bombetes (Anura: Dendrobatidae), focusing on visual predators. Our study was conducted in two populations of this species located in the Western Andes of Colombia, where individuals at some localities exhibit red dorsolateral stripes, while those in others exhibit yellow dorsolateral stripes. We deployed paraffin models imitating both forms of A. bombetes in size and colouration, as well as dull‐coloured controls, at sites inhabited by either red‐striped or yellow‐striped frogs. Red and yellow models were attacked at similar rates at both sites, and brown models were attacked more frequently at one of the sites. These results suggest that red and yellow colourations function as similarly effective aposematic signals for primarily visual predators, regardless of the form previously experienced by these predators. Therefore, our results do not support the hypothesis of divergent predator learning as a driver of the polytypism present in this species. Finally, we discuss other mechanisms that may be involved in the evolution and maintenance of this polytypism.  相似文献   

7.
Predation on corals by visual predators is a significant source of partial or total mortality on coral reefs, and corals have evolved strategies, including chemical defenses, to deter predation. One mechanism that organisms use to communicate the presence of chemical defenses is aposematic coloration, or the display of bright coloration as a warning to visual predators such as fish. Corals exhibit multiple colors, and it has been hypothesized that one role for this variability in coloration is as an aposematic warning of adverse palatability. Here, we test green and orange color morphs of the Caribbean coral Montastraea cavernosa for the presence of chemical defenses and whether their differences in coloration elicited different feeding responses. While M. cavernosa is chemically defended, there is no difference in feeding deterrence between color morphs; thus, the different color morphs of this coral species do not appear to represent an example of aposematic coloration.  相似文献   

8.
Polymorphic warning signals in aposematic organisms are puzzling because efficient predator learning should select for the most efficient warning colouration. Yet, there are many examples of polymorphic and aposematic organisms in nature. Here, we investigated whether perceived trade-offs between natural and sexual selection, combined with different degrees of morph lineage admixture, can maintain polymorphic yellow and white hindwing colouration in aposematic wood tiger moth males (Arctia plantaginis). Prior research in the system suggests that yellow males have better warning colouration against predators, whereas white male morphs have higher mating success. We performed a mating experiment where females were offered four males: two white and two yellow. One male from each colour came from (purely) monomorphic lines (i.e. including the same paternal colour for multiple generations), whereas one male from each colour were from mixed-morph (or hybrid) lineages. We then assessed whether phenotype (colour), lineage, or an interaction between the two, best affected mating success. Our results showed that although white hindwing coloured males tended to have overall better reproductive success, this was mainly due to the significantly higher mating and hatching success of mixed-morph compared to pure-line individuals. Notably, this suggests the advantage of mixed-morph lineage is limited to white individuals, while on the contrary yellow mixed lineage moths have a disadvantage, i.e. the lowest mating success. The latter also suggests a cost to reproductive success in producing the more efficient against predators yellow warning colouration, even when those individuals recently descend from a white hindwing coloured lineage. Heterozygote, or hybrid advantage, even when confined to only one morph, has been shown to promote polymorphism in some systems, therefore, our results point at the need to further examine genetic architecture and the role of mixed-morph lineages in understanding the maintenance of polymorphisms in nature.  相似文献   

9.
The conspicuousness of animal signals is influenced by their contrast against the background. As such, signal conspicuousness will tend to vary in nature because habitats are composed of a mosaic of backgrounds. Variation in attractiveness could result in variation in conspecific mate choice and risk of predation, which, in turn, may create opportunities for balancing selection to maintain distinct polymorphisms. We quantified male coloration, the absorbance spectrum of visual pigments and the photic environment of Poecilia parae, a fish species with five distinct male color morphs: a drab (i.e., grey), a striped, and three colorful (i.e., blue, red and yellow) morphs. Then, using physiological models, we assessed how male color patterns can be perceived in their natural visual habitats by conspecific females and a common cichlid predator, Aequidens tetramerus. Our estimates of chromatic and luminance contrasts suggest that the three most colorful morphs were consistently the most conspicuous across all habitats. However, variation in the visual background resulted in variation in which morph was the most conspicuous to females at each locality. Likewise, the most colorful morphs were the most conspicuous morphs to cichlid predators. If females are able to discriminate between conspicuous prospective mates and those preferred males are also more vulnerable to predation, variable visual habitats could influence the direction and strength of natural and sexual selection, thereby allowing for the persistence of color polymorphisms in natural environments.  相似文献   

10.
The initial evolution of conspicuous warning signals presents an evolutionary problem because selection against rare conspicuous signals is presumed to be strong, and new signals are rare when they first arise. Several possible solutions have been offered to solve this apparent evolutionary paradox, but disagreement persists over the plausibility of some of the proposed mechanisms. In this paper, we construct a deterministic numerical simulation model that allows us to derive the strength of selection on novel warning signals in a wide range of biologically relevant situations. We study the effects of predator psychology (learning, rate of mistaken attacks, and neophobia) on selection. We also study the how prey escape, predation intensity, number of predators, and abundance of different prey types affects selection. The model provides several important results. Selection on novel warning signals is number rather than frequency dependent. In most cases, there exists a threshold number of aposematic individuals below which aposematism is selected against and above which aposematism is selected for. Signal conspicuousness (which increases detection rate) and distinctiveness (which allows predator to distinguish defended from nondefended prey) have opposing effects on evolution of warning signals. A more conspicuous warning signal cannot evolve unless it makes the prey more distinctive from palatable prey, reducing mistaken attacks by predators. A novel warning signal that is learned quickly can spread from lower abundance more easily than a signal that is learned more slowly. However, the relative rate at which the resident signal and the novel signal are learned is irrelevant for the spread of the novel signal. Long-lasting neophobia can facilitate the spread of novel warning signals. Individual selection via the ability of defended prey to escape from predator is not likely to facilitate evolution of conspicuous warning signals if both the resident (cryptic) morph and the novel morph have the same escape probability. Predation intensity (defined as the proportion of palatable prey eaten by the predator) has a strong effect on selection. More intense predation results in strong selection against rare signals, but also strong selective advantage to common signals. The threshold number of aposematic individuals is lower when predation is intense. Thus, the evolution of warning signals may be more likely in environments where predation is intense. The effect of numbers of predators depends on whether predation intensity also changes. When predation intensity is constant, increasing numbers of predators raises the threshold number of aposematic individuals, and thus makes evolution of aposematism more difficult. If predation intensity increases in parallel with number of predators, the threshold number of aposematic individuals does not change much, but selection becomes more intense on both sides of the threshold.  相似文献   

11.
We conducted field surveys and experiments to evaluate the hypothesis that predation is an important driving factor determining the degree of coexistence between red and green morphs of the pea aphid Acyrthosiphon pisum. Theory suggests that the different colour morphs are differentially susceptible to natural enemies and selection by predation which in turn leads to variable relative abundances of red and green morphs among host plants across landscapes. Our field surveys on pea and alfalfa revealed, however, that the colour morphs tended to coexist closely in a ratio of one red to three green aphids across fields with different host plant monocultures. Experimentation involving manipulation of the relative abundances of the two colour morphs on host plants pea and alfalfa with and without predator presence revealed that red morphs had higher or same fitness (per capita reproduction) than green morphs on both pea and alfalfa only when in the proportion of one red/three green proportion. Moreover, experimentation evaluating predator efficiency revealed that red morphs are safest from predation when in a 1 : 3 ratio with green morphs. These results suggest that in addition to predation selection effects, red morphs may behaviourally choose to associate with green morphs in a narrow 1 : 3 ratio to maximize their fitness. This evidence, along with existing published data on red and green morph anti‐predator behaviour indicates that a 1 : 3 red and green morph coexistence ratio is driven by a balance between predation pressure and behavioural assorting by red morphs across landscapes. In this way predators may have ecological‐evolutionary consequences for traits that affect the colour morphs' proportion and tolerances to selective pressure.  相似文献   

12.
Protective coloration is a well-known predator avoidance strategy in prey species. Aposematic species often display a contrasting color pattern consisting of dark spots of different shapes and sizes on a bright background coloration. Both elements, background color and spots are expected to serve different purposes. While the ecological function of the bright coloration has been addressed in many studies, the question of whether the interaction with differently sized spots influences predator behavior has received less attention by researchers. In a lowland rain forest in Costa Rica we used 2700 clay models that imitated the polytypic strawberry poison frog (Oophaga pumilio) as a proxy for an aposematic prey species. We manipulated the dorsal color pattern by using a local and a non-local aposematic and a non-local cryptic background color and combined them with black spots increasing in size (none, small, medium, large). The major objective was to test if spot size alters the survival rate of differently colored models. Background coloration and spot size were significant predictors of being attacked. However, the interaction between both effects was not. During five trials predators avoided the non-local aposematic color morph and did not discriminate between local aposematic and non-local cryptic models. Spot size and attack rate were negatively linear correlated which suggests that predator selection promotes the evolution of dark spots. We further conclude that spot size matters in a contrasting color pattern and plays an important role in predator avoidance.  相似文献   

13.
The evolutionary mechanisms causing intraspecific diversity in aposematic color and pattern remain enigmatic. The strawberry poison frog (Oophaga pumilio) has diversified into a broad array of colors that span the visible spectrum. The most divergent phenotypes of O. pumilio are restricted to separate islands in the Bocas del Toro archipelago in western Panama, whereas throughout the majority of its range (from Nicaragua to western Panama) this species exhibits a single red phenotype. During the Holocene, sea-levels increased and changes in climate caused shifts in habitat through time. In the Bocas del Toro archipelago, rising sea-levels isolated previously connected populations in higher elevation habitats (forming islands). In this study we use historic measures of demography, ancestral distribution estimates, spatiotemporally explicit demographic models and genetic simulations to investigate the genetic consequences of the isolation due to sea-level changes and demographic processes mediated by recent climatic fluctuations. We then evaluate the role of these factors in the evolution of color in O. pumilio by measuring and comparing the deep coalescence of a neutrally evolving nuclear gene and a hypothetical autosomal coloration gene. Our results support a major role for recent population expansion and reduced gene flow (from isolation on islands) in the diversification of color across populations.  相似文献   

14.
Variation in mating preferences coupled with selective predation may allow for the maintenance of alternative mating strategies. Males of the South American live‐bearing fish Poecilia parae fall in one of five discrete morphs: red, yellow, blue, stripe‐coloured tail (parae) and female mimic (immaculata). Field surveys indicate that the red and yellow morphs are the rarest and that their rarity is consistent across years. We explored the role of variable female mating preference and selective predation by visual predators in explaining the rarity of red and yellow males, and more generally, the maintenance of this extreme colour polymorphism. We presented wild‐caught P. parae females and Aequidens tetramerus, the most common cichlid predator, with the five male colour morphs in separate trials to determine mating and prey preferences, respectively. We found that a large proportion of females shared a strong preference for the rare carotenoid‐based red and yellow males, but a distinct group also preferred the blue and parae morphs. The cichlid predator strongly preferred red and yellow males as prey. Together, these results suggest that the interaction between premating sexual selection favouring and predation acting against the red and yellow morphs may explain their rarity in the wild. The trade‐off between sexual and natural selection, accompanied by variation in female mating preferences, may therefore facilitate the maintenance of the striking colour polymorphism in P. parae.  相似文献   

15.
Conspicuous warning coloration helps to protect prey because it signals to potential predators that the prey is unprofitable. However, such signals only work once predators have come to associate the conspicuous colour with the unprofitability of the prey. The evolution of warning coloration is generally considered to be paradoxical, because it has traditionally been assumed that the first brightly coloured individuals would be at an immediate selective disadvantage because of their greater conspicuousness to predators that are naïve to the meaning of the signal. As a result, it has been difficult to understand how a novel conspicuous colour morph could ever avoid rapid extinction, and instead survive and spread in the population until predators have become educated about the signal. In the present study, we experimentally simulated the appearance of a single novel coloured mutant in small populations (20 individuals) of palatable artificial pastry "prey". The colour morph frequencies in each "generation" of prey (presented on successive days of a trial) were determined by the relative survival of the previous generation under predation by free-living birds. We found that the novel colour morphs regularly persisted and increased from a starting frequency of 1/20 to reach fixation (100%), despite being fully palatable, even when the novel morph was much more conspicuous against the background than the familiar morph. This was true for both green (not normally considered a warning colour) and red (a classic warning colour) novel morphs. Novel colours reached fixation significantly faster than could be accounted for by random drift, indicating differential predation in relation to prey colour by the birds. Our experiments show that the immediate demise of a fully palatable new prey morph is not an inevitable outcome of predator behaviour, because even very conspicuous prey can gain protection from conservative foragers, simply by being novel.  相似文献   

16.
Two color morphs of freckled goatfish Upeneus tragula with different Vietnamese names and mainly black and red body coloration of fresh dead exemplars are found off Hon Thóm (Thom Island), the largest island of An Thoi Archipelago located to the south of Phu Quoc Island, Gulf of Thailand, South China Sea. The presence of the morphs may be connected with the occurrence of two sympatric stocks or with color variation within a single stock. To test these hypotheses, red color content on the body (based on digital analysis of images) and gonadal condition is compared in both morphs. Body coloration does not depend on the sex of the fish. The black morph differs from the red morph in a smaller body size (12.7 vs. 16.4 cm FL on average), and it is represented by mainly immature individuals of both sexes (mean gonadosomatic index of the females 0.5 vs. 2.0%). It is proposed that the change of body coloration is associated with sexual maturation, and it occurs in the ontogeny within a single stock.  相似文献   

17.
The coexistence of different color morphs is often attributed to variable selection pressures across space, time, morph frequencies, or selection agents, but the routes by which each morph is favored are rarely identified. In this study we investigated factors that influence floral color polymorphisms on a local scale in Protea, within which approximately 40% of species are polymorphic. Previous work shows that seed predators and reproductive differences likely contribute to maintaining polymorphism in four Protea species. We explored whether selection acts directly or indirectly on floral color in two populations of Protea aurea, using path analysis of pollinator behavior, nectar production, seed predation, color, morphology, and maternal fecundity fitness components. We found that avian pollinators spent more time on white morphs, likely due to nectar differences, but that this had no apparent consequences for fecundity. Instead, the number of flowers per inflorescence underpinned many of the reproductively important differences between color morphs. White morphs had more flowers per inflorescence, which itself was positively correlated with nectar production, seed predator occurrence, and total long-term seed production. The number of seeds per plant to survive predation, in contrast, was not directly associated with color or any other floral trait. Thus, although color differences may be associated with conflicting selection pressures, the selection appears to be associated with the number of flowers per inflorescence and its unmeasured correlates, rather than with inflorescence color itself.  相似文献   

18.
Dietary conservatism may facilitate the initial evolution of aposematism   总被引:2,自引:0,他引:2  
It has generally been assumed that warningly coloured organisms pay a cost associated with their increased visibility, because naïve predators notice and eat them. This cost is offset by their enhanced protection from educated predators who associate the colour pattern with unprofitability. However, some studies have suggested that avoidance of novel prey by avian predators ("dietary conservatism") can actually place novel colour morphs at a selective advantage over familiar ones, even when they are highly conspicuous. To test this idea, we experimentally simulated the appearance of a single novel-coloured mutant in small populations (20 individuals) of palatable artificial prey. The colour morph frequencies in each "generation" were determined by the relative survival of the previous generation under predation by birds. We used wild-caught European robins Erithacus rubecula foraging on pastry "prey" of different colours. The aim was to test whether prey selection by predators prevented or facilitated the novel colour morph persisting in the prey population over successive generations. We found that the novel colour morph quickly increased to fixation in 14/40 prey "populations", and at least once each in 8 of the 10 birds tested. Novel mutants of the classic aposematic colours (red and yellow) reached fixation most frequently, but even the green and blue novel morphs both increased to fixation in 2/40 trials. Novel colours reached fixation significantly faster than could be accounted for by drift, indicating active avoidance by the birds. These results suggest that a novel colour morph arising in a prey population can persist and increase under the selective pressure imposed by predators, even to the local exclusion of the original morph, despite being fully palatable. The consequences of this finding are discussed in relation to receiver psychology, the evolution of aposematism and the existence of polymorphism in Müllerian mimics.  相似文献   

19.
The coloration of species can have multiple functions, such as predator avoidance and sexual signalling, that directly affect fitness. As selection should favour traits that positively affect fitness, the genes underlying the trait should reach fixation, thereby preventing the evolution of polymorphisms. This is particularly true for aposematic species that rely on coloration as a warning signal to advertise their unprofitability to predators. Nonetheless, there are numerous examples of aposematic species showing remarkable colour polymorphisms. We examined whether colour polymorphism in the wood tiger moth is maintained by trade-offs between different functions of coloration. In Finland, males of this species have two distinct colour morphs: white and yellow. The efficacy of the warning signal of these morphs was tested by offering them to blue tits in the laboratory. Birds hesitated significantly longer to attack yellow than white males. In a field experiment, the survival of the yellow males was also higher than white males. However, mating experiments in the laboratory revealed that yellow males had lower mating success than white males. Our results offer an explanation for the maintenance of polymorphism via trade-off between survival selection and mating success.  相似文献   

20.
Initially, aposematism, which is an unprofitable trait, e.g. noxiousness conspicuously advertised to predators, appears to be a paradox since conspicuousness should increase predation by naive predators. However, reluctance of predators for eating novel prey (e.g. neophobia) might balance the initial predation caused by inexperienced predators. We tested the novelty effects on initial predation and avoidance learning in two separate conspicuousness levels of aposematic prey by using a 'novel world' method. Half of the wild great tits (Parus major) were trained to eat cryptic prey prior to the introduction of an aposematic prey, which potentially creates a bias against the aposematic morph. Both prey types were equally novel for control birds and they should not have shown any biased reluctance for eating an aposematic prey. Knowledge of cryptic prey reduced the expected initial mortality of the conspicuous morph to a random level whereas control birds initially ate the conspicuous morph according to the visibility risk. Birds learned to avoid conspicuous prey in both treatments but knowledge of cryptic prey did not increase the rate of avoidance learning. Predators' knowledge of cryptic prey did not reduce the predation of the less conspicuous aposematic prey and additionally predators did not learn to avoid the less conspicuous prey. These results indicate that predator psychology, which was shown as reluctance for attacking novel conspicuous prey, might have been important in the evolution of aposematism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号