首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reactive alpha,beta-unsaturated aldehydes are major components of common environmental pollutants and are products of lipid oxidation. Although these aldehydes have been demonstrated to induce apoptotic cell death in various cell types, we recently observed that the alpha,beta-unsaturated aldehyde acrolein (ACR) can inhibit constitutive apoptosis of polymorphonuclear neutrophils and thus potentially contribute to chronic inflammation. The present study was designed to investigate the biochemical mechanisms by which two representative alpha,beta-unsaturated aldehydes, ACR and 4-hydroxynonenal (HNE), regulate neutrophil apoptosis. Whereas low concentrations of either aldehyde (<10 microM) mildly promoted apoptosis in neutrophils (reflected by increased phosphatidylserine exposure, caspase-3 activation, and mitochondrial cytochrome c release), higher concentrations prevented critical features of apoptosis (caspase-3 activation, phosphatidylserine exposure) and caused delayed neutrophil cell death with characteristics of necrosis/oncosis. Inhibition of caspase-3 activation by either aldehyde occurred despite increases in mitochondrial cytochrome c release and occurred in close association with depletion of cellular GSH and with cysteine modifications within caspase-3. However, procaspase-3 processing was also prevented, because of inhibited activation of caspases-9 and -8 under similar conditions, suggesting that ACR (and to a lesser extent HNE) can inhibit both intrinsic (mitochondria dependent) and extrinsic mechanisms of neutrophil apoptosis at initial stages. Collectively, our results indicate that alpha,beta-unsaturated aldehydes can inhibit constitutive neutrophil apoptosis by common mechanisms, involving changes in cellular GSH status resulting in reduced activation of initiator caspases as well as inactivation of caspase-3 by modification of its critical cysteine residue.  相似文献   

2.
Previous studies demonstrate increased levels of 4-hydroxynonenal (HNE) and acrolein in vulnerable brain regions of subjects with mild cognitive impairment and late-stage Alzheimer disease (LAD). Recently preclinical AD (PCAD) subjects, who demonstrate normal antemortem neuropsychological test scores but abundant AD pathology at autopsy, have become the focus of increased study. Levels of extractable HNE and acrolein were quantified by gas chromatography–mass spectrometry with negative chemical ionization, and protein-bound HNE and acrolein were quantified by dot-blot immunohistochemistry in the hippocampus/parahippocampal gyrus (HPG), superior and middle temporal gyri (SMTG), and cerebellum (CER) of 10 PCAD and 10 age-matched normal control (NC) subjects. Results of the analyses show a significant (P < 0.05) increase in levels of extractable acrolein in the HPG of PCAD subjects compared to age-matched NC subjects and a significant decrease in extractable acrolein in PCAD CER. Significant increases in protein-bound HNE in HPG and a significant decrease in CER of PCAD subjects compared to NC subjects were observed. No significant alterations were observed in either extractable or protein-bound HNE or acrolein in the SMTG of PCAD subjects. Additionally, no significant differences in levels of protein carbonyls were observed in the HPG, SMTG, or CER of PCAD subjects compared to NC subjects.  相似文献   

3.
Normal and malignant cells of various origin differ in their sensitivity to oxidative stress. Therefore, we used normal and malignant mesenchymal cells--human osteosarcoma cells (HOS and 143B), human fibroblasts (WI38) and two primary cultures of normal human osteoblasts to test sensitivity to reactive aldehyde 4-hydroxynonenal (HNE), known as a second messenger of free radicals and a signaling molecule. Upon HNE-treatment, decrease in cell viability (by Trypan-blue), apoptosis induction (by TiterTACS TUNEL assay), HNE-protein binding (by HNE-His ELISA) were higher in malignant than in normal cells, while glutathione content was higher in normal cells. These results indicate that HNE affects the growth of malignant mesenchymal cells more than normal and that this effect was mainly related to lower glutathione concentration and higher binding of HNE to the cellular proteins. We thus assume that HNE and GSH homeostasis play an important role in the growth regulation of normal and malignant mesenchymal cells.  相似文献   

4.
The interaction of 4-hydroxynonenal (HNE) with a variety of kinases variously involved in cell signaling is now a matter of active investigation. In particular, findings with regard to the effect of HNE on different components of the protein kinase C family and the mitogen-activated protein kinase complex already provide reliable indications of a potential role of this aldehyde as a cell signal messenger. Such a role appears further supported by the clear-cut evidence of up-regulation of receptor tyrosine kinases and down-regulation of the nuclear factor kappa B system, produced by HNE concentrations actually detectable in pathophysiology.  相似文献   

5.
Covalent modifications of aminophospholipids by 4-hydroxynonenal   总被引:2,自引:0,他引:2  
Lipid oxidation is implicated in a wide range of pathophysiological disorders, which leads to reactive compounds such as aldehydes. Among them 4-hydroxynonenal (4-HNE) reacts strongly with the NH2 groups of amino acids and forms mainly Michael adducts and minor Schiff-base adducts. Such reactions occur also with compounds containing thiol groups. No data are available describing 4-HNE interactions with amino-phospholipids. To investigate such a possibility, 4-HNE was incubated with either phosphatidylethanolamine (PE) or phosphatidylserine (PS) in an aqueous-organic biphasic system and the resulting products were identified by liquid chromatography-mass spectrometry (LC-MS). Our study points out the potential capacity of 4-HNE to react with phospholipids containing amino groups and particularly PE. The main resulting compounds found were a Michael adduct plus a minor Schiff base adduct, which was partly cyclized as a pyrrole derivative via a loss of water. Its stabilization as a pyrrole derivative allows to differentiate 4-HNE from the other aldehydes generated via lipid oxidation (e.g., malondialdehyde, 2-nonenal) that lack the 4-hydroxyl group. Their formation seems not to be affected when the pH varies from 6.5 to 8.5. Surprisingly, PS reacted poorly producing only a small amount of Michael adduct, the Schiff-base adduct being nondetectable. We conclude that such adducts, if they are formed in cell membranes, could alter the phospholipase-dependent cell signaling.  相似文献   

6.
7.
Activation of the cysteine protease caspase-8 by the death receptor Fas (CD95/APO-1) in B lymphoblastoid SKW6.4 cells or Jurkat T cells is associated with GSH depletion. Conversely, GSH depletion by the aldehyde acrolein (3-30 microM) was associated with inhibition of Fas-induced caspase-8 activation, although GSH depletion by buthionine sulfoximine (BSO) did not affect caspase-8 activation. In contrast to BSO, acrolein caused a loss of caspase-8 cysteine content in association with direct alkylation of caspase-8. Our findings indicate that inhibition of caspase-8 by thiol-reactive agents such as acrolein is not due to GSH depletion but caused by direct protein thiol modifications.  相似文献   

8.
Our previous work in perfused rat livers has demonstrated that 4-hydroxynonenal (HNE) is catabolized predominantly via β oxidation. Therefore, we hypothesized that perturbations in β oxidation, such as diet-altered fatty acid oxidation activity, could lead to changes in HNE levels. To test our hypothesis, we (i) developed a simple and sensitive GC/MS method combined with mass isotopomer analysis to measure HNE and HNE analogs, 4-oxononenal (ONE) and 1,4-dihydroxynonene (DHN), and (ii) investigated the effects of four diets (standard, low-fat, ketogenic, and high-fat mix) on HNE, ONE, and DHN concentrations in rat livers. Our results showed that livers from rats fed the ketogenic diet or high-fat mix diet had high ω-6 polyunsaturated fatty acid concentrations and markers of oxidative stress. However, high concentrations of HNE (1.6 ± 0.5 nmol/g) and ONE (0.9 ± 0.2 nmol/g) were found only in livers from rats fed the high-fat mix diet. Livers from rats fed the ketogenic diet had low HNE (0.8 ± 0.1 nmol/g) and ONE (0.4 ± 0.07 nmol/g), similar to rats fed the standard diet. A possible explanation is that the predominant pathway of HNE catabolism (i.e., β oxidation) is activated in the liver by the ketogenic diet. This is consistent with a 10-fold decrease in malonyl-CoA in livers from rats fed a ketogenic diet compared to a standard diet. The accelerated catabolism of HNE lowers HNE and HNE analog concentrations in livers from rats fed the ketogenic diet. On the other hand, rats fed the high-fat mix diet had high rates of lipid synthesis and low rates of fatty acid oxidation, resulting in the slowing down of the catabolic disposal of HNE and HNE analogs. Thus, decreased HNE catabolism from a high-fat mix diet induces high concentrations of HNE and HNE analogs. The results of this work suggest a potential causal relationship to metabolic syndrome induced by Western diets (i.e., high-fat mix), as well as the effects of a ketogenic diet on the catabolism of lipid peroxidation products in liver.  相似文献   

9.
10.
11.
4-hydroxynonenal and neurodegenerative diseases   总被引:12,自引:0,他引:12  
The development of oxidative stress, in which production of highly reactive oxygen species (ROS) overwhelms antioxidant defenses, is a feature of many neurological diseases: ischemic, inflammatory, metabolic and degenerative. Oxidative stress is increasingly implicated in a number of neurodegenerative disorders characterized by abnormal filament accumulation or deposition of abnormal forms of specific proteins in affected neurons, like Alzheimer's disease (AD), Pick's disease, Lewy bodies related diseases, amyotrophic lateral sclerosis (ALS), and Huntington disease. Causes of neuronal death in neurodegenerative diseases are multifactorial. In some familiar cases of ALS mutation in the gene for Cu/Zn superoxide dismutase (SOD1) can be identified. In other neurodegenerative diseases ROS have some, usually not clear, role in early pathogenesis or implications on neuronal death in advanced stages of illness. The effects of oxidative stress on "post-mitotic cells", such as neurons may be cumulative, hence, it is often unclear whether oxidative damage is a cause or consequence of neurodegeneration. Peroxidation of cellular membrane lipids, or circulating lipoprotein molecules generates highly reactive aldehydes among which one of most important is 4-hydroxynonenal (HNE). The presence of HNE is increased in brain tissue and cerebrospinal fluid of AD patients, and in spinal cord of ALS patients. Immunohistochemical studies show presence of HNE in neurofibrilary tangles and in senile plaques in AD, in the cytoplasm of the residual motor neurons in sporadic ALS, in Lewy bodies in neocortical and brain stem neurons in Parkinson's disease (PD) and in diffuse Lewy bodies disease (DLBD). Thus, increased levels of HNE in neurodegenerative disorders and immunohistochemical distribution of HNE in brain tissue indicate pathophysiological role of oxidative stress in these diseases, and especially HNE in formation of abnormal filament deposites.  相似文献   

12.
Kupffer cells are known to participate in the early events of liver injury involving lipid peroxidation. 4-Hydroxy-2,3-(E)-nonenal (4-HNE), a major aldehydic product of lipid peroxidation, has been shown to modulate numerous cellular systems and is implicated in the pathogenesis of chemically induced liver damage. The purpose of this study was to characterize the metabolic ability of Kupffer cells to detoxify 4-HNE through oxidative (aldehyde dehydrogenase; ALDH), reductive (alcohol dehydrogenase; ADH), and conjugative (glutathione S-transferase; GST) pathways. Aldehyde dehydrogenase and GST activity was observed, while ADH activity was not detectable in isolated Kupffer cells. Additionally, immunoblots demonstrated that Kupffer cells contain ALDH 1 and ALDH 2 isoforms as well as GST A4-4, P1-1, Ya, and Yb. The cytotoxicity of 4-HNE on Kupffer cells was assessed and the TD50 value of 32.5+/-2.2 microM for 4-HNE was determined. HPLC measurement of 4-HNE metabolism using suspensions of Kupffer cells incubated with 25 microLM 4-HNE indicated a loss of 4-HNE over the 30-min time period. Subsequent production of 4-hydroxy-2-nonenoic acid (HNA) suggested the involvement of the ALDH enzyme system and formation of the 4-HNE-glutathione conjugate implicated GST-mediated catalysis. The basal level of glutathione in Kupffer cells (1.33+/-0.3 nmol of glutathione per 10(6) cells) decreased significantly during incubation with 4-HNE concurrent with formation of the 4-HNE-glutathione conjugate. These data demonstrate that oxidative and conjugative pathways are primarily responsible for the metabolism of 4-HNE in Kupffer cells. However, this cell type is characterized by a relatively low capacity to metabolize 4-HNE in comparison to other liver cell types. Collectively, these data suggest that Kupffer cells are potentially vulnerable to the increased concentrations of 4-HNE occurring during oxidative stress.  相似文献   

13.
Members of Akt family are highly conserved protein kinase and yet, they show clearly distinct in vivo functions. Here, we have examined the abilities of Akt1 and Akt2 to activate CREB. We found that, in contrast to Akt1 that induces CREB phosphorylation at Ser-133 and CREB target gene expression, Akt2 was unable to induce CREB phosphorylation at Ser-133 in vivo and CREB target gene expression. This difference is specific to CREB as both Akt1 and Akt2 similarly inhibits FoxO1 mediated gene expression. We further showed that the regulatory domain of Akt plays a critical role to confer Akt substrate specificity as substitution of regulatory domain of Akt1 with that of Akt2 abolished the ability of Akt1 to activate CREB. We suggest that the regulatory domain of Akts contributes to the functional difference between Akt1 and Akt2.  相似文献   

14.
4-Hydroxy-2-trans-nonenal (HNE) is a lipid peroxidation product that contributes to the pathophysiology of several diseases with components of oxidative stress. The electrophilic nature of HNE results in covalent adduct formation with proteins, fatty acids and DNA. However, it remains unclear whether enzymes that metabolize HNE avoid inactivation by it. Glutathione transferase A4-4 (GST A4-4) plays a significant role in the elimination of HNE by conjugating it with glutathione (GSH), with catalytic activity toward HNE that is dramatically higher than the homologous GST A1-1 or distantly related GSTs. To determine whether enzymes that metabolize HNE resist its covalent adduction, the rates of adduction of these GST isoforms were compared and the functional effects of adduction on catalytic properties were determined. Although GST A4-4 and GST A1-1 have striking structural similarity, GST A4-4 was insensitive to adduction by HNE under conditions that yield modest adduction of GST A1-1 and extensive adduction of GST P1-1. Furthermore, adduction of GST P1-1 by HNE eliminated its activity toward the substrates 1-chloro-2,4-dinitrobenzene (CDNB) and toward HNE itself. HNE effects on GST A4-4 and A1-1 were less significant. The results indicate that enzymes that metabolize HNE may have evolved structurally to resist covalent adduction by it.  相似文献   

15.
4-hydroxynonenal (HNE) is a major aldehydic product of lipid peroxidation known to exert a multitude of biological, cytotoxic, and signal effects. Mammalian cells possess highly active pathways of HNE metabolism. The metabolic fate of HNE was investigated in various mammalian cells and organs such as hepatocytes, intestinal enterocytes, renal tubular cells, aortic and brain endothelial cells, synovial fibroblasts, neutrophils, thymocytes, heart, and tumor cells. The experiments were carried out at 37 degrees C at initial HNE concentrations between 1 microM--that means in the range of physiological and pathophysiologically relevant HNE levels--to 100 microM. In all cell types which were investigated, 90-95% of 100 microM HNE were degraded within 3 min of incubation. At 1 microM HNE the physiological blood serum level of about 0.1-0.2 microM was restored already after 10-30 s. As primary products of HNE in hepatocytes and other cell types the glutathione-HNE-1:1-conjugate, the hydroxynonenoic acid and the corresponding alcohol of HNE, the 1,4-dihydroxynonene, were identified. Furthermore, the beta-oxidation of hydroxynonenoic acid including the formation of water was demonstrated. The quantitative share of HNE binding to proteins was low with about 2-8% of total HNE consumption. The glycine-cysteine-HNE, cysteine-HNE adducts and the mercapturic acid from glutathione-HNE adduct were not formed in the most cell types, but in kidney cells and neutrophils. The rapid metabolism underlines the role of HNE degrading pathways in mammalian cells as important part of the secondary antioxidative defense mechanisms in order to protect proteins from modification by aldehydic lipid peroxidation products.  相似文献   

16.
DNA-protein cross-links (DPCs) are formed upon exposure to a variety of chemical and physical agents and pose a threat to genomic integrity. In particular, acrolein and related aldehydes produce DPCs, although the chemical linkages for such cross-links have not been identified. Here, we report that oligodeoxynucleotides containing 1,N(2)-deoxyguanosine adducts of acrolein, crotonaldehyde, and trans-4-hydroxynonenal can form cross-links with the tetrapeptide Lys-Trp-Lys-Lys. We concluded that complex formation is mediated by a Schiff base linkage because DNA-peptide complexes were covalently trapped following reduction with sodium cyanoborohydride, and pre-reduction of adducted DNAs inhibited complex formation. A previous NMR study demonstrated that duplex DNA catalyzes ring opening for the acrolein-derived gamma-hydroxy-1,N(2)-propanodeoxyguanosine adduct to yield an aldehydic function (de los Santos, C., Zaliznyak, T., and Johnson, F. (2001) J. Biol. Chem. 276, 9077-9082). Consistent with this earlier observation, the adducts under investigation were more reactive in duplex DNA than in single-stranded DNA, and we concluded that the ring-open aldehydic moiety is the induced tautomer in duplex DNA for adducts exhibiting high relative reactivity. Adducted DNA cross-linked to Arg-Trp-Arg-Arg and Lys-Trp-Lys-Lys with comparable efficiency, and N(alpha)-acetylation of peptides dramatically inhibited trapping; thus, the reactive nucleophile is located at the N-terminal alpha-amine of the peptide. These data suggest that Schiff base chemistry can mediate DPC formation in vivo following the formation of stable aldehyde-derived DNA adducts.  相似文献   

17.
18.
Vascular smooth muscle cell activation and growth by 4-hydroxynonenal   总被引:4,自引:0,他引:4  
The present study examines the signal transduction mechanism that is involved in the growth of vascular smooth muscle cells exposed to 4-hydroxynonenal (HNE) in vitro. This aldehyde component of oxidized low-density lipoprotein has been identified in atherosclerotic lesion. Exposure to HNE caused ERK, JNK, and p38 MAP kinase activation as well as the induction of c-fos and c-jun gene expression. AP-1 activity was also significantly induced by HNE treatment. These intracellular activities appear to be the mechanism of HNE-caused mitogenesis. Indeed, HNE induced vascular smooth muscle cell proliferation as determened by Alamar-Blue assay and stimulated DNA synthesis as determined by bromodeoxyuridine incorporation. These observations are consistent with a role of lipid peroxidation products in vascular smooth muscle cell growth in atherogenesis.  相似文献   

19.
20.
4-hydroxynonenal (HNE), a lipid peroxidation end product, is produced abundantly in osteoarthritic (OA) articular tissues and was recently identified as a potent catabolic factor in OA cartilage. In this study, we provide additional evidence that HNE acts as an inflammatory mediator by elucidating the signaling cascades targeted in OA chondrocytes leading to cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) gene expression. HNE induced COX-2 protein and mRNA levels with accompanying increases in prostaglandin E2 (PGE(2)) production. In contrast, HNE had no effect on basal iNOS expression or nitric oxide (NO) release. However, HNE strongly inhibited IL-1beta-induced iNOS or NO production. Transient transfection experiments revealed that the ATF/CRE site (-58/-53) is essential for HNE-induced COX-2 promoter activation and indeed HNE induced ATF-2 and CREB-1 phosphorylation as well as ATF/CRE binding activity. Overexpression of p38 MAPK enhanced the HNE-induced ATF/CRE luciferase reporter plasmid activation, COX-2 synthesis and promoter activity. HNE abrogated IL-1beta-induced iNOS expression and promoter activity mainly through NF-kappaB site (-5,817/-5,808) possibly via suppression of IKKalpha-induced IkappaBalpha phosphorylation and NF-kappaB/p65 nuclear translocation. Upon examination of upstream signaling components, we found that IKKalpha was inactivated through HNE/IKKalpha adduct formation. Taken together, these findings illustrate the central role played by HNE in the regulation of COX-2 and iNOS in OA. The aldehyde induced selectively COX-2 expression via ATF/CRE activation and inhibited iNOS via IKKalpha inactivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号