首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Females of the sibling silkmoth species Antheraea polyphemus and A. pernyi use the same three sex pheromone components in different ratios to attract conspecific males. Accordingly, the sensory hairs on the antennae of males contain three receptor cells sensitive to each of the pheromone components. In agreement with the number of pheromones used, three different pheromone-binding proteins (PBPs) could be identified in pheromone-sensitive hairs of both species by combining biochemical and molecular cloning techniques. MALDI-TOF MS of sensillum lymph droplets from pheromone-sensitive sensilla trichodea of male A. polyphemus revealed the presence of three major peaks with m/z of 15702, 15752 and 15780 and two minor peaks of m/z 15963 and 15983. In Western blots with four antisera raised against different silkmoth odorant-binding proteins, immunoreactivity was found only with an anti-(Apol PBP) serum. Free-flow IEF, ion-exchange chromatography and Western blot analyses revealed at least three anti-(Apol PBP) immunoreactive proteins with pI values between 4.4 and 4.7. N-Terminal sequencing of these three proteins revealed two proteins (Apol PBP1a and Apol PBP1b) identical in the first 49 amino acids to the already known PBP (Apol PBP1) [Raming, K. , Krieger, J. & Breer, H. (1989) FEBS Lett. 256, 2215-2218] and a new PBP having only 57% identity with this amino-acid region. Screening of antennal cDNA libraries with an oligonucleotide probe corresponding to the N-terminal end of the new A. polyphemus PBP, led to the discovery of full length clones encoding this protein in A. polyphemus (Apol PBP3) and in A. pernyi (Aper PBP3). By screening the antennal cDNA library of A. polyphemus with a digoxigenin-labelled A. pernyi PBP2 cDNA [Krieger, J., Raming, K. & Breer, H. (1991) Biochim. Biophys. Acta 1088, 277-284] a homologous PBP (Apol PBP2) was cloned. Binding studies with the two main pheromone components of A. polyphemus and A. pernyi, the (E,Z)-6, 11-hexadecadienyl acetate (AC1) and the (E,Z)-6,11-hexadecadienal (ALD), revealed that in A. polyphemus both Apol PBP1a and the new Apol PBP3 bound the 3H-labelled acetate, whereas no binding of the 3H-labelled aldehyde was found. In A. pernyi two PBPs from sensory hair homogenates showed binding affinity for the AC1 (Aper PBP1) and the ALD (Aper PBP2), respectively.  相似文献   

2.
A tritium-labeled photoaffinity analog of a moth pheromone was used to covalently modify pheromone-selective binding proteins in the antennal sensillum lymph and sensory dendritic membranes of the male silk moth, Antheraea polyphemus. This analog, (E,Z)-6,11-[3H]hexadecadienyl diazoacetate, allowed visualization of a 15-kilodalton soluble protein and a 69-kilodalton membrane protein in fluorescence autoradiograms of electrophoretically separated antennal proteins. Covalent modification of these proteins was specifically reduced when incubation and UV irradiation were conducted in the presence of excess unlabeled pheromone, (E,Z)-6,11-hexadecadienyl acetate. These experiments constitute the first direct evidence for a membrane protein of a chemosensory neuron interacting in a specific fashion with a biologically relevant odorant.  相似文献   

3.
The first high-level production of a binding-active odorant binding protein is described. The expression cassette polymerase chain reaction was used to generate a DNA fragment encoding the pheromone binding protein (PBP) of the male moth Antheraea polyphemus. Transformation of Escherichia coli cells with a vector containing this construct generated clones which, when induced with isopropyl beta-D-thiogalactopyranoside, produced the 14-kDa PBP in both the soluble fraction and in inclusion bodies. Purification of the soluble recombinant PBP by preparative isoelectric focusing and gel filtration gave > 95% homogeneous protein, which was immunoreactive with an anti-PBP antiserum and exhibited specific, pheromone-displaceable covalent modification by the photoaffinity label [3H]6E,11Z-hexadecadienyl diazoacetate. Recombinant PBP was indistinguishable from the insect-derived PBP, as determined by both native and denaturing gel electrophoresis, immunoreactivity, and photoaffinity labeling properties. Moreover, the insoluble inclusion body protein could be solubilized, refolded, and purified by the same procedures to give a recombinant PBP indistinguishable from the soluble PBP. Proton NMR spectra of the soluble and refolded protein provide further evidence that they possess the same folded structure.  相似文献   

4.
Localized adaptation processes in olfactory sensilla of Saturniid moths   总被引:1,自引:1,他引:0  
Receptor potentials and nerve impulses were recorded extracellularlyfrom the two olfactory cells innervating most sensilla trichodeaon the antenna of male Antheraea polyphemus and Antheraea pemyimoths that respond to two key compounds, the sex pheromone components(E)-6, (Z)-11-hexadecadienyl acetate and (E)-6, (Z)-11-hexadecadienal.Stimulation with the key compound of one receptor cell auto-adaptsthis cell and also cross-adapts the other cell in the same sensillumbut cross-adaptation is weaker than auto-adaptation. Local stimulationexperiments demonstrate that sections of the olfactory receptorcell can be selectively adapted as monitored by the receptorpotential response. The mechanism of impulse generation canadapt separately from the mechanism generating the receptorpotential as indicated by an altered relationship between impulseresponse and receptor potential. These results demonstrate multipleand distributed adaptation processes in an olfactory bipolarneuron as studied in a time domain of seconds. Cross-adaptationmay indicate extracellular alterations caused by excitationof one cell but could also be caused by direct inhibitory actionof the stimulus compound.  相似文献   

5.
Summary Three types of receptor cells responding respectively to the pheromone components (E,Z)-6,11-hexadecadienyl acetate (AC1, (E,Z)-6,11-hexadecadienal (AL) and (E,Z)-4,9-tetradecadienyl acetate (AC2) occur in different combinations in the sensilla trichodea on male antennae ofAntheraea polyphemus andA. pernyi. The numbers of cells sensitive to AC1 and AL and the average sensitivities of these cells are about equal, and higher than those of the AC2-cells. The cells sensitive to AC2 are relatively common in the small hairs positioned on the anterior side of the antenna. The product of three experimental values — (i) the relative number of each cell type, (ii) the average relative sensitivity of the cells and (iii) the estimated relative release rate of the respective pheromone component from the female gland — suggest that the distance from the female over which a compound can be detected or, the potential active space, is different for each pheromone component.Abbreviations EAG electroantennogram - SEM scanning electron microscope  相似文献   

6.
Odorant-binding proteins were studied in the noctuid moths Agrotis segetum, Autographa gamma, Helicoverpa armigera, Heliothis virescens and Spodoptera littoralis using antisera raised against the pheromone-binding protein (PBP) and general odorant-binding protein 2 (GOBP2) of Antheraea polyphemus (Saturniidae). Proteins immunoreacting with these antisera were only found on the antennae and PBP and GOBP2 could be identified on western blots of males and females of all five species. PBPs were predominantly localized in sensilla trichodea and GOBP2 in sensilla basiconica, in good correlation with the stimulus specificity of the receptor cells in these sensilla. In H. armigera and H. virescens the majority of the s. trichodea immunoreacted with the antiserum against PBP of A. polyphemus; in A. segetum, A. gamma and S. littoralis, on the other hand, a high percentage of s. trichodea remained unlabelled. Probably, the PBP expressed in these sensilla is so different that it does not immunoreact with the antiserum used. Such a protein was found by native PAGE of antennal extracts of A. segetum and S. littoralis. These data correlate with the fact that the two heliothine species use pheromones with the same alkyl chain length as A. polyphemus, while the other three species use pheromones with shorter chains. In H. armigera, H. virescens, A. gamma and S. littoralis female antennae were also immunolabelled and a large number of PBP-expressing s. trichodea was consistently found. In S.littoralis this fits with the electrophysiologically recorded high pheromone sensitivity of female s. trichodea, whereas in females of H. armigera and H. virescens no or only weak responses to pheromone stimulation have been reported. Therefore, PBP expression in a sensillum does not necessarily imply pheromone sensitivity of its receptor cells.  相似文献   

7.
8.
A cDNA clone coding for pheromone binding protein was isolated from the antennae of Helicoverpa armigera by RT-PCR and (5'/3')-RACE technique. The full-length of H. armigera pheromone binding protein (HarmPBP) was 952 bp, possessing 162 amino acid residues including a signal peptide of 20 amino acids. Its predicted molecular weight and isoelectric point were 18.26 kDa and 5.23, respectively. This deduced amino acid sequence shared some common structural features with odorant-binding proteins from several moth species, including the six conserved cysteine motif, a typical characteristic of insect's odorant-binding proteins. Northern blot showed that HarmPBP is specifically expressed in the antennae of Helicoverpa armigera and more abundantly expressed in male than female. During the antennal development, HarmPBP is first expressed about 4 days prior to adult eclosion and rises to a plateau 2 days prior to adult eclosion. In order to obtain sufficient PBP for further determining its biochemical and physiological properties, a bacterical expression vector of PBP was constructed and successfully expressed in Escherichia coli. The recombinant PBP was shown to cross-react with an anti-PBP antiserum from Antheraea polyphemus. Polyclonal antibodies against HarmPBP were used to mark the distribution of the protein in olfactory sensilla. Very strong labeling was observed in the sensillum lymph of the hair lumen and of the sensillum-lymph cavity. In the male, HarmPBP is expressed in sensilla trichodea and not in sensilla basiconica, while in the female, it is expressed both in sensilla basiconica and sensilla trichodea.  相似文献   

9.
We have investigated the structural features of three pheromone binding protein (PBP) subtypes from Antheraea polyphemus and monitored possible changes induced upon interaction with the Antheraea pheromonal compounds 4E,9Z-14:Ac [(E4,Z9)-tetradecadienyl-1-acetate], 6E,11Z-16:Ac [(E6,Z11)-hexadecadienyl-1-acetate], and 6E,11Z-16:Al [(E6,Z11)-hexadecadienal]. Circular dichroism and second derivative UV-difference spectroscopy data demonstrate that the structure of subtype PBP1 significantly changes upon binding of 4E,9Z-14:Ac. The related 6E,11Z-16:Ac was less effective and 6E,11Z-16:Al showed only a small effect. In contrast, in subtype PBP2 pronounced structural changes were only induced by the 6E,11Z-16:Al, and the subtype PBP3 did not show any considerable changes in response to the pheromonal compounds. The UV-spectroscopic data suggest that histidine residues are likely to be involved in the ligand-induced structural changes of the proteins, and this notion was confirmed by site-directed mutagenesis experiments. These results demonstrate that appropriate ligands induce structural changes in PBPs and provide evidence for ligand specificity of these proteins. Electronic Publication  相似文献   

10.
Pheromone Binding Proteins (PBPs) are one branch of a multigene family of lepidopteran Odorant Binding Proteins (OBPs) that are known for their relatively high levels of expression in male antennae. However, PBP expression has been observed at low levels in female antennae of the Saturniidae, Bombycidae and Lymantriidae, and at relatively high levels in members of the Noctuiidae. The function of female PBP expression is unclear, as female lepidoptera are consistently noted for their failure to respond physiologically or behaviorally to sex-pheromone. In this study, the sexual dimorphism of PBP expression was examined in the noctuiid moths Helicoverpa zea, Heliothis virescens and Spodoptera frugiperda. A PBP cDNA clone was isolated from female H. zea, PBP-Hzea(f). Northern blot analysis indicated relatively high levels of PBP-Hzea(f) expression in both male and female antennae, though females consistently expressed about 50% that of males. Western blot analysis of male and female PBP expression supported these relative differences. Immunocytochemical analysis indicates discrete expression localized beneath olfactory sensilla of both male and female antennae. These results suggest female noctuiids possess the biochemistry to detect at least components of their sex-pheromone. Alternatively, these results may suggest that PBPs have a more general function in noctuiids, possibly reflecting behavioral and life history differences that distinguish this the Noctuiidae from other Lepidopteran families.  相似文献   

11.
The Chinese tussah silkworm, Antheraea pernyi (Lepidoptera: Saturniidae) produces a rare dienoic sex pheromone composed of (E,Z)-6,11-hexadecadienal, (E,Z)-6,11-hexadecadienyl acetate and (E,Z)-4,9-tetradecadienyl acetate, and for which the biosynthetic routes are yet unresolved. By means of gland composition analyses and in vivo labeling we evidenced that pheromone biosynthesis towards the immediate dienoic gland precursor, the (E,Z)-6,11-hexadecadienoic acid, involves desaturation steps with Δ6 and Δ11 regioselectivity. cDNA cloning of pheromone gland desaturases and heterologous expression in yeast demonstrated that the 6,11-dienoic pheromone is generated from two biosynthetic routes implicating a Δ6 and Δ11 desaturase duo albeit with an inverted reaction order. The two desaturases first catalyze the formation of the (E)-6-hexadecenoic acid or (Z)-11-hexadecenoic acid, key mono-unsaturated biosynthetic intermediates. Subsequently, each enzyme is able to produce the (E,Z)-6,11-hexadecadienoic acid by accommodating its non-respective mono-unsaturated product. Besides elucidating an unusually flexible pheromone biosynthetic pathway, our data provide the first identification of a biosynthetic Δ6 desaturase involved in insect mate communication. The occurrence of this novel Δ6 desaturase function is consistent with an evolutionary scenario involving neo-functionalization of an ancestral desaturase belonging to a gene lineage different from the Δ11 desaturases commonly involved in moth pheromone biosynthesis.  相似文献   

12.
Female moths produce blends of odorant chemicals, called pheromones. These precise chemical mixtures both attract males and elicit appropriate mating behaviors. To locate females, male moths must rapidly detect changes in environmental pheromone concentration. Therefore, the regulation of pheromone concentration within antennae, their chief organ of smell, is important. We describe antennal-specific aldehyde oxidases from the moths Antheraea polyphemus and Bombyx mori that are capable of catabolizing long chain, unsaturated aldehydes such as their aldehyde pheromones. These soluble enzymes are associated uniquely with male and female antennae and have molecular masses of 175 and 130 kDa, respectively. The A. polyphemus aldehyde oxidase has been localized to the olfactory sensilla which contain the pheromone receptor cell dendrites. These same sensilla contain a previously described sensilla-specific esterase that degrades the acetate ester component of A. polyphemus pheromone. We propose that sensillar pheromone-degrading enzymes modulate pheromone concentration in the receptor space and hence play a dynamic role in the pheromone-mediated reproductive behaviors of these animals.  相似文献   

13.
Pophof B 《Chemical senses》2004,29(2):117-125
The sensilla trichodea of the silkmoth Antheraea polyphemus are innervated by three types of receptor neurons each responding specifically to one of three pheromone components. The sensillum lymph of these sensilla surrounding the sensory dendrites contains three different types of pheromone-binding proteins (PBPs) in high concentrations. The sensilla trichodea of the silkmoth Bombyx mori are supplied by two receptor neurons each tuned specifically to one of the two pheromone components bombykol and bombykal, but only one type of PBP has been found so far in these sensilla. Recombinant PBPs of both silkmoth species in various combinations with pheromone components were applied to the receptor neurons via tip-opened sensilla during electrophysiological recordings. Over a fairly broad range of pheromone concentrations the responses of the receptor neurons depended on both, the pheromone component and the type of the PBP. Therefore, the PBPs appear to contribute to the excitation of the receptor neurons. Furthermore, bombykal in combination with the expressed PBP of B. mori failed to activate the corresponding receptor neuron of B. mori, but did so if combined with one of the PBPs of A. polyphemus. Therefore, a still unknown binding protein involved in bombykal transport might be present in B. mori.  相似文献   

14.
One subtype of the pheromone binding proteins of the silkmoth Antheraea polyphemus (ApolPBP1) has been analysed exploiting the two endogenous tryptophan residues as fluorescent probe. The intrinsic fluorescence exhibited a rather narrow spectrum with a maximum at 336 nm. Site-directed mutagenesis experiments revealed that one of the tryptophan residues (Trp37) is located in a hydrophobic environment whereas Trp127 is more solvent exposed, as was predicted modeling the ApolPBP1 sequence on the proposed structure of the Bombyx mori pheromone binding protein. Monitoring the interaction of ApolPBP1 as well as its Trp mutants with the three species-specific pheromone compounds by recording the endogenous fluorescence emission revealed profound differences; whereas (E6,Z11)-hexadecadienal induced a dose-dependent quenching of the fluorescence, both (E6,Z11)-hexadecadienyl-1-acetate and (E4,Z9)-tetradecadienyl-1-acetate elicited an augmentation of the endogenous fluorescence. These data indicate that although ApolPBP1 can bind all three pheromones, there are substantial differences concerning their interaction with the protein, which may have important functional implications.  相似文献   

15.
Pheromone gland extracts from calling female Plodia interpunctella contained at least seven compounds that consistently elicited electroantennographic responses from male antennae upon gas chromatographic analysis. Three of these compounds were found to be the previously identified gland constituents, i.e., (Z,E)-9,12-tetradecadienyl acetate (Z9,E12-14:OAc), (Z,E)-9,12-tetradecadienal (Z9,E12-14:Ald) and (Z,E)-9,12-tetradecadienol (Z9,E12-14:OH). A fourth EAD-active compound was identified as (Z)-9-tetradecenyl acetate (Z9-14:OAc). The homologue (Z)-11-hexadecenyl acetate (Z11-16:OAc) was also identified in the extracts, but showed no EAD activity. The identity of all five compounds was confirmed by comparison of GC retention times and mass spectra with those of synthetic standards. In flight tunnel tests there were no significant differences in response of male P. interpunctella to the bait containing all four EAD-active compounds and the responses to female gland extacts. A behavioural assay of different two-compound blends in the flight tunnel showed that only addition of the corresponding aldehyde to the major pheromone component Z9,E12-14:OAc raised the male response. A subtractive assay, however, revealed that the exclusion of any of the compounds from the complete four-compound blend reduced its activity significantly. We thus conclude that the female-produced sex pheromone of P. interpunctella consists of at least four components, i.e., Z9,E12-14:OAc, Z9,E12-14:Ald, Z9,E12-14:OH and Z9-14:OAc.In a field trapping test performed in a storage facility, the four-component blend attracted significantly more males of P. interpunctella than traps baited with Z9,E12-14:OAc alone. In contrast, the highest number of Ephestia kuehniella males was found in the traps baited with this major component, suggesting that the secondary pheromone components contribute to the species specificity of the blend.  相似文献   

16.
In natural conditions, pheromones released continuously by female moths are broken in discontinuous clumps and filaments. These discontinuities are perceived by flying male moths as periodic variations in the concentration of the stimulus, which have been shown to be essential for location of females. We study analytically and numerically the evolution in time of the activated pheromone-receptor (signaling) complex in response to periodic pulses of pheromone. The 13-reaction model considered takes into account the transport of pheromone molecules by pheromone binding proteins (PBP), their enzymatic deactivation in the perireceptor space and their interaction with receptors at the dendritic membrane of neurons in Antheraea polyphemus sensitive to the main pheromone component. The time-averaged and periodic properties of the temporal evolution of the signaling complex are presented, in both transient and steady states. The same time-averaged response is shown to result from many different pulse trains and to depend hyperbolically on the time-averaged pheromone concentration in air. The dependency of the amplitude of the oscillations of the signaling complex on pulse characteristics, especially frequency, suggests that the model can account for the ability of the studied type of neuron to resolve repetitive pulses up to 2 Hz, as experimentally observed. Modifications of the model for resolving pulses up to 10 Hz, as found in other neuron types sensitive to the minor pheromone components, are discussed.  相似文献   

17.
The gypsy moth, Lymantria dispar, uses (7R, 8S)-cis-2-methyl-7, 8-epoxyoctadecane, (+)-disparlure, as a sex pheromone. The (-) enantiomer of the pheromone is a strong behavioral antagonist. Specialized sensory hairs, sensillae, on the antennae of male moths detect the pheromone. Once the pheromone enters a sensillum, the very abundant pheromone binding protein (PBP) transports the odorant to the sensory neuron. We have expressed the two PBPs found in gypsy moth antennae, PBP1 and PBP2, and we have studied the affinity of these recombinant PBPs for the enantiomers of disparlure. To study pheromone binding under equilibrium conditions, we developed and validated a binding assay. We have addressed the two major problems with hydrophobic ligands in aqueous solution: (1) concentration-dependent adsorption of the ligand on vial surfaces and (2) separation of the protein-bound ligand from the material remaining free in solution. We used this assay to demonstrate for the first time that pheromone binding to PBP is reversible and that the two PBPs from L. dispar differ in their enantiomer binding preference. PBP1 has a higher affinity for the (-) enantiomer, while PBP2 has a higher affinity for the (+) enantiomer. The PBP from the wild silk moth, Antheraea polyphemus (Apol-3) bound the disparlure enantiomers more weakly than either of the L. dispar PBPs, but Apol-3 was also able to discriminate the enantiomers. We have observed extensive aggregation of both L. dispar PBPs and an increase in pheromone binding at high (>2 microM) PBP concentrations. We present a model of disparlure binding to the two PBPs.  相似文献   

18.
斜纹夜蛾性信息素通讯系统   总被引:11,自引:1,他引:10  
孙凡  胡隐月  杜家纬 《昆虫学报》2002,45(3):404-407
采用单雌腺体微量分析技术,对斜纹夜蛾(中国种群)雌蛾腺体的组份进行鉴定,并研究了各组份的个体差异及释放规律,测试了雄蛾对各组份及其混合物的触角电位反应。雌蛾腺体内含有4个组份:Z9, E11-14∶Ac(A)、Z9, E12-14∶Ac(B)、Z9-14∶Ac© 和E11-14∶Ac(D),其比例为100∶27∶20∶27。  相似文献   

19.
中国印度谷螟性信息素次级组份的研究   总被引:1,自引:0,他引:1  
印度谷螟是我国危害性较严重的仓储害虫之一,食性很广,几乎危害每一种植物性仓储物.印度谷螟雌虫性信息素主要成份顺9,反12-十四碳二烯醇醋酸酯(TDA)早已被鉴定,并利用TDA单一组份诱捕印度谷螟雄蛾也较为有效,但该虫的完整信息素系统尚不清楚.本研究采用单个雌蛾性信息素腺体抽提技术,利用毛细管气相色谱GC保留时间定性方法和气质联用GC-MS分析鉴定技术,从印度谷螟雌虫腺体提取物中鉴定了顺9,反12-十四碳二烯醇醋酸酯(A),顺9,反12-十四碳二烯醇(B),顺9,反12-十四碳二烯醛(C)和顺9-十四碳醋酸醋(D)4种主要信息素成份,其比例为A∶B∶C∶D=100∶22∶12∶9.风洞试验结果表明,以该4种主要成分按A∶B∶C∶D=8∶2∶1∶0.8比例配制成的诱芯,其引诱雄蛾的活性接近于雌蛾腺体提取物.  相似文献   

20.
Binding properties of six heterologously expressed pheromone-binding proteins (PBPs) identified in the silkmoths Antheraea polyphemus and Antheraea pernyi were studied using tritium-labelled pheromone components, (E,Z)-6,11-hexadecadienyl acetate (3H-Ac1) and (E,Z)-6,11-hexadecadienal (3H-Ald), common to both species. In addition, a known ligand of PBP and inhibitor of pheromone receptor cells, the tritium-labelled esterase inhibitor decyl-thio-1,1,1-trifluoropropanone (3H-DTFP), was tested. The binding of ligands was measured after native gel electrophoresis and cutting gel slices. In both species, PBP1 and PBP3 showed binding of 3H-Ac1. In competition experiments with 3H-Ac1 and the third unlabelled pheromone component, (E,Z)-4,9-tetradecadienyl acetate (Ac2), the PBP1 showed preferential binding of Ac1, whereas PBP3 preferentially bound Ac2. The PBP2 of both species bound 3H-Ald only. All of the six PBPs strongly bound 3H-DTFP. Among unlabelled pheromone derivatives, alcohols were revealed to be the best competitors for 3H-Ac1 and 3H-Ald bound to PBPs. No pH influence was found for 3H-Ac1 binding to, or its release from, the PBP3 of A. polyphemus and A. pernyi between pH 4.0 and pH 7.5. The data indicate binding preference of each of the three PBP-subtypes (1–3) for a specific pheromone component and support the idea that PBPs contribute to odour discrimination, although to a smaller extent than receptor activation.Abbreviations Ac1 (E,Z)-6,11-hexadecadienyl acetate - Ac2 (E,Z)-4,9-tetradecadienyl acetate - Ald (E,Z)-6,11-hexadecadienal - AMA 1-amino-anthracene - cpm counts per min - DTFP decyl-thio-1,1,1-trifluoropropanone - ES-MS electrospray mass spectrometry - OH (E,Z)-6,11-hexadecadienol - PAGE polyacrylamide gel electrophoresis - PCR polymerase chain reaction - PBP pheromone-binding protein - SDS sodium dodecyl sulphate - Z-11 OH Z-11 hexadecenolCommunicated by G. Heldmaier  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号