首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
多发性硬化(MS)是主要以中枢神经系统(CNS)白质脱髓鞘病变为主要特点的自身免疫性疾病。生物标记物是中枢神经系统自身免疫性疾病病因、诊断和预后的重要参考因素,因为他们可能反映遗传以及环境变化所引起的某些免疫反应的存在,性质和强度。因此生物标记有助于MS的早期诊断和鉴别诊断,指导治疗方案,推断MS疾病活动性,以及判断疗效。本文概述了多发性硬化领域当前的生物标记物研究状况及其相关的临床实践,并通过对三种具有较大潜力的生物标记物与病理的特异性、灵敏度、可靠性和临床实用工具进行分析,以确定最优化的治疗以防止致残,同时还可以对疾病修饰药物的有效性进行测试。  相似文献   

2.

Background  

The goal of this research was to compare the demographics, clinical characteristics and treatment patterns for newly diagnosed multiple sclerosis (MS) patients in a commercial managed care population who received disease-modifying drug (DMD) therapy versus those not receiving DMD therapy.  相似文献   

3.
Sphingolipids represent an essential class of lipids found in all eukaryotes, and strongly influence cellular signal transduction. Autoimmune diseases like asthma and multiple sclerosis (MS) are mediated by the sphingosine-1-phosphate receptor 1 (S1P1) to express a variety of symptoms and disease patterns. Inspired by its natural substrate, an array of artificial sphingolipid derivatives has been developed to target this specific G protein-coupled receptor (GPCR) in an attempt to suppress autoimmune disorders. FTY720, also known as fingolimod, is the first oral disease-modifying therapy for MS on the market. In pursuit of improved stability, bioavailability, and efficiency, structural analogues of this initial prodrug have emerged over time. This review covers a brief introduction to the sphingolipid metabolism, the mechanism of action on S1P1, and an updated overview of synthetic sphingosine S1P1 agonists.  相似文献   

4.
Multiple sclerosis (MS), an inflammatory, demyelinating disease of the central nervous system (CNS), is thought to be caused by a T cell-mediated attack on CNS myelin and axons. Recombinant interferon (IFN)-beta is an established treatment of multiple sclerosis, and is known to reduce the number of disease relapses and the development of irreversible symptoms and signs of disease. The mechanism of action of IFN-beta treatment is, however, not completely understood. Previous studies have suggested major effects on mononuclear cell cytokine production and T cell migration, but results have been inconsistent. We found decreases in CD4 and CD8 T cell expression of the CD49d/VLA-4 molecule, increases in plasma concentrations of soluble vascular cell adhesion molecule (sVCAM-1), and increases in plasma concentrations of tumor necrosis factor and interleukin (IL)-12 p40 chain in patients with MS who were initiated on de novo treatment with IFN-beta1b. We found only minor associations between the different changes induced by IFN-beta1b-treatment. Our findings are consistent with changes in T cell expression of CD49d/VLA-4 and induction of sVCAM-1 as important effects of treatment with IFN-beta1b in multiple sclerosis, whereas the role of changes in TNF and IL-12 p40 chain concentrations is more difficult to interpret.  相似文献   

5.
Abstract: Excessive nitric oxide/peroxynitrite generation has been implicated in the pathogenesis of multiple sclerosis, and the demonstration of increased astrocytic nitric oxide synthase activity in the postmortem brain of multiple sclerosis patients supports this hypothesis. Interferon-β is used for the treatment of multiple sclerosis, but currently little is known regarding its mode of action. Exposure of astrocytes in culture to interferon-γ plus lipopolysaccharide results in stimulation of nitric oxide release. Using a coculture system, we have been able to use astrocytes as a source of nitric oxide/peroxynitrite in an attempt to "model" the effects of raised cytokine levels observed in multiple sclerosis and to monitor the effect on neurones. Our results indicate that stimulation of astrocytic nitric oxide synthase activity causes significant damage to the mitochondrial activities of complexes II/III and IV of neighbouring neurones. This damage was prevented by a nitric oxide synthase inhibitor, suggesting that the damage was nitric oxide-mediated. Furthermore, interferon-α/β also prevented this damage. In view of these results, we suggest that a possible mechanism of action of interferon-β in the treatment of multiple sclerosis is that it prevents astrocytic nitric oxide production, thereby limiting damage to neighbouring cells, such as neurones.  相似文献   

6.
Multiple sclerosis (MS), the most common disabling neurologic disease of young adults, is considered a classical T cell-mediated disease and is characterized by demyelination, axonal damage, and progressive neurological dysfunction. The currently available disease-modifying therapies are limited in their efficacy, and improved understanding of new pathways contributing to disease pathogenesis could reveal additional novel therapeutic targets. The p38 mitogen-activated protein kinase (MAPK) signaling pathway is known to be triggered by stress stimuli and to contribute to inflammatory responses. Importantly, a number of recent studies have identified this signaling pathway as a central player in MS and its principal animal model, experimental allergic encephalomyelitis. Here, we review the evidence from mouse and human studies supporting the role of p38 MAPK in regulating key immunopathogenic mechanisms underlying autoimmune inflammatory disease of the central nervous system and the potential of targeting this pathway as a disease-modifying therapy in MS.  相似文献   

7.
Peroxisome proliferator-activated receptors (PPARs) play key roles in lipid metabolism and inflammation. Recent studies indicated that PPARs are also capable of modulating immune responses. Microglia and astrocytes are cells resident to the central nervous system (CNS) that function to protect against environmental insults including pathogens. However, following CNS inflammation, reactive gliosis occurs which is characterized by astrocyte hypertrophy and increased glial proliferation. Under such conditions, glia can become chronically activated and may contribute to the neuropathology associated with a variety of neuroinflammatory disorders including multiple sclerosis (MS), Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and stroke. A review of the role of PPAR agonists in modulating glial cell activation is presented. Included is a discussion of the molecular mechanisms of action of these PPAR agonists and the potential utility of these agents for the treatment of neuroinflammatory disorders.  相似文献   

8.
Osteoarthritis (OA) is a degenerative joint disease characterized by progressive loss of articular cartilage, subchondral bone sclerosis, osteophyte formation, and synovial inflammation, causing substantial physical disability, impaired quality of life, and significant health care utilization. Traditionally, non-steroidal anti-inflammatory drugs (NSAIDs), including selective cyclooxygenase (COX)-2 inhibitors, have been used to treat pain and inflammation in OA. Besides its anti-inflammatory properties, evidence is accumulating that celecoxib, one of the selective COX-2 inhibitors, has additional disease-modifying effects. Celecoxib was shown to affect all structures involved in OA pathogenesis: cartilage, bone, and synovium. As well as COX-2 inhibition, evidence indicates that celecoxib also modulates COX-2-independent signal transduction pathways. These findings raise the question of whether celecoxib, and potentially other coxibs, is more than just an anti-inflammatory and analgesic drug. Can celecoxib be considered a disease-modifying osteoarthritic drug? In this review, these direct effects of celecoxib on cartilage, bone, and synoviocytes in OA treatment are discussed.  相似文献   

9.
神经酸是大脑神经细胞和组织中的一种核心天然成分,具有特殊的生物学功能, 对人体健康尤其是脑健康起到至关重要的作用。综述神经酸的生物功能和作用机制、神经酸的制备(包括从元宝枫油中提取分离、化学合成及转基因生物合成)以及神经酸在预防和治疗脑病(包括多发性硬化症、肾上腺脑白质营养不良、Zellweger 综合征、阿尔茨海默病等)中的应用研究进展。  相似文献   

10.

Background

Several studies reported olfactory dysfunction in patients with multiple sclerosis. The estimate of the incidence of olfactory deficits in multiple sclerosis is uncertain; this may arise from different testing methods that may be influenced by patients'' response bias and clinical, demographic and cognitive features.

Aims

To evaluate objectively the olfactory function using Olfactory Event Related Potentials.

Materials and Methods

We tested the olfactory function of 30 patients with relapsing remitting multiple sclerosis (mean age of 36.03±6.96 years) and of 30 age, sex and smoking–habit matched healthy controls by using olfactory potentials. A selective and controlled stimulation of the olfactory system to elicit the olfactory event related potentials was achieved by a computer-controlled olfactometer linked directly with electroencephalograph. Relationships between olfactory potential results and patients'' clinical characteristics, such as gender, disability status score, disease-modifying therapy, and disease duration, were evaluated.

Results

Seven of 30 patients did not show olfactory event related potentials. Sixteen of remaining 23 patients had a mean value of amplitude significantly lower than control group (p<0.01). The presence/absence of olfactory event related potentials was associated with dichotomous expanded disability status scale (p = 0.0433), as well as inversely correlated with the disease duration (r = −0.3641, p = 0.0479).

Conclusion

Unbiased olfactory dysfunction of different severity found in multiple sclerosis patients suggests an organic impairment which could be related to neuroinflammatory and/or neurodegenerative processes of olfactory networks, supporting the recent findings on neurophysiopathology of disease.  相似文献   

11.
We have investigated the role of human endogenous retroviruses in multiple sclerosis by analyzing the DNA of patients and controls in 4 cohorts for associations between multiple sclerosis and polymorphisms near viral restriction genes or near endogenous retroviral loci with one or more intact or almost-intact genes. We found that SNPs in the gene TRIM5 were inversely correlated with disease. Conversely, SNPs around one retroviral locus, HERV-Fc1, showed a highly significant association with disease. The latter association was limited to a narrow region that contains no other known genes. We conclude that HERV-Fc1 and TRIM5 play a role in the etiology of multiple sclerosis. If these results are confirmed, they point to new modes of treatment for multiple sclerosis.  相似文献   

12.
The formation of antibodies to interferon-beta (IFN-beta), a protein-based disease-modifying agent for multiple sclerosis (MS), is a problem in clinical practice. These antibodies may neutralize the biological effects of the protein drug, potentially decreasing its therapeutic effects. By high-resolution HLA class I and II typing we identified two HLA class II alleles associated with the development of antibodies to IFN-beta. In two independent continuous and binary-trait association studies, HLA-DRB1*0401 and HLA-DRB1*0408 (odds ratio: 5.15)--but not other HLA alleles--were strongly associated with the development of binding and neutralizing antibodies to IFN-beta. The associated HLA-DRB1*04 alleles differ from nonassociated HLA-DRB1*04 alleles by a glycine-to-valine substitution in position 86 of the epitope-binding alpha-helix of the HLA class II molecule. The peptide-binding motif of HLA-DRB1*0401 and *0408 might promote binding and presentation of an immunogenic peptide, which may eventually break T cell tolerance and facilitate antibody development to IFN-beta. In summary, we identified genetic factors determining the immunogenicity of IFN-beta, a protein-based disease-modifying agent for the treatment of MS.  相似文献   

13.
MS (multiple sclerosis) is a chronic autoimmune and neurodegenerative pathology of the CNS (central nervous system) affecting approx. 2.5 million people worldwide. Current and emerging DMDs (disease-modifying drugs) predominantly target the immune system. These therapeutic agents slow progression and reduce severity at early stages of MS, but show little activity on the neurodegenerative component of the disease. As the latter determines permanent disability, there is a critical need to pursue alternative modalities. VIP (vasoactive intestinal peptide) and PACAP (pituitary adenylate cyclase-activating peptide) have potent anti-inflammatory and neuroprotective actions, and have shown significant activity in animal inflammatory disease models including the EAE (experimental autoimmune encephalomyelitis) MS model. Thus, their receptors have become candidate targets for inflammatory diseases. Here, we will discuss the immunomodulatory and neuroprotective actions of VIP and PACAP and their signalling pathways, and then extensively review the structure–activity relationship data and biophysical interaction studies of these peptides with their cognate receptors.  相似文献   

14.
Amyotrophic Lateral Sclerosis is a fatal, progressive neurodegenerative disease characterized by loss of motor neuron function for which there is no effective treatment. One of the main difficulties in developing new therapies lies on the multiple events that contribute to motor neuron death in amyotrophic lateral sclerosis. Several pathological mechanisms have been identified as underlying events of the disease process, including excitotoxicity, mitochondrial dysfunction, oxidative stress, altered axonal transport, proteasome dysfunction, synaptic deficits, glial cell contribution, and disrupted clearance of misfolded proteins. Our approach in this study was based on a holistic vision of these mechanisms and the use of computational tools to identify polypharmacology for targeting multiple etiopathogenic pathways. By using a repositioning analysis based on systems biology approach (TPMS technology), we identified and validated the neuroprotective potential of two new drug combinations: Aliretinoin and Pranlukast, and Aliretinoin and Mefloquine. In addition, we estimated their molecular mechanisms of action in silico and validated some of these results in a well-established in vitro model of amyotrophic lateral sclerosis based on cultured spinal cord slices. The results verified that Aliretinoin and Pranlukast, and Aliretinoin and Mefloquine promote neuroprotection of motor neurons and reduce microgliosis.  相似文献   

15.
The voltage-gated K+ (Kv) channel blocker 4-aminopyridine (4-AP) is used to target symptoms of the neuroinflammatory disease multiple sclerosis (MS). By blocking Kv channels, 4-AP facilitates action potential conduction and neurotransmitter release in presynaptic neurons, lessening the effects of demyelination. Because they conduct inward Na+ and Ca2+ currents that contribute to axonal degeneration in response to inflammatory conditions, acid-sensing ion channels (ASICs) contribute to the pathology of MS. Consequently, ASICs are emerging as disease-modifying targets in MS. Surprisingly, as first demonstrated here, 4-AP inhibits neuronal degenerin/epithelial Na+ (Deg/ENaC) channels, including ASIC and BLINaC. This effect is specific for 4-AP compared with its heterocyclic base, pyridine, and the related derivative, 4-methylpyridine; and akin to the actions of 4-AP on the structurally unrelated Kv channels, dose- and voltage-dependent. 4-AP has differential actions on distinct ASICs, strongly inhibiting ASIC1a channels expressed in central neurons but being without effect on ASIC3, which is enriched in peripheral sensory neurons. The voltage dependence of the 4-AP block and the single binding site for this inhibitor are consistent with 4-AP binding in the pore of Deg/ENaC channels as it does Kv channels, suggesting a similar mechanism of inhibition in these two classes of channels. These findings argue that effects on both Kv and Deg/ENaC channels should be considered when evaluating the actions of 4-AP. Importantly, the current results are consistent with 4-AP influencing the symptoms of MS as well as the course of the disease because of inhibitory actions on Kv and ASIC channels, respectively.  相似文献   

16.
The anti-oxidant lipoic acid (LA) potently suppresses clinical and pathologic disease in the animal model of multiple sclerosis, experimental autoimmune encephalomyelitis, by inhibiting the migration of pathogenic T cells to the spinal cord. The mechanism by which this occurs is largely unknown. In this report we demonstrate that LA induces increases in cyclic AMP, a known immunosuppressant, in human T cells. The increase in cAMP is associated with increased adenylyl cyclase activity and is partially blocked by prostanoid receptor antagonists. We present evidence that LA also stimulates cAMP production in natural killer (NK) cells. This novel mechanism of action is highly relevant to the immunomodulatory effects of LA and provides further support for the study of LA as a therapeutic agent for multiple sclerosis and other autoimmune diseases.  相似文献   

17.
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with a complex etiology. Sirtuins have been implicated as disease-modifying factors in several neurological disorders, and in the past decade, attempts have been made to check if manipulating Sirtuin activities and levels could confer benefit in terms of neuroprotection and survival in ALS models. The efforts have largely focused on mutant SOD1, and while limited in scope, the results were largely positive. Here, the body of work linking Sirtuins with ALS is reviewed, with discussions on how Sirtuins and their activities may impact on the major etiological mechanisms of ALS. Moving forward, it is important that the potentially beneficial effect of Sirtuins in ALS disease onset and progression are assessed in ALS models with TDP-43, FUS, and C9orf72 mutations.  相似文献   

18.
The cannabinoid system is immunomodulatory and has been targeted as a treatment for the central nervous system (CNS) autoimmune disease multiple sclerosis. Using an animal model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE), we investigated the role of the CB(1) and CB(2) cannabinoid receptors in regulating CNS autoimmunity. We found that CB(1) receptor expression by neurons, but not T cells, was required for cannabinoid-mediated EAE suppression. In contrast, CB(2) receptor expression by encephalitogenic T cells was critical for controlling inflammation associated with EAE. CB(2)-deficient T cells in the CNS during EAE exhibited reduced levels of apoptosis, a higher rate of proliferation and increased production of inflammatory cytokines, resulting in severe clinical disease. Together, our results demonstrate that the cannabinoid system within the CNS plays a critical role in regulating autoimmune inflammation, with the CNS directly suppressing T-cell effector function via the CB(2) receptor.  相似文献   

19.
Macrophage migration inhibitory factor (MIF) is a cytokine that plays a critical role in the regulation of macrophage effector functions and T cell activation. However, its role in the pathogenesis of T cell-mediated autoimmune diseases, such as experimental autoimmune encephalomyelitis (EAE), has remained unresolved. In this study, we report that anti-MIF Ab treatment of SJL mice with acute EAE improved the disease severity and accelerated the recovery. Furthermore, the anti-MIF treatment impaired the homing of neuroantigen-reactive pathogenic T cells to the CNS in a VCAM-1-dependent fashion. Interestingly, MIF blockade also decreased the clonal size of the neuroantigen-specific Th1 cells and increased their activation threshold. Taken together, the results demonstrate an important role for MIF in the pathogenesis of EAE/multiple sclerosis and suggest that MIF blockade may be a promising new strategy for the treatment of multiple sclerosis.  相似文献   

20.
维生素D不仅在骨骼代谢及钙平衡中发挥着重要作用,而且具有免疫调节、抗炎及神经细胞保护功能等。这提示我们,VD在自身免疫性疾病如多发性硬化中可能发挥着重要的作用。流行病学调查及临床数据显示,低VD水平或VD代谢失调是诱发多发性硬化的危险因素之一。另有研究报道,VD血清浓度与多发性硬化的疾病活动和进展呈反相关。但是,这些数据并不是没有争议的,VD在多发性硬化治疗和预防中的作用还有着很多需要回答的问题。现有的以VD补充作为治疗MS措施的临床干预研究中得到的临床数据并不具备得出结论的能力,并且有些数据之间甚至是相互矛盾。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号