首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In an effort to develop better orthopedic implants, osteoblast (bone-forming cells) adhesion was determined on microscale patterns (30 microm lines) of carbon nanofibers placed on polymer substrates. Patterns of carbon nanofibers (CNFs) on a model polymer (polycarbonate urethane [PCU]) were developed using an imprinting method that placed CNFs in selected regions. Results showed the selective adhesion and alignment of osteoblasts on CNF patterns placed on PCU. Results also showed greater attraction forces between fibronectin and CNF (compared with PCU) patterns using atomic force microscope force-displacement curves. Because fibronectin is a protein that mediates osteoblast adhesion, these results provide a mechanism of why osteoblast adhesion was directed towards CNF patterns. Lastly, this study showed that the directed osteoblast adhesion on CNF patterns translated to enhanced calcium phosphate mineral deposition along linear patterns of CNFs on PCU. Since CNFs are conductive materials, this study formulated substrates that through electrical stimulation could be used in future investigations to further promote osteoblasts to deposit anisotropic patterns of calcium-containing mineral similar to that observed in long bones.  相似文献   

2.
Functional tissue engineering of connective tissues such as the anterior cruciate ligament (ACL) remains a significant clinical challenge, largely due to the need for mechanically competent scaffold systems for grafting, as well as a reliable cell source for tissue formation. We have designed an aligned, polylactide-co-glycolide (PLGA) nanofiber-based scaffold with physiologically relevant mechanical properties for ligament regeneration. The objective of this study is to identify optimal tissue engineering strategies for fibroblastic induction of human mesenchymal stem cells (hMSC), testing the hypothesis that basic fibroblast growth factor (bFGF) priming coupled with tensile loading will enhance hMSC-mediated ligament regeneration. It was observed that compared to the unloaded, as well as growth factor-primed but unloaded controls, bFGF stimulation followed by physiologically relevant tensile loading enhanced hMSC proliferation, collagen production and subsequent differentiation into ligament fibroblast-like cells, upregulating the expression of types I and III collagen, as well as tenasin-C and tenomodulin. The results of this study suggest that bFGF priming increases cell proliferation, while mechanical stimulation of the hMSCs on the aligned nanofiber scaffold promotes fibroblastic induction of these cells. In addition to demonstrating the potential of nanofiber scaffolds for hMSC-mediated functional ligament tissue engineering, this study yields new insights into the interactive effects of chemical and mechanical stimuli on stem cell differentiation.  相似文献   

3.
In the body, vascular cells continuously interact with tissues that possess nanostructured surface features due to the presence of proteins (such as collagen and elastin) embedded in the vascular wall. Despite this fact, vascular stents intended to restore blood flow do not have nanoscale surface features but rather are smooth at the nanoscale. As the first step towards creating the next generation of vascular stent materials, the objective of this in vitro study was to investigate vascular cell (specifically, endothelial, and vascular smooth muscle cell) adhesion on nanostructured compared with conventional commercially pure (cp) Ti and CoCrMo. Nanostructured cp Ti and CoCrMo compacts were created by separately utilizing either constituent cp Ti or CoCrMo nanoparticles as opposed to conventional micron-sized particles. Results of this study showed for the first time increased endothelial and vascular smooth muscle cell adhesion on nanostructured compared with conventional cp Ti and CoCrMo after 4 hours' adhesion. Moreover, compared with their respective conventional counterparts, the ratio of endothelial to vascular smooth muscle cells increased on nanostructured cp Ti and CoCrMo. In addition, endothelial and vascular smooth muscle cells had a better spread morphology on the nanostructured metals compared with conventional metals. Overall, vascular cell adhesion was better on CoCrMo than on cp Ti. Results of surface characterization studies demonstrated similar chemistry but significantly greater root-mean-square (rms) surface roughness as measured by atomic force microscopy (AFM) for nanostructured compared with respective conventional metals. For these reasons, results from the present in vitro study provided evidence that vascular stents composed of nanometer compared with micron-sized metal particles (specifically, either cp Ti or CoCrMo) may invoke cellular responses promising for improved vascular stent applications.  相似文献   

4.
Controlling cell adhesion and cell differentiation is necessary to fabricate a tissue with arbitrary properties for tissue engineering applications. A substrate with a porous structure as a cell scaffold allows the diffusion of the cell culture medium through the scaffold. In this work, we show that the femtosecond laser fabricated micro through‐holes in biodegradable polymer films, enhance myoblast adhesion, and accelerates proliferation and differentiation. ChR2‐C2C12 and UT‐C2C12 cells were seeded on the films with micro through‐holes each fabricated by a single femtosecond laser pulse. Cell adhesion was enhanced on films with holes fabricated by laser irradiation. In addition, cell proliferation was accelerated on films with micro through‐holes that penetrate the film, compared to on films with micro craters that do not penetrate the film. On films with arrays consisting of micro through‐holes, cells aligned along the arrays and cell fusion was enhanced, indicating the acceleration of cell differentiation.  相似文献   

5.
以小鼠胚胎干细胞(ES)为种子细胞,使用改良的4-/4+ RA方案,诱导小鼠ES细胞在丝素材料上向神经细胞分化,探讨丝素材料对其生长、黏附、分化等情况的影响。将小鼠ES细胞悬浮培养4 d得到的拟胚体(EBs)分别接种到经丝素膜和明胶包被的培养皿上进行诱导,比较不同材料上EBs的贴壁率及向神经元分化的比率。结果表明EBs在明胶和柞蚕丝素蛋白膜(TSF)上贴壁较快,平均贴壁率为90.3%和84.4%,在桑蚕丝素蛋白膜(SF)上贴壁较慢,贴壁率低,仅为38.5%,同时三者神经元的分化比率均能达到40%以上,无明显差异。通过以上实验,我们得出,TSF有望成为小鼠ES细胞向神经细胞分化的支架材料。  相似文献   

6.
Embryonic stem cells (ESCs) are an important source of cardiomyocytes for regenerating injured myocardium. The successful use of ESC-derived cardiomyocytes in cardiac tissue engineering requires an understanding of the important scaffold properties and culture conditions to promote cell attachment, differentiation, organization, and contractile function. The goal of this work was to investigate how scaffold architecture and coculture with fibroblasts influences the differentiated phenotype of murine ESC-derived cardiomyocytes (mESCDCs). Electrospinning was used to process an elastomeric biodegradable polyurethane (PU) into aligned or unaligned fibrous scaffolds. Bioreactor produced mESCDCs were seeded onto the PU scaffolds either on their own or after pre-seeding the scaffolds with mouse embryonic fibroblasts (MEFs). Viable mESCDCs attached to the PU scaffolds and were functionally contractile in all conditions tested. Importantly, the aligned scaffolds led to the anisotropic organization of rod-shaped cells, improved sarcomere organization, and increased mESCDC aspect ratio (length-to-diameter ratio) when compared to cells on the unaligned scaffolds. In addition, pre-seeding the scaffolds with MEFs improved mESCDC sarcomere formation compared to mESCDCs cultured alone. These results suggest that both fiber alignment and pre-treatment of scaffolds with fibroblasts improve the differentiation of mESCDCs and are important parameters for developing engineered myocardial tissue constructs using ESC-derived cardiac cells.  相似文献   

7.
Renal failures treatment has been faced with several problems during the last decades. Kidney tissue engineering has been created many hopes to improve treatment procedures with scaffold fabrication that can modulate kidney cells/stem cells migration to the lesion site and increase the survival of these cells at that site with imitating the role of the kidney extracellular matrix. In this study, bone morphogenetic protein-7 (BMP7) as a vital factor for kidney development and regeneration was incorporated in the polycaprolactone (PCL) nanofibers and after morphological, mechanical, and biocompatible characterization, proliferation, and survival of the human embryonic kidney cells (HEK) were investigated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), flow cytometry, and gene expression while cultured on scaffolds. Mechanical properties of the PCL nanofibers modulated after combining with BMP7 and hydration degree, protein adsorption and cell adhesion were enhanced in PCL-BMP7 compared to the pure PCL. Proliferation rate and growth increased significantly in HEK cells cultured on PCL-BMP7 when compared with that of PCL and tissue culture plate, whereas these data were also confirmed via significant decrease in apoptotic genes expression level in HEK cell cultured on PCL-BMP7. According to the results, PCL-BMP7 demonstrated positive effects on the survival and proliferation rate of the kidney cells and showed has also a great potential to use as a bioimplant for kidney tissue engineering applications.  相似文献   

8.
Bone-marrow-derived mesenchymal stem cells (MSCs) can differentiate into a variety of cell types including smooth muscle cells (SMCs). We have attempted to demonstrate that, following treatment with transforming growth factor-beta 1 (TGF-beta1) and ascorbic acid (AA), human bone-marrow-derived MSCs differentiate into the SMC lineage for use in tissue engineering. Quantitative polymerase chain reaction for SMC-specific gene (alpha smooth muscle actin, h1-calponin, and SM22alpha) expression was performed on MSCs, which were cultured with various concentrations of TGF-beta1 or AA. TGF-beta1 had a tendency to up-regulate the expression of SMC-specific genes in a dose-dependent manner. The expression of SM22alpha was significantly up-regulated by 30 muM AA. We also investigated the additive effect of TGF-beta1 and AA for differentiation into SMCs and compared this effect with that of other factors including platelet-derived growth factor BB (PDGF-BB). In addition to SMC-specific gene expression, SMC-specific proteins increased by two to four times when TGF-beta1 and AA were used together compared with their administration alone. PDGF did not increase the expression of SMC-specific markers. MSCs cultured with TGF-beta1 and AA did not differentiate into osteoblasts and adipocytes. These results suggest that a combination of TGF-beta1 and AA is useful for the differentiation of MSCs into SMCs for use in tissue engineering.  相似文献   

9.
The study objectives were to quantify the time- and magnitude-dependence of flow-induced alignment in vascular smooth muscle cells (SMC) and to identify pathways related to the orientation process. Using an intensity gradient method, we demonstrated that SMC aligned in the direction perpendicular to applied shear stress, which contrasts with parallel alignment of endothelial cells under flow SMC alignment varied with the magnitude of and exposure time to shear stress and is a continuous process that is dependent on calcium and cycloskeleton based mechanisms. A clear understanding and control of flow-induced SMC alignment will have implications for vascular tissue engineering.  相似文献   

10.
The preferential adhesion of monocytes to vascular endothelial cells (ECs) at regions near branches and curvatures of the arterial tree, where flow is disturbed, suggests that hemodynamic conditions play significant roles in monocyte adhesion. The present study aims to elucidate the effects of disturbed flow on monocyte adhesion to ECs and the adhesive properties of ECs. We applied, for the first time, the micron-resolution particle image velocimetry (μPIV) technique to analyze the characteristics of the disturbed flow produced in our vertical-step flow (VSF) chamber. The results demonstrated the existence of a higher near-wall concentration and a longer residence time of the monocytic analog THP-1 cells near the step and the reattachment point. THP-1 cells showed prominent adhesion to ECs pretreated with TNF in the regions near the step and the reattachment point, but they showed virtually no adhesion to un-stimulated ECs. Pre-incubation of the TNF-treated ECs with antibodies against intercellular adhesion molecule-1 (ICAM-1), vascular adhesion molecule-1 (VCAM-1), and E-selectin inhibited the THP-1 adhesion; the maximal inhibition was observed with a combination of these antibodies. Pre-exposure of ECs to disturbed flow in VSF for 24 h led to significant increases in their surface expressions of ICAM-1 and E-selectin, but not VCAM-1, and in the adhesion of THP-1 cells. Our findings demonstrate the importance of complex flow environment in modulating the adhesive properties of vascular endothelium and consequently monocyte adhesion in regions of prevalence of atherosclerotic lesions.  相似文献   

11.
Seeding cells and scaffolds play pivotal roles in bone tissue engineering and regenerative medicine.Wharton’s jelly-derived mesenchymal stem cells(WJCs)from human umbilical cord represent attractive and promising seeding cells in tissue regeneration and engineering for treatment applications.This study was carried out to explore the biocompatibility of scaffolds to seeding cells in vitro.Rod-like nano-hydroxyapatite(RN-HA)and flake-like micro-hydroxyapatite(FM-HA)coatings were prepared on Mg-Zn-Ca alloy substrates using micro-arc oxidation and electrochemical deposition.WJCs were utilized to investigate the cellular biocompatibility of Mg-Zn-Ca alloys after different surface modifications by observing the cell adhesion,morphology,proliferation,and osteoblastic differentiation.The in vitro results indicated that the RN-HA coating group was more suitable for cell proliferation and cell osteoblastic differentiation than the FM-HA group,demonstrating better biocompatibility.Our results suggested that the RN-HA coating on Mg-Zn-Ca alloy substrates might be of great potential in bone tissue engineering.  相似文献   

12.
Tissue engineering has recently evolved into a promising approach for annulus fibrosus (AF) regeneration. However, selection of an ideal cell source, which can be readily differentiated into AF cells of various regions, remains challenging because of the heterogeneity of AF tissue. In this study, we set out to explore the feasibility of using transforming growth factor‐β3‐mediated bone marrow stem cells (tBMSCs) for AF tissue engineering. Since the differentiation of stem cells significantly relies on the stiffness of substrate, we fabricated nanofibrous scaffolds from a series of biodegradable poly(ether carbonate urethane)‐urea (PECUU) materials whose elastic modulus approximated that of native AF tissue. We cultured tBMSCs on PECUU scaffolds and compared their gene expression profile to AF‐derived stem cells (AFSCs), the newly identified AF tissue‐specific stem cells. As predicted, the expression of collagen‐I in both tBMSCs and AFSCs increased with scaffold stiffness, whereas the expression of collagen‐II and aggrecan genes showed an opposite trend. Interestingly, the expression of collagen‐I, collagen‐II and aggrecan genes in tBMSCs on PECUU scaffolds were consistently higher than those in AFSCs regardless of scaffold stiffness. In addition, the cell traction forces (CTFs) of both tBMSCs and AFSCs gradually decreased with scaffold stiffness, which is similar to the CTF change of cells from inner to outer regions of native AF tissue. Together, findings from this study indicate that tBMSCs had strong tendency to differentiate into various types of AF cells and presented gene expression profiles similar to AFSCs, thereby establishing a rationale for the use of tBMSCs in AF tissue engineering.  相似文献   

13.
The cellular activity of an antigen is understood as its power to cause plasma cells to accumulate in the regional lymph node. Two plasma cell units (PCU) is the dose causing one plasma cell addition (as compared with the “background”), whereas 1 PCU causes neither increase nor decrease in plasma cell number in the regional lymph node. Injections of antigen in less than 1 PCU causes plasma cells to decrease in number. Interrelation between antigen and plasma cells changes with time in different regions of the lymphatic system.  相似文献   

14.
Tissue engineering using living cells is emerging as an alternative to tissue or organ transplantation. The adult mesenchymal stem cells can be differentiated into multilineage cells, such as adipocytes, chondrocytes, or osteoblasts when cultured with specific growth factors. In the present investigation, we have studied the effect of honeycomb collagen scaffolds for the adhesion, differentiation and proliferation of bone marrow-derived mesenchymal stem cells into osteoblasts. Mesenchymal stem cells were isolated from 6-week old albino rat femur bone marrow, and cultured in alpha-MEM medium without beta-glycerophosphate and dexamethasone. Honeycomb collagen discs were prepared from bovine dermal atelocollagen, cross-linked by UV-irradiation and sterilized by heat. The honeycomb discs were placed on the culture dishes before seeding the stem cells. The cells attached quickly to the honeycomb collagen scaffold, differentiated and proliferated into osteoblasts. The differentiated osteoblasts were characterized by morphological examination and alkaline phosphatase activity. The osteoblasts also synthesized calcium-deficient hydroxyapatite (pseudo-hydroxyapatite) crystals in the culture. The mineralization was confirmed by Von Kossa staining and the crystals were analyzed by X-ray diffraction. Light microscopy and DNA measurements showed that the differentiated osteoblasts multiplied into several layers on the honeycomb collagen scaffold. The results demonstrated that the honeycomb collagen sponge is an excellent scaffold for the differentiation and proliferation of mesenchymal stem cells into osteoblasts. The data further proved that honeycomb collagen is an effective substrate for tissue engineering applications, and is very useful in the advancing field of stem cell technology and cell-based therapy.  相似文献   

15.
已有的研究结果表明,肝素可以作为β2-整合素(Mac-1)的配体抑制炎症过程中Mac-1介导的嗜中性粒细胞与血管内皮细胞的黏附.通过选择性化学修饰方法制备了具有低抗凝血活性的高碘酸氧化-硼氢化钠还原肝素(RO-肝素),系统地研究了它对Mac-1介导的嗜中性粒细胞黏附的抑制作用.结果表明,显著失去抗凝血活性的RO-肝素仍能有效地抑制Mac-1介导的嗜中性粒细胞与ICAM-1重组蛋白、转染ICAM-1 cDNA的COS-7细胞和人脐静脉内皮细胞黏附.为深入阐明拮抗Mac-1介导的白细胞黏附的分子机制和筛选抗炎症药物提供了有价值的实验证据.  相似文献   

16.
The shape memory effect and superelastic properties of NiTi (or Nitinol, a nickel-titanium alloy) have already attracted much attention for various biomedical applications (such as vascular stents, orthodontic wires, orthopedic implants, etc). However, for vascular stents, conventional approaches have required coating NiTi with anti-thrombogenic or antiinflammatory drug-eluting polymers which as of late have proven problematic for healing atherosclerotic blood vessels. Instead of focusing on the use of drug-eluting anti-thrombogenic or anti-inflammatory proteins, this study focused on promoting the formation of a natural antithrombogenic and anti-inflammatory surface on metallic stents: the endothelium. In this study, we synthesized various NiTi substrates with different micron to nanometer surface roughness by using dissimilar dimensions of constituent NiTi powder. Endothelial cell adhesion on these compacts was compared with conventional commercially pure (cp) titanium (Ti) samples. The results after 5 hrs showed that endothelial cells adhered much better on fine grain (< 60 microm) compared with coarse grain NiTi compacts (< 100 microm). Coarse grain NiTi compacts and conventional Ti promoted similar levels of endothelial cell adhesion. In addition, cells proliferated more after 5 days on NiTi with greater sub-micron and nanoscale surface roughness compared with coarse grain NiTi. In this manner, this study emphasized the positive pole that NiTi with sub-micron to nanometer surface features can play in promoting a natural anti-thrombogenic and anti-inflammatory surface (the endothelium) on a vascular stent and, thus, suggests that more studies should be conducted on NiTi with sub-micron to nanometer surface features.  相似文献   

17.
Previous studies have demonstrated greater functions ofosteoblasts (bone-forming cells) on nanophase compared with conventional metals. Nanophase metals possess a biologically inspired nanostructured surface that mimics the dimensions of constituent components in bone, including collagen and hydroxyapatite. Not only do these components possess dimensions on the nanoscale, they are aligned in a parallel manner creating a defined orientation in bone. To date, research has yet to evaluate the effect that organized nanosurface features can have on the interaction of osteoblasts with material surfaces. Therefore, to determine if surface orientation of features can mediate osteoblast adhesion and morphology, this study investigated osteoblast function on patterned titanium substrates containing alternating regions of micron rough and nano rough surfaces prepared by novel electron beam evaporation techniques. This study was also interested in determining whether or not the size of the patterned regions had an effect on osteoblast behavior and alignment. Results indicated early controlled osteoblast alignment on these patterned materials as well as greater osteoblast adhesion on the nano rough regions of these patterned substrates. Interestingly, decreasing the width of the nano rough regions (from 80 microm to 22 microm) on these patterned substrates resulted in a decreased number of osteoblasts adhering to these areas. Changes in the width of the nano rough regions also resulted in changes in osteoblast morphology, thus, suggesting there is an optimal pattern dimension that osteoblasts prefer. In summary, results of this study provided evidence that aligned nanophase metal features on the surface of titanium improved early osteoblast functions (morphology and adhesion) promising for their long term functions, criteria necessary to improve orthopedic implant efficacy.  相似文献   

18.
In this work we describe the establishment of mesenchymal stem cells (MSCs) derived from embryonic stem cells (ESCs) and the role of bFGF in adipocyte differentiation. The totipotency of ESCs and MSCs was assessed by immunofluorescence staining and RT-PCR of totipotency factors. MSCs were successfully used to induce osteoblasts, chondrocytes and adipocytes. MSCs that differentiated into adipocytes were stimulated with and without bFGF. The OD/DNA (optical density/content of total DNA) and expression levels of the specific adipocyte genes PPARγ2 (peroxisome proliferator activated receptor γ2) and C/EBPs were higher in bFGF cells. Embryonic bodies had a higher adipocyte level compared with cells cultured in plates. These findings indicate that bFGF promotes adipocyte differentiation. MSCs may be useful cells for seeding in tissue engineering and have enormous therapeutic potential for adipose tissue engineering.  相似文献   

19.
Poly(3-(tert-butoxycarbonyl)-N-vinyl-2-pyrrolidone) has been synthesized and characterized by gel permeation chromatography, Fourier transform infrared spectroscopy, NMR spectroscopy, and thermal analysis. The polymer is a chemically amplified photoresist. Arrays of lines with 25 microm width and 25 microm spacing were successfully patterned with this polymer by photolithography. Rat fibroblast cells were seeded on these patterned surfaces as well as the smooth glass surface. Phase contrast microscopy showed that cells on the patterned surfaces were strongly aligned and elongated along the grooves as compared to randomly spreading on the smooth surface. Since controlling cell orientation is critical for the development of advanced forms of tissue repair and cell engineering therapies, for example, peripheral nerve repair, production of tendon and ligament substitutes in vitro, and control of microvascular repair, the described polymer may be useful for applications in tissue reconstruction.  相似文献   

20.
In tissue engineering, it is desirable to exhibit spatial control of tissue morphology and cell fate in culture on the micron scale. Culture substrates presenting grafted poly(ethylene glycol) (PEG) brushes can be used to achieve this task by creating microscale, non-fouling and cell adhesion resistant regions as well as regions where cells participate in biospecific interactions with covalently tethered ligands. To engineer complex tissues using such substrates, it will be necessary to sequentially pattern multiple PEG brushes functionalized to confer differential bioactivities and aligned in microscale orientations that mimic in vivo niches. Microcontact printing (μCP) is a versatile technique to pattern such grafted PEG brushes, but manual μCP cannot be performed with microscale precision. Thus, we combined advanced robotics with soft-lithography techniques and emerging surface chemistry reactions to develop a robotic microcontact printing (R-μCP)-assisted method for fabricating culture substrates with complex, microscale, and highly ordered patterns of PEG brushes presenting orthogonal ‘click’ chemistries. Here, we describe in detail the workflow to manufacture such substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号