首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Elucidating the early stages of keratin filament assembly   总被引:25,自引:13,他引:12       下载免费PDF全文
Because of extraordinarily tight coiled-coil associations of type I and type II keratins, the composition and structure of keratin subunits has been difficult to determine. We report here the use of novel genetic and biochemical methods to explore the early stages of keratin filament assembly. Using bacterially expressed humans K5 and K14, we show that remarkably, these keratins behave as 1:1 complexes even in 9 M urea and in the presence of a reducing agent. Gel filtration chromatography and chemical cross-linking were used to identify heterodimers and heterotetramers as the most stable building blocks of keratin filament assembly. EM suggested that the dimer consists of a coiled-coil of K5 and K14 aligned in register and in parallel fashion, and the tetramer consists of two dimers in antiparallel fashion, without polarity. In 4 M urea, both end-to-end and lateral packing of tetramers occurred, leading to a variety of larger heteromeric complexes. The coexistence of multiple, higher-ordered associations under strongly denaturing conditions suggests that there may not be a serial sequence of events leading to the assembly of keratin intermediate filaments, but rather a number of associations may take place in parallel.  相似文献   

2.
There is considerable diversity of opinion in the literature concerning the organization of two-chain coiled-coil molecules in intermediate filaments. I have reexplored this issue using the limited proteolysis paradigm with native mouse epidermal keratin intermediate filaments (KIF), consisting of keratins 1 and 10. KIF were harvested as cytoskeletal pellets, dissociated into subfilamentous forms at pH 9.8, 9.0, or 2.6, and were subjected to limited proteolytic digestion to recover alpha-helix-enriched particles that derived from the rod domains of the constituent chains, using conditions that do not promote reorganization of the constituent protein chains or coiled-coil molecules. The multichain particles were subjected to physicochemical analyses, amino acid sequencing, and electron microscopy in order to determine their composition, structure, and organization within the intact KIF. The results predict two principal modes of alignment: neighboring molecules may be aligned in register and antiparallel or staggered and antiparallel. From known structural constraints, this permits construction of a two-dimensional surface lattice for KIF which consists of alternating antiparallel rows of in-register and staggered molecules. These data establish the level of hierarchy at which the well-known antiparallelity and staggered features of KIF are introduced. This model supports the proposals of KIF structure based on theoretical considerations of ionic interactions scores (Crewther et al., 1983). When the KIF are dissociated at extremes of pH, this structural model allows for disruption along alternate axes; the in-register antiparallel alignment is seen only when KIF are dissociated at high pH values; below pH 9, only the staggered antiparallel alignment is seen. The process of molecule realignment especially in concentrated urea solutions indicates that the staggered antiparallel alignment is the more thermodynamically stable form in solution.  相似文献   

3.
Recombinant DNA technology has been used to analyze the first step in keratin intermediate filament (IF) assembly; i.e., the formation of the double stranded coiled coil. Keratins 8 and 18, lacking cysteine, were subjected to site specific in vitro mutagenesis to change one amino acid in the same relative position of the alpha-helical rod domain of both keratins to a cysteine. The mutations lie at position -36 of the rod in a "d" position of the heptad repeat pattern, and thus air oxidation can introduce a zero-length cystine cross-link. Mutant keratins 8 and 18 purified separately from Escherichia coli readily formed cystine homodimers in 2 M guanidine-HCl, and could be separated from the monomers by gel filtration. Heterodimers with a cystine cross-link were obtained when filaments formed by the two reduced monomers were allowed to oxidize. Subsequent ion exchange chromatography in 8.5 M urea showed that only a single dimer species had formed. Diagonal electrophoresis and reverse phase HPLC identified the dimer as the cystine containing heterodimer. This heterodimer readily assembled again into IF indistinguishable from those obtained from the nonmutant counterparts or from authentic keratins. In contrast, the mixture of cystine-stabilized homodimers formed only large aberrant aggregates. However, when a reducing agent was added, filaments formed again and yielded the heterodimer after oxidation. Thus, the obligatory heteropolymer step in keratin IF assembly seems to occur preferentially at the dimer level and not during tetramer formation. Our results also suggest that keratin I and II homodimers, once formed, are at least in 2 M guanidine-HCl a metastable species as their mixtures convert spontaneously into heterodimers unless the homodimers are stabilized by the cystine cross-link. This previously unexpected property of homodimers explains major discrepancies in the literature on the keratin dimer.  相似文献   

4.
Amino acid sequence studies of helical particles derived from proteolytic digests of mouse epidermal keratin intermediate filaments (IF) have shown that their coiled-coil molecules are heterodimers of Type I and Type II keratins, with a parallel arrangement of the two chains. From a reappraisal of published chemical cross-linking data, it is concluded that the coiled-coil molecules in all IF consist of pairs of parallel chains in precise axial register.  相似文献   

5.
Subunits of gizzard smooth muscle tropomyosin, dissociated by guanidinium chloride and reassociated by high salt dialysis, form a 1:1 mixture of the beta beta and gamma gamma homodimers (Graceffa, P. (1989) Biochemistry 28, 1282-1287). The homodimers have now been separated by anion-exchange chromatography and native gel electrophoresis, enabling us to show that the native protein is composed of more than 90% heterodimer. The in vitro equilibrium distribution of heterodimer and homodimers, at close to physiological temperature and ionic conditions, was calculated from thermal unfolding profiles of separated homodimers and heterodimer, as monitored by circular dichroism. The results, for an equal proportion of beta and gamma chains, indicate a predominant formation of heterodimer via chain dissociation and chain exchange, although the proportion of heterodimer was much less than the 90-100% found in the native protein. However, the proportion of heterodimer for actin-bound tropomyosin, determined by analyzing tropomyosin sedimented with actin, was greater than 90%, which may provide a model for assembly in vivo. The end-to-end interactions of the homodimers are about the same but are much less than that of the native heterodimer, as determined by viscometry. The greater end-to-end interaction of heterodimers may lead to stronger binding to actin compared to homodimers and thus would further shift the equilibrium between heterodimer and homodimers toward heterodimer and possibly account for the almost exclusive population of heterodimer in the presence of actin. The greater end-to-end interaction of the heterodimer may also provide a functional advantage for its preferred assembly. This study also shows that the two-step thermal unfolding of the homodimer mixture is due to the formation of heterodimer via an intermediate which is a new type of tropomyosin species which forms a gel in low salt. This tropomyosin is also present in small amounts in native tropomyosin preparations.  相似文献   

6.
The molecular dynamics and structural organization of mouse epidermal keratin intermediate filaments (IF) have been studied via solid-state nuclear magnetic resonance (NMR) experiments performed on IF labeled both in vivo and in vitro with isotopically enriched amino acids. As a probe of the organization of the peripheral glycine-rich end domains of the IF, carbon-13 NMR experiments have been performed on subfilamentous forms (prekeratin) and on IF reassembled in vitro that had been labeled with either [1-13C]glycine or [2-13C]glycine, as more than 90% of the glycines of the keratins are located in the end domains. Although cross-labeling to seryl residues was observed, the proportion of serine located in the end domains is nearly the same as that for glycine. Measurements of carbon relaxation times, nuclear Overhauser enhancements, and signal intensities show that the motions of the peptide backbone in the end domains are effectively isotropic, with average correlation times distributed over the range of 0.2-20 ns. These results indicate that the end domains of IF are remarkably flexible and have little or no structural order. To probe the structural organization of the coiled-coil rod domains of the IF, separate samples of native keratin IF, raised in primary tissue culture, were labeled with L-[1-13C]leucine, L-[2H10]leucine, or L-[2,3,3-2H3]leucine, as greater than 90% of the leucyl residues of the keratin IF types studied are located in the coiled coils which form the central core of IF.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The effects of the D137L/G126R double mutation in the central part of the tropomyosin α-chain via the simultaneous replacement of two highly conserved non-canonical residues, viz., Asp137 and Gly126, by canonical residues Leu and Arg, respectively, on the properties of the αβ-tropomyosin heterodimer have been studied. It has been shown using circular dichroism that this mutation substantially increases the thermal stability of αβ-tropomyosin heterodimers, which, nevertheless, remains lower than that of αα-tropomyosin homodimers with these mutations in both α-chains. The stability of tropomyosin complexes with F-actin has also been studied by measuring the temperature dependences of their dissociation, which is detected by a decrease in light scattering. It has been revealed that αβ-tropomyosin heterodimers carrying the D137L/G126R mutation in the α-chain dissociate from the surface of actin filaments at a higher temperature than ββ-homodimers but at a lower temperature than αα-homodimers with these mutations in both α-chains. It has also been shown using the in vitro motility assay that D137L/G126R substitution in the α-chain increases the sliding velocity of regulated actin filaments in the case of αα-homodimers, while it noticeably decreases the velocity in the case of αβ-tropomyosin heterodimers. Thus, we can conclude that mutations in one of the chains of the tropomyosin dimeric molecule may have different effects on the properties of tropomyosin homodimers and heterodimers.  相似文献   

8.
Donald T. Downing 《Proteins》1995,23(2):204-217
Mammalian epidermal keratin molecules adopt rod-shaped conformations that aggregate to form cytoplasmic intermediate filaments. To investigate these keratin conformations and the basis for their patterns of molecular association, graphical methods were developed to relate known amino acid sequences to probable spacial configurations. The results support the predominantly α-helical conformation of keratin chains, interrupted by short non-α-helical linkages. However, it was found that many of the linkages have amino acid sequences typical of β-strand conformations. Space-filling atomic models revealed that the β-strand sequences would permit the formation of 2-chain and 4-chain cylindrical β-helices, fully shielding the hydrophobic amino acid chains that alternate with hydrophilic residues in these sequences. Because of the locations of the β-helical regions in human and mouse stratum corneum keratin chains, only homodimers of the keratins could interact efficiently to form 2-chain and 4-chain β-helices. Tetramers having the directions and degrees of overlap of constituent dimers that have been identified by previous investigators are also predicted from the interactions of β-helical motifs. Heterotetramers formed from dissimilar homodimers could combine, through additional β-helical structures, to form higher oligomers having the dimensions seen in electron microscopic studies. Previous results from chemical crosslinking studies can be interpreted to support the concept of homodimers rather than heterodimers as the basis for keratin filament assembly. © 1995 Wiley-Liss, Inc.  相似文献   

9.
The thermal and the urea-induced unfolding profiles of the coiled-coil alpha-helix of native and refolded tropomyosin from chicken gizzard were studied by circular dichroism. Refolding of tropomyosin at low temperature from alpha + beta subunits, dissociated by guanidinium chloride, urea, or high temperature, predominantly produced alpha alpha + beta beta homodimers in agreement with earlier studies of refolding from guanidinium chloride (Graceffa, P. (1989) Biochemistry 28, 1282-1287). The presence of two unfolding transitions in low salt solutions with about equal helix loss verified the composition with the first unfolding transition of the homodimer mixture originating from alpha alpha. In contrast, refolding by equilibrating at temperatures close to physiological, however, produced the native alpha beta heterodimer, which unfolded in a single transition. The refolding kinetics of dissociated alpha + beta subunits indicated that beta beta homodimers form first, leading to alpha alpha homodimers both of which are relatively stable against chain exchange below approximately 25 degrees C. Equilibrating the homodimer mixture at 37-40 degrees C for long times, however, produced the native alpha beta molecule via chain exchange. The equilibria involved indicate that the free energy of formation from subunits of alpha beta is much less than that of (alpha alpha + beta beta)/2. In vivo folding of alpha beta from the two separate alpha and beta gene products is, therefore, thermodynamically favored over the formation of homodimers and biological factors need not be considered to explain the native preferred alpha beta composition.  相似文献   

10.
Intermediate filaments (IFs) are fibrous polymers encoded by a large family of differentially expressed genes that provide crucial structural support in the cytoplasm and nucleus in higher eukaryotes. The mechanisms involved in bringing together approximately 16 elongated coiled-coil dimers to form an IF are poorly defined. Available evidence suggests that tetramer subunits play a key role during IF assembly and regulation. Through molecular modeling and site-directed mutagenesis, we document a hitherto unnoticed hydrophobic stripe exposed at the surface of coiled-coil keratin heterodimers that contributes to the extraordinary stability of heterotetramers. The inability of K16 to form urea-stable tetramers in vitro correlates with an increase in its turnover rate in vivo. The data presented support a specific conformation for the assembly competent IF tetramer, provide a molecular basis for their differential stability in vitro, and point to the physiological relevance associated with this property in vivo.  相似文献   

11.
Animal hairs consist of aggregates of dead cells filled with keratin protein gel. We succeeded in preparing water-soluble hard-keratin proteins and reconstructing the keratin gels by heat-induced disulfide linkages in vitro. Here, the roles of intermolecular hydrophobic interaction and disulfide bonding between the proteins in the gel were discussed. Water-soluble keratin proteins consisting of mixtures of type I ( approximately 48 kDa) and type II ( approximately 61 kDa) were prepared from wool fibers as S-carboxymethyl alanyl disulfide keratin (CMADK). The gelation was achieved by heating an aqueous solution containing at least 0.8 wt % CMADK at 100 degrees C. CMADK solutions with different urea or N-ethylmaleimide concentrations or pH were exposed to dynamic light scattering (DLS) and circular dichroism (CD). DLS clarified the gelation point of CMADK solutions and provided information on the changes in keratin cluster size. DLS suggested two types of gelation mechanism. One was the regenerated chemical disulfide bonding between keratins from CMAD parts of chains. After the gel formed, this bond became important to maintain the gel structure. The other was the physical assembly due to hydrophobic interaction between alpha-helix parts of keratin chains. This hydrophobic assembly also played an important role during gelation. CD confirmed a conformational change in the keratin protein, resulting heat-induced gelation. CD clarified the relationship between keratin protein conformation and gelation, i.e., a rodlike conformation with many alpha-helix structures was necessary to associate keratin chains and form a gel network.  相似文献   

12.
Y Kitajima  Y Jokura  H Yaoita 《Human cell》1991,4(2):123-130
The cytoskeletons possibly related to pathogenesis in skin disease may be limited to keratin intermediate filaments (KIF) in epidermal keratinocytes. Keratins are divided into two subclasses; 11 acidic (type I) keratins and 8 basic (type II) keratins. Combination of equimolar amounts of type I and type II can form KIF. KIFs in human epidermal basal cells consist of a pair of type I and type II keratins specifically synthesized in the basal cells, and those in spinous cells contain two pairs of keratin; a pair of basal cell keratin and another pair of keratin specific for suprabasal cells. In the first section, molecular biology and differentiation of keratins are reviewed. In the second section, epidermolysis bullosa simplex (EBS) was introduced from the view point of abnormal organization of KIFs. In the epidermis of EBS, clefts are induced in the basal cells by minor trauma or frictions consequently to produce bullae. Electron microscopy reveals small spherical aggregations of tonofilaments (KIFs) in the basal cells. In biopsies, these KIF aggregations might be caused by artifacts during procedures for biopsies, so that, in order to avoid these artifacts, we studied the KIF organization in cultured keratinocytes from a patient by immunofluorescence using anti-keratin antibodies and electron microscopy. Anti-keratin antibodies revealed a formation of small droplet-like aggregations of KIFs in many cultured cells adhering to the culture bottles, which were also suggested by electron microscopy. From these observations, it is suggested that the abnormal organization (droplets) of KIFs might be one of intrinsic factors for the pathogenesis of EBS.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
BHK-21 fibroblasts contain type III vimentin/desmin intermediate filament (IF) proteins that typically co-isolate and co-cycle in in vitro experiments with certain high molecular weight proteins. Here, we report purification of one of these and demonstrate that it is in fact the type VI IF protein nestin. Nestin is expressed in several fibroblastic but not epithelioid cell lines. We show that nestin forms homodimers and homotetramers but does not form IF by itself in vitro. In mixtures, nestin preferentially co-assembles with purified vimentin or the type IV IF protein alpha-internexin to form heterodimer coiled-coil molecules. These molecules may co-assemble into 10 nm IF provided that the total amount of nestin does not exceed about 25%. However, nestin does not dimerize with types I/II keratin IF chains. The bulk of the nestin protein consists of a long carboxyl-terminal tail composed of various highly charged peptide repeats. By analogy with the larger neurofilament chains, we postulate that these sequences serve as cross-bridgers or spacers between IF and/or other cytoskeletal constituents. In this way, we propose that direct incorporation of modest amounts of nestin into the backbone of cytoplasmic types III and IV IFs affords a simple yet flexible method for the regulation of their dynamic supramolecular organization and function in cells.  相似文献   

14.
As major constituents of the mammalian lens, beta-crystallins associate into dimers, tetramers, and higher-order complexes to maintain lens transparency and refractivity. A previous study has shown that dimerization of betaB2- and betaA3-crystallins is energetically highly favored and entropically driven. While heterodimers further associate into higher-order complexes in vivo, a significant level of reversibly associated tetrameric crystallin has not been previously observed in vitro. To enhance our understanding of the interactions between beta-crystallins, we characterized the association of betaB1-crystallin, a major component of large beta-crystallin complexes (beta-high), with itself and with betaA3-crystallin. Mouse betaB1-crystallin and human betaA3-crystallin were expressed in Escherichia coli and purified chromatographically. Their association was then characterized using size-exclusion chromatography, native gel electrophoresis, isoelectric focusing, and analytical sedimentation equilibrium centrifugation. When present alone, each beta-crystallin associates into homodimers; however, no tetramer formation is seen. Once mixing has taken place, formation of a heterocomplex between betaB1- and betaA3-crystallins is observed using size-exclusion chromatography, native gel electrophoresis, isoelectric focusing, and sedimentation equilibrium. In contrast to results previously obtained after betaB2- and betaA3-crystallins had been mixed, mixed betaB1- and betaA3-crystallins show a dimer-tetramer equilibrium with a K d of 1.1 muM, indicating that these two beta-crystallins associate predominantly into heterotetramers in vitro. Thus, while each purified beta-crystallin associates only into homodimers and under the conditions studied mixed betaB2- and betaA3-crystallins form a mixture of homo- and heterodimers, mixed betaB1- and betaA3-crystallins associate predominantly into heterotetramers in equilibrium with heterodimers. These findings suggest a unique role for betaB1-crystallin in promoting higher-order crystallin association in the lens.  相似文献   

15.
Keratins from the living cell layers of human and neonatal mouse epidermis (prekeratins) have been compared to those from the stratum corneum (SC keratins). Human and mouse epidermis contained four prekeratins, two of each keratin subfamily: type II basic (pI 6.5-8.5; human 68 kDa, 60.5 kDa and mouse 67 kDa, 60 kDa) and type I acidic (pI 4.7-5.7; human 57 kDa, 51 kDa and mouse 58 kDa, 53 kDa,). While all four were present in equal amounts in adult human epidermis, two (67 kDa basic, 58 kDa acidic) were more prominent in neonatal mouse epidermis. Preliminary results with cell fractions (basal, spinous and granular) indicated that quantitative differences were a function of morphology, basal cells containing the smaller member of each subfamily and granular cells the larger. Mouse stratum corneum extracts contained four keratins (three in human): type II neutral-acidic (pI 5.7-6.7; human 65 kDa and mouse 64 kDa, 62 kDa) and type I acidic (pI 4.9-5.4; human 57.5 kDa, 55 kDa and mouse 58.5 kDa, 57.5 kDa). In both species, one-dimensional and two-dimensional peptide mapping (with V8 protease and trypsin respectively) indicated that while all four prekeratins were distinct gene products, similarities existed in the type II basic and the type I acidic keratin subfamilies. A strong homology also existed between type II SC keratins and the larger basic (type II) prekeratin (human 68 kDa and mouse 67 kDa) and between type I SC keratins and the larger acidic (type I) prekeratin (human 57 kDa and mouse 58 kDa). These results indicate a precursor-product relationship within each keratin subfamily, between SC keratins and the prekeratins abundant in the adjacent granular layer. This differentiation-related keratin processing was similar in mouse and human epidermis, and may represent a widespread phenomenon amongst keratinising epithelia.  相似文献   

16.
After selective extraction and purification, plant keratin intermediate filaments were reassembled in vitro. Scanning tunneling microscope (STM) and transmission electron microscope (TEM) micrographs showed that acidic keratins and basic keratins can assemble into dimers and further into 10 nm filaments in vitro. In higher magnification images, it can be seen that fully assembled plant keratin intermediate filaments consist of several thinner filaments of 3 nm in diameter, which indicates the formation of protofilaments in the assembly processes. One of the explicit features of plant keratin intermediate filaments is a 24—25 nm periodic structural repeat alone the axis of beth the 10 nm filaments and protofilaments. The periodic repeat is one of the fundamental characteristic of all intermediate filaments, and demonstrates the half staggered arrangement of keratin molecules within the filaments.  相似文献   

17.
18.
The four major keratins of normal human epidermis (molecular mass 50, 56.5, 58, and 65-67 kD) can be subdivided on the basis of charge into two subfamilies (acidic 50-kD and 56.5-kD keratins vs. relatively basic 58-kD and 65-67-kD keratins) or subdivided on the basis of co-expression into two "pairs" (50-kD/58-kD keratin pair synthesized by basal cells vs. 56.5-kD/65-67-kD keratin pair expressed in suprabasal cells). Acidic and basic subfamilies were separated by ion exchange chromatography in 8.5 M urea and tested for their ability to reassemble into 10-nm filaments in vitro. The two keratins in either subfamily did not reassemble into 10-nm filaments unless combined with members of the other subfamily. While electron microscopy of acidic and basic keratins equilibrated in 4.5 M urea showed that keratins within each subfamily formed distinct oligomeric structures, possibly representing precursors in filament assembly, chemical cross-linking followed by gel analysis revealed dimers and larger oligomers only when subfamilies were combined. In addition, among the four major keratins, the acidic 50-kD and basic 58-kD keratins showed preferential association even in 8.5 M urea, enabling us to isolate a 50-kD/58-kD keratin complex by gel filtration. This isolated 50-kD/58-kD keratin pair readily formed 10-nm filaments in vitro. These results demonstrate that in tissues containing multiple keratins, two keratins are sufficient for filament assembly, but one keratin from each subfamily is required. More importantly, these data provide the first evidence for the structural significance of specific co-expressed acidic/basic keratin pairs in the formation of epithelial 10-nm filaments.  相似文献   

19.
The hair follicle consists of a complex system of multiple tissue compartments that are clearly distinguishable by their morphology and type of differentiation. We have synthesized hair follicle-specific keratins from the companion layer (K6hf, K17) and the hair cortex (Ha1, Hb3, Hb6) in Escherichia coli. The assembly of purified keratins in mixtures of K6hf/K17 and in mixtures of hair cortex keratins was compared in urea solutions, low ionic strength and physiological strength buffers, by urea melting gels, electron microscopy and analytical ultracentrifugation. Both types of keratin mixtures, keratins from the companion layer and keratins from the hair cortex, formed heterotypic complexes at 5 M urea. In low ionic strength buffers, the keratins from the companion layer were assembled to bona fide intermediate filaments. In contrast, mixtures of hair cortex keratins stayed in an oligomeric state with a mean s value of 9 as determined in sedimentation velocity experiments. Hair cortex keratins were, however, assembled into intermediate filaments at physiological salt conditions. A point mutated hair cortex keratin [Hb6(Glu402Lys)] formed no long filaments when mixed with Ha1; instead, the assembled structures showed a length distribution of 50.8 +/- 13.4 nm, comparable to the size distribution of assembly intermediates called 'unit-length' filaments.  相似文献   

20.
Modification of human prekeratin during epidermal differentiation.   总被引:8,自引:1,他引:7       下载免费PDF全文
The polypeptide-chain components of human epidermal prekeratin and keratin were analysed by high-resolution SDS (sodium dodecyl sulphate)/polyacrylamide-gradient-gel electrophoresis. Size heterogeneity existed amongst prekeratin components and at least ten polypeptides, in the molecular-weight range 46,000-70,000, were observed in 0.1 M-citric acid/sodium citrate buffer (pH 2.65) extracts of scale epidermis. Prekeratin from scalp pilosebaceous ducts was identical with that from the contiguous epidermis, and no prekeratin was found in extracts of scale dermis. Prekeratin from plantar epidermis contained additional polypeptide chains, but only slight anatomical variation existed between the non-callus sites examined. Keratin differed from prekeratin in at least two major respects: (a) many major components did not co-electrophorese on high-resolution SDS/polyacrylamide slab gels, and (b) keratin, but not prekeratin, required denaturing and reducing conditions for extraction. Keratin extracted from scale epidermis after complete removal of prekeratin was identical with forearm stratum-corneum keratin. Palmar and plantar keratin contained additional polypeptide chains and had a different size distribution compared with forearm and scalp keratin components. Modification of prekeratin components to produce the keratin polypeptide profile occurred during epidermal differentiation, and these changes appeared to take place in the granular-layer region of the epidermis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号